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Occupation Statistics of a BEC for a Driven Landau-Zener Crossing
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We consider an atomic Bose-Einstein condensate (BEC) loaded in a biased double-well trap with
tunneling rate K and inter-atomic interaction U . The BEC is prepared such that all N atoms are
in the left well. We drive the system by sweeping the potential difference E between the two wells.
Depending on the interaction u = NU/K, and the sweep rate Ė , we distinguish three dynamical
regimes: adiabatic, diabatic, and sudden and consider the occupation statistics of the final state.
The analysis goes beyond mean-field theory and is complemented by a semiclassical picture.

The theoretical and experimental study of driven
atomic Bose-Einstein Condensates (BEC) in a few site
system using optical lattice technology has sparked an
intense research activity in recent years [1, 2, 3, 4]. Be-
yond their scientific challenge, these studies also aim to
realize a new generation of nano-scale devices such as an
atom transistor [5]. Consequently, a lot of effort has been
invested in the study of the prototype two-site (dimer)
system, either within the framework of a nonlinear mean-
field approach [1], optionally using higher order cumu-
lants [6], or adopting a conventional many-body perspec-
tive [7, 8, 9, 10]. Such investigations have revealed many
interesting phenomena related to eigenvalue spectra, the
structure of the eigenstates, wavepacket dynamics, e.g.
of the Bloch-Josephson type, and leaking dynamics due
to dissipative edges.

Driven dimers prove to be even more challenging
[11, 12, 13, 14, 15]. The scenario investigated in these
studies involves many-body Landau-Zener (LZ) transi-
tions induced by sweeping the potential difference E be-
tween the two wells. Specifically, one assumes that ini-
tially E is very negative, and that all n = N atoms are
in the first well. Then E is increased at some constant
rate Ė to a very large positive value. The objective is to
calculate how many atoms (n) remain in the first well.
The analysis in the majority of published works is based
on the study of the discrete nonlinear Schrödinger equa-
tion, which is a mean-field approach [11, 12]. There are
only a few studies that have made further progress within
the framework of a full quantum mechanical treatment
of the system [13, 14, 15]. However, they all focus on cal-
culating the average occupation 〈n〉, while a theory for
the occupation statistics P (n), and in particular for the
variance Var(n) is still lacking.

Outline. – In this Letter, we consider a driven dimer
with inter-site hopping amplitude K, and inter-atomic
interaction U . The dimensionless parameter u = NU/K
can be either positive (repulsive) or negative (attrac-
tive) and its magnitude determines the interaction regime
which is either Rabi (|u| < 1), Josephson (1 < |u| < N2),
or Fock (|u| > N2). Depending on the sweep rate Ė
we distinguish adiabatic, diabatic, and sudden dynamical

scenarios, consider the occupation statistics of the final
state, and show that the latter depends on u. Our analy-
sis goes beyond mean-field theory, and is complemented
by a semiclassical picture.

Modeling. – The simplest model that describes in-
teracting bosons on a lattice is the Bose-Hubbard Hamil-
tonian (BHH). For a two-site (dimer) system:

H =

2
∑

i=1

[

Ein̂i +
1

2
Un̂i(n̂i − 1)

]

− K

2

∑

i6=j

b̂†i b̂j , (1)

where b̂i and b̂†i are bosonic annihilation and creation op-

erators, and n̂i = b̂†i b̂i counts the number of particles at
site i = 1, 2. We use units such that ~ = 1. The BHH
has two constants of motion: the energy E and the total
number of particles N = n̂1 + n̂2. Given N , the Hilbert-
space has dimension N = N+1, and the Fock basis states
are |n〉 ≡ |n1=n, n2=N−n〉. Below we assume an even
N ≫ 1 and define j = N/2, hence N = 2j+1. The
BHH for a given N is formally equivalent to the Hamilto-
nian of a spin j particle. Defining Jz ≡ (n̂1 − n̂2)/2 and

J+ ≡ b̂†1b̂2 it can be re-written as:

Ĥ = UĴ2
z + E Ĵz − KĴx, (2)

where E = E1 − E2 is the bias. In the absence of inter-
action this Hamiltonian can be reinterpreted as describ-
ing a spin in a magnetic field with precession frequency
Ω = (−K, 0, E).

The many-body Landau-Zener scenario that we con-
sider assumes that initially the bias is very negative and
that all particles are in the first site |Ψ(t=0)〉 = |N〉. This
is the ground state in the case of an attractive interac-
tion (U < 0), and it is equivalent to a preparation in the
most excited state if U > 0 [a]. The bias E is raised with
some constant sweep rate Ė . Once the bias becomes large
and positive the occupation statistics P (n) ≡ |〈n|Ψ(t)〉|2
reach a steady state. Below we use the following termi-
nology: (i) if at the end of the sweep we observe the Fock
state |0〉, then we call it an idealized adiabatic process;
(ii) if we observe the Fock state |N〉, we call it an ideal-
ized sudden process; and (iii) if the system ends up in a
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FIG. 1: (Color online) Phase space and corresponding en-
ergy levels (conceptual plot). The sea levels are in blue, the
separatrix in green, and the islands are black.

Fock state |nc〉, where nc 6= 0, N , we call it an idealized
diabatic process.

Phase Space. – In order to analyze the dynamics
for finite U it is convenient to rewrite the BHH using
canonical variables. Formally we are dealing with two
coupled oscillators and thus we can define action-angle
variables as b̂i ≡

√
n̂i exp(iϕi). Note that the translation-

like operator exp(iϕ) is in fact non-unitary because it
annihilates the ground state, but this is irrelevant for
N ≫ 1. With these coordinates the BHH takes a form
that resembles the Josephson (pendulum) Hamiltonian:

H ≈ NK

2

[

1

2
u(cos θ)2 + ε cos θ − sin θ cosϕ

]

, (3)

where θ is an alternative way to express the occupa-
tion difference Jz ≡ (n1−n2)/2 ≡ n ≡ (N/2) cos(θ), and
the scaled biased is ε ≡ E/K. It is important to real-
ize that ϕ and θ do not commute. The classical phase
space is described either using the canonical coordinates
(ϕ, n), with n ∈ [−N/2, N/2], or equivalently using the
spherical coordinates (ϕ, θ). In the former case the total
area of phase space is 2πN with a Planck cell 2π~ and
~=1, while in the latter case the phase space has total
area 4π with a Planck cell 4π/N . Within the semiclas-
sical approximation, a quantum state is described as a
distribution in phase space, and the eigenstates are asso-
ciated with stripes that are stretched along contour lines
H(ϕ, θ) = E. The energy levels En can be determined
via WKB quantization of the enclosed phase space area.

Separatrix. – The phase space topology becomes
non-trivial, i.e. has more than one component, if |u| > 1
and |ε| < εc where εc = (u2/3 − 1)3/2 (see Fig. 1a for
an illustration). In this regime, a separatrix divides the
phase space into three regions: two islands that contain
the upper energy levels and a sea that contains the lower
energy levels. In this description and in the numerics
below we assume U > 0 and adopt the following enu-
meration convention: we define n=0 as the most excited
level, while n=N corresponds to the lowest one. Note
that the replacement U 7→ −U merely inverts the order
of the levels and for U < 0 the n=0 level corresponds to
the ground state [a].

Fig. 1b is an illustration of the energy levels as a func-
tion of the bias. Each level is associated via WKB quan-
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FIG. 2: (Color online) Dynamical evolution in a situation in
which the mean-field (Gaussian) approximation does not hold:
N = 100 particles are prepared in one site of a symmetric
(E=0) double well, and then evolved with a u=2 Hamiltonian.
The initial wavepacket is stretched along the separatrix. (a)
Classical probability distribution in phase space. (b) Wigner
representation of the corresponding quantum state. (c) Quan-
tum probability n distribution (red line) compared with the
semiclassical (blue histogram) and with the mean-field (bino-
mial/Gaussian) predictions. In all these plots n is scaled to
the range [0, 1]. The average occupation 〈n〉 = 47 is associ-
ated here with a huge super-binomial variance Var(n) = 1530
instead of the binomial value Var(n) ∼ 25.

tization with one of the contours lines in Fig. 1a. For the
sake of our later analysis we define nc as the level which
is closest to the separatrix for |ε| = εc. At this critical
value of the bias one of the islands has a vanishing phase
space area, while the area of the other is Ac ≈ 4πεc/u.
Using WKB quantization we get

nc =
Ac

4π/N
≈ (1 − u−2/3)3/2 N, (4)

where the approximation for Ac has been tested against
a numerical calculation. The analysis here parallels the
one in Ref.[11].

Simulation. – As a preliminary step we have made
a simulation of the undriven wavepacket dynamics with
E=0 and u=2. For this value of u the separatrix crosses
the north pole of the phase space, and therefore the
wavepacket stretches along it, as illustrated in Fig. 2a
(classical) and in Fig. 2b (quantum mechanical). It
should be appreciated that this type of dynamics cannot
be properly addressed by the mean-field approximation.
The mean-field equation merely describes the Hamilto-
nian evolution of a single point in phase space and there-
fore assumes that the wavepacket looks like a minimal
Gaussian at any moment. Whenever the motion is in the
vicinity of the separatrix the mean-field description be-
comes inapplicable and consequently the n distribution
is likely not to be binomial (Fig. 2c).

Coming back to the bias-sweep scenario one wonders
what the effect is of the separatrix motion on the occu-
pation statistics. It should be clear that this separatrix
motion in unavoidable here: For ε < −εc the wavepacket
is localized in the upper level. When ε = −εc the sepa-
ratrix emerges. As long as −εc < ε < 0 the wavepacket
remains trapped in the top of the big island. This island
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FIG. 3: (Color online) (a) Parametric evolution of the adia-
batic energy levels versus the bias E [a] for a BEC with N=10
particles, U=15 and K=60. The dashed line corresponds to
the level nc=4. (b) Average occupation 〈n〉 versus the sweep

rate Ė . (c) Participation number (PN) and Var(n) versus Ė .
The vertical lines indicate the various adiabatic thresholds
(blue) and the diabatic threshold (orange).

gradually shrinks. When ε becomes larger than zero, the
wavepacket can partially tunnel out from the shrinking is-
land to the levels of the expanding island. When ε = +εc

the shrinking island disappears and the remaining part of
the wavepacket is squeezed out along the n = nc contour,
resembling the dynamics of Fig. 2.

In Fig. 3 we plot the average occupation 〈n〉 and the
participation number (PN) of the distribution P (n) at
the end of the sweep as a function of Ė . The plot of 〈n〉
does not provide much information regarding the nature
of the crossing process. It is much more informative to
look at PN. For very slow rates, the wavepacket follows a
strict adiabatic process and ends at n=0. For a somewhat
larger sweep rate the wavepacket exits in a superposition
of n=0 and n=1 states, indicated by PN=2. We also re-
solve the possibility of ending entirely at n=1 or at n=2
or at n=3. In the case shown in Fig. 3 we have nc ≈ 4.
For larger sweep rates we observe a qualitatively differ-
ent behavior that can be described as a crossover from an
adiabatic/diabatic behavior to a sudden behavior at the
peak value PN=4. In order to appreciate the deviation
of the numerical results from the mean-field theory pre-

diction, we plot Var(n) versus 〈n〉 in Fig. 4 and compare
with the binomial expectation. Below we further analyze
the observed results.

Thresholds. – The various thresholds that are in-
volved in the adiabatic-diabatic-sudden crossovers can be
cast into an inequality of the form

Ė ≪ ω2
osc

/ κ, (5)

where ωosc is a characteristic frequency of the unper-
turbed dynamics and κ is the coupling parameter that
determines the rate of the driven transitions. In the
strict quantum adiabatic framework, ωosc is simply the
level spacing and κ is determined by the slopes of the
intersecting levels. In order to determine the adiabatic
thresholds in Fig. 3 we observe that for the intersec-
tion of the n=0 level with the n=(N−n) level the dif-
ference in slope is κ = (N−n), because asymptotically,
d(En−Em)/dE ∼ (n−m). In the absence of interaction
(u ≪ 1), the level spacing is ωosc = K and only nearby
levels are coupled, leading to the standard Landau-Zener
adiabaticity condition Ė ≪ K2. With strong interaction
there is an Nth order coupling between the n=0 level
and the n=N level, which allows tunneling from the
top of one island to the top of the other island (as il-
lustrated in Fig. 1). An estimate for this coupling is
Keff = [NK]/[2N−1(N−1)!](K/U)N−1 [7]. We note that
in this regime similar considerations can be applied to the
bottom sea level in order to determine if we have adia-
batic, gradual, or sequential crossing [16]. The various
quantum adiabatic thresholds are summarized in Fig. 5.

For large N it might be practically impossible to satisfy
the strict adiabaticity condition which is associated with
the possibility to tunnel from the top of one island to the
top of the other. Then the relevant mechanism for tran-
sition, i.e. the emission to the level nc as described in the
previous section, becomes semiclassical. The frequency
that governs this transition is ωosc ∼ |NUK|1/2. It is
the oscillation frequency at the bottom of the sea, which
determines the level spacing there and, with some loga-
rithmic correction [17], also the level spacing in the vicin-
ity of the separatrix. It follows that the diabatic-sudden
crossover involves the threshold condition Ė ≪ |NUK| as
indicated in Fig. 5 and calculated for the simulations of
Fig. 3.

Scaling. – The essence of the diabatic-sudden
crossover involving sea levels can be captured by the toy
Hamiltonian H = h(t) · J , where J is a spin entity with
jeff = (N−nc)/2, and h(t) is a field with constant magni-
tude |h(t)| = ωosc corresponding to the mean level spac-
ing. The sweep is like rotation of h(t) in the plane with
some angular rate ω. On the basis of this simple model,
we suggest a sub-binomial scaling relation between the
mean and the variance of the occupation statistics:

Y = (1 − X)
X − c

1 − c
; with c =

nc

N
, (6)
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FIG. 4: (Color online) Y = Var(n)/N versus X = 〈n〉/N .
Symbols correspond to numerical data, while lines indicate
the sub-binomial scaling relation Eq.(6) with u=2.5 (dot-
ted) and u=4.05 (solid). No fitting is involved. As a refer-
ence we also plot the standard binomial scaling (dashed line)
which would strictly apply in the absence of interaction (u=0).
There is a clear crossover from a binomial to the sub-binomial
scaling, and the agreement becomes better for large N . Note
that the super-binomial data point (X, Y ) = (0.47, 15.3) that
corresponds to the distribution in Fig. 2 is out-of-scale.

where X = 〈n〉/N , and Y = Var(N)/N . Our numerical
data is reported in Fig. 4 together with the binomial
(c=0) and sub-binomial scaling relation Eq.(6). The nu-
merics confirm the expected u-dependent crossover from
binomial to sub-binomial statistics, where the latter, with
no fitting parameters, sets a lower bound for the variance.

Summary. – In view of the strong research interest
in counting statistics of electrons in mesoscopic devices,
it is somewhat surprising that the issue of occupation
statistics of BECs has been explored only for equilibrium
phase transitions. Getting into this issue in the dynam-
ical context is motivated by state-of-the-art experiments
that are aimed in counting individual particles [2, 3, 4].
We have shown that in the case of a many-body Landau-
Zener transition the mean-field binomial expectation is
not realized, however a sub-binomial scaling relation still
works quite well. By looking at the occupation statistics,
in particular at the participation number of the final dis-
tribution, we were able to resolve all the details of the
adiabatic-diabatic-sudden crossovers, and to verify theo-
retical estimates for the threshold of each crossover.
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