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Lognormal-like statistics of a stochastic squeeze process
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We analyze the full statistics of a stochastic squeeze process. The model’s two parameters are the bare stretching
rate w and the angular diffusion coefficient D. We carry out an exact analysis to determine the drift and the
diffusion coefficient of log(r), where r is the radial coordinate. The results go beyond the heuristic lognormal
description that is implied by the central limit theorem. Contrary to the common “quantum Zeno” approximation,
the radial diffusion is not simply Dr = (1/8)w2/D but has a nonmonotonic dependence on w/D. Furthermore,
the calculation of the radial moments is dominated by the far non-Gaussian tails of the log(r) distribution.
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I. INTRODUCTION

In this paper we analyze the full statistics of a physically
motivated stochastic squeeze process that is described by the
Langevin (Stratonovich) equation,

ẋ = wx − ω(t)y, ẏ = −wy + ω(t)x, (1)

where the rotation frequency ω(t) is a zero-mean white noise
with fluctuations:

〈ω(t ′)ω(t ′′)〉 = 2Dδ(t ′ − t ′′). (2)

Accordingly the model has two parameters: the angular
diffusion coefficient D of the polar phase and the bare
stretching rate w of the radial coordinate r =

√
x2 + y2. In a

physical context the noise arises due to the interaction with
environmental degrees of freedom, typically modeled as a
harmonic bath of “phonons.” Hence we can assume for it a
Gaussian-like distribution with bounded moments. The white
noise assumption means that the correlation time is very short,
hence the Stratonovich interpretation of Eq. (1) is in order, as
argued, for example, by Van Kampen [1].

The squeeze operation is of interest in many fields of science
and engineering, but our main motivation originates from the
quantum mechanical arena, where it is known as parametric
amplification. In particular, it describes the dynamics of a
bosonic Josephson junction (BJJ) given that all the particles
are initially condensed in the upper orbital. This preparation is
unstable [2,3], but it can be stabilized by introducing frequent
measurements or by introducing noise. This is the so-called
“quantum Zeno effect” (QZE) [4–8]. The manifestation of the
QZE in the BJJ context was first considered in Ref. [9] and
[10] and later in Ref. [11].

The main idea of the QZE is usually explained as follows:
The very short-time decay of an initial preparation due to
constant perturbation is described by the survival probability
P(t) = 1 − (vt)2, where v is determined by pertinent cou-
plings to the other eigenstates; Dividing the evolution into
τ steps and assuming a projective measurement at the end of
each step one obtains

P(t) ≈ [P(τ )]t/τ ≈ [1 − (vτ )2]t/τ ≈ exp[−(v2τ )t].
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The common phrasing is that frequent measurements
(small τ ) slow down the decay process due to repeated
“collapse” of the wave function. Optionally, one considers a
system that is coupled to the environment. Such an interaction
is formally similar to a continuous measurement process,
which is characterized by a dephasing time τ . In the latter case
the phrasing is that the introduction of “noise” leads to the
slowdown of the decay process. Contrary to simple intuition,
stronger noise leads to slower decay.

At this point one might get the impression that the QZE
is a novel “quantum” effect, which has to do with mysterious
collapses, and that this effect is not expected to arise in a
“classical” reality. This conclusion is in fact wrong: Whenever
the system of interest has a meaningful classical limit, the
same Zeno effect arises also in the classical analysis. This
point is emphasized in Ref. [11] in the context of the BJJ. It
has been realized that the QZE is the outcome of the classical
dynamics that is generated by Eq. (1), where the (x,y) are local
canonical conjugate coordinates in the vicinity of a hyperbolic
(unstable) fixed point in phase space. The essence of the
QZE in this context is the observation that the introduction
of the noise via the phase variable leads to a slowdown of
the radial spreading. For strong noise [large D in Eq. (2)],
the radial spreading due to w is inhibited. Using quantum
terminology this translates to suppression of the decoherence
process.

From a pedagogical point of view it is useful to note
that the dynamics of the BJJ is formally similar to that of
a mathematical pendulum. Condensation of all the particles
in the upper orbital is formally the same as preparation of the
pendulum in the upper position. Such a preparation is unstable.
If we want to stabilize the pendulum in the upper position we
have the following options: (i) introducing periodic driving,
which leads to the Kapitza effect; or (ii) introducing noisy
driving, which leads to a Zeno effect. We note that the Kapitza
effect in the BJJ context has been discussed in Ref. [12], while
our interest here is in the semiclassical perspective of the QZE
that has been illuminated in Ref. [11].

Experiments with cold atoms are state of the art [13,14]. In
such experiments it is common to perform a “fringe visibility”
measurement, which indicates the condensate occupation. The
latter is commonly quantified in terms of a function F(t).
For the initial coherent preparation F(t) = 1, while later
(ignoring quantum recurrences) it decays to a smaller value.
Disregarding technical details the standard QZE argument
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implies an exponential decay,

F(t) = exp

{
− 1

N
S(t)

}
, (3)

where N is the number of condensed bosons, and

S(t) =
(

w2

D

)
t. (4)

The key realization in Ref. [11] is that S(t) is in fact the radial
spreading in a stochastic process that is described by Eq. (1).

A practical question arises, whether the heuristic QZE
expression for S(t) is useful in order to describe the actual
decay of the one-body coherence. The answer in Ref. [11]
is: (i) The heuristic result is correct only for a very strong
noise (small w/D) and holds only during a very short time;
and (ii) irrespective of correctness, it is unlikely to obtain a
valid estimate of S(t) in a realistic measurement, because the
statistics is lognormal, dominated by far tails.

On the quantitative side, Ref. [11] was unable to provide an
analytical theory for the lognormal statistics of the spreading.
Rather it has been argued that the ln(r) distribution has some
average μ ∝ t and some variance σ 2 ∝ t . The radial stretching
rate wr and the radial diffusion coefficient Dr were determined
numerically from the assumed time dependence:

μ = wrt, (5)

σ 2 = 2Drt. (6)

From the lognormal assumption it follows that

S(t) = e4Dr t+2wr t − 1. (7)

For strong noise the following asymptotic results have been
obtained:

wr ∼ w2

4D
, (8)

Dr ∼ w2

8D
. (9)

These approximations are satisfactory for w/D 	 1 but fail
miserably otherwise. We also see that Eq. (7) reduces to Eq. (4)
in this strong-noise limit, for a limited duration of time. Note
that Eq. (7) is not identical to the expression that has been
reported in Ref. [11], for reasons that are discussed in the
concluding section.

The QZE motivation for the analysis of Eq. (1) is introduced
in Sec. II. Numerical results for the radial spreading due to
this process are presented in Sec. III. Our objective is to find
explicit expressions for wr and Dr and, also, to characterize
the full statistics of r(t) in terms of the bare model parameters
(w,D). The first step is to analyze the phase randomization
in Sec. IV and to discuss the implication of its nonisotropic
distribution in Sec. V. Consequently the exact calculation
of the ln(r) diffusion is presented in Secs. VI and VII. In
Sec. VIII we clarify that the statistics of r(t) is in fact a
bounded lognormal distribution. It follows that the r moments
of the spreading, unlike the ln(r) moments, cannot be deduced
directly from our results for wr and Dr . Nevertheless, in
Sec. IX we find the r moments using the equation of motion for

the moments. Finally, in Sec. X we return to the discussion of
the QZE context of our results. On the one hand, we note that
Eq. (7) should be replaced by a better version that takes into
account the deviations from the lognormal statistics. But the
formal result for S(t) has no experimental significance: The
feasibility of experimental S(t) determination is questionable,
because averages are sensitive to the far tails. Rather, in a
realistic experiment it is feasible to accumulate statistics and
to deduce what are wr and Dr , which can be tested against our
predictions. Some extra details regarding the QZE perspective
and other technicalities are provided in the Appendixes.

II. SEMICLASSICAL PERSPECTIVE

In the present section we clarify the semiclassical perspec-
tive for the QZE model and motivate the detailed analysis of
Eq. (1). The subsequent sections are written in a way that is
independent of a specific physical context. We return to the
discussion of the QZE in the concluding section, where the
implications of our results are summarized.

For a particular realization of ω(t) the evolution that is
generated by Eq. (1) is represented by a symplectic matrix,(

x(t)

y(t)

)
= U

(
x0

y0

)
. (10)

The matrix is characterized by its trace a = trace(U). If
|a| < 2, it means an elliptic matrix (rotation). If |a| > 2,
it means a hyperbolic matrix. In the latter case, the radial
coordinate r is stretched in one major direction by some factor
exp(α), while in the other major direction it is squeezed by
a factor exp(−α). Hence a = ±2 cosh(α). If we operate with
U on an initial isotropic cloud that has radius r0, then we
get a stretched cloud with 〈r2〉 = A r2

0 , where A = cosh(2α).
For more details see Appendix A. The numerical procedure of
generating a stochastic process that is described by Eq. (1) is
explained in Appendix B. Rarely the result is a rotation. So
from now on we refer to it as “squeeze.”

The initial preparation can be formally described as a
minimal wave packet at the origin of phase space. The local
canonical coordinates are (x,y), or optionally one can use
the polar coordinates (ϕ,r). The initial spread of the wave
packet is 〈r2〉 = h̄. In the case of a BJJ the dimensionless
Planck constant is related to the number of particles, namely,
h̄ = 2/N . In the absence of noise (D = 0) the wave packet
is stretched exponentially in the x direction, which implies
a very fast decay of the initial preparation. This decay can
be described by the functions P(t) and F(t), which give
the survival probability of the initial state and the one-body
coherence of the evolving state. For precise definitions see
Appendix C. Note that F(t) is defined as the length of the
Bloch vector, normalized such that F(t) = 1 for the initial
coherent state.

We now consider the implication of having a noisy
dephasing term (D > 0). The common perspective is to say
that this noise acts like a measurement of the r coordinate,
which randomizes the phase ϕ over a time scale τ ∼ 1/D,
hence introducing a “collapse” of the wave function. The
succession of such interventions (see Appendix C) leads to
a relatively slow exponential decay of the coherence, namely,
F(t) = exp {−(h̄/2)S(t)}, where S(t) is given by Eq. (4). The
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stronger the noise (D), the slower is the decay of F(t). A
similar observation applies to P(t). Using a semiclassical
perspective [11] it has been realized that

S(t) = A(t) − A(0). (11)

Note that by definition h̄A(t) is the spread 〈r2〉 of the evolving
phase-space distribution, where A(t) is normalized such that
A(0) = 1.

The well-known QZE expression, Eq. (4), in spite of its pop-
ularity, poorly describes the decoherence process [11]. In fact,
it agrees with numerical simulations only for extremely short
times for which (w2/D)t 	 1. The semiclassical explanation
is as follows: In each τ step of the evolution the phase-space
distribution is stretched by a random factor λn = exp[αn],
where the αn are uncorrelated random variables. Hence by
the central limit theorem the product λ = λt . . . λ2λ1 has a
lognormal distribution, where log(λ) has some average μ ∝ t

and variance σ 2 ∝ t that determine an A(t) and hence an S(t)
that differs from the naive expression of Eq. (4). The essence
of the QZE is that μ and σ 2 are inversely proportional to
the intensity of the erratic driving. Consequently one has to
distinguish three time scales: the “classical” time for phase
ergodization τ ∼ D−1, which is related to the angular diffu-
sion; the classical time for loss of isotropy tr ∼ (w2/D)−1,
which characterizes the radial spreading; and the “quantum”
coherence time tc ∼ (1/h̄)tr , after which F(t) 	 1.

In Ref. [11] the time dependence of μ and σ has been
determined numerically. Here we would like to work out a
proper analytical theory. It turns out that a quantitative analysis
of the stochastic squeezing process requires going beyond the
above heuristic description. The complication arises because
what we have is not multiplication of a random number but
multiplication of random matrices. Furthermore, we see that
the calculation of moments requires going beyond central limit
theorem, because they are dominated by the far tails of the
distribution.

In the concluding section, Sec. X, we clarify that
from an experimental point of view the formal expression
F(t) = exp {−(h̄/2)S(t)} is not very useful. For practical
purposes it is better to consider the full statistics of the
Bloch vector and to determine μ and σ via a standard fitting
procedure.

III. PRELIMINARY CONSIDERATIONS

Below we do not use a matrix language but address directly
the statistical properties of an evolving distribution. In (ϕ,r)
polar coordinates Eq. (1) takes the form

ϕ̇ = −w sin(2ϕ) + ω(t), (12)

ṙ = [w cos(2ϕ)]r. (13)

We see that the equation for the phase decouples, while for the
radius

d

dt
ln(r(t)) = w cos(2ϕ). (14)

The right-hand side has some finite correlation time τ ∼ 1/D,
and therefore ln(r) is like a sum of t/τ uncorrelated random
variables. It follows from the central limit theorem that for

FIG. 1. Scaled stretching rate wr/w versus w/D. Numerical re-
sults (black symbols) are based on simulations with 2000 realizations.
Lines represent the naive result, Eq. (8) (dotted green line); the
exact result, Eq. (23) (solid red line); and its practical approximation,
Eq. (24) (dashed-dotted blue line). For large values of w/D we get
wr/w = 1, as for a pure stretch.

long times the main body of the ln(r) distribution can be
approximated by a normal distribution, with some average
μ ∝ t and some variance σ 2 ∝ t . Consequently we can define
a radial stretching rate wr and a radial diffusion coefficient Dr

via Eq. (6).
Our objective is to find explicit expressions for wr and Dr

and, also, to characterize the full statistics of r(t) in terms of
the bare model parameters (w,D). We see that the statistics of
r(t) is described by a bounded lognormal distribution.

Some rough estimates are in order. For large D one naively
assumes that due to ergodization of the phase μ = 〈cos(2ϕ)〉w
is 0, while σ 2 ∼ (wτ )2(t/τ ). Hence one deduces that wr → 0,
while Dr ∝ w2/D. A more careful approach [11] that takes
into account the nonisotropic distribution of the phase gives
the asymptotic results, Eqs. (8) and (9). The dimensionless
parameter that controls the accuracy of this result is w/D.
These approximations are satisfactory for w/D 	 1 and fail
otherwise (see Figs. 1 and 2). For large w/D we get wr → w,
while Dr → 0.

FIG. 2. Scaled diffusion coefficient Dr/w versus w/D. Numer-
ical results (black symbols) are based on simulations with 2000
realizations. Lines represent the naive result, Eq. (9) (dotted green
line); the exact result, Eq. (33) (solid red line); and the approximation,
Eq. (28), with τ = 1/(2D) (dashed-dotted blue line) and with Eq. (34)
(dashed orange line).
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FIG. 3. (a) Phase distribution for (w/D) = 10/3 after time
(wt) = 6, with initial conditions ϕ = 0 (yellow region) and ϕ = π/2
(green bars) and 2000 realizations. For longer times, both reach the
steady state of Eq. (16) (red line). (b) Distributions of ϕ modulo π .

IV. PHASE ERGODIZATION

The Fokker-Planck equation (FPE) that is associated with
Eq. (12) is

∂ρ

∂t
= ∂

∂ϕ

[(
D

∂

∂ϕ
+ w sin(2ϕ)

)
ρ

]
. (15)

It has the canonical steady-state solution

ρ∞(ϕ) ∝ exp
[ w

2D
cos(2ϕ)

]
. (16)

If we neglect the cosine potential in Eq. (15), then the time for
ergodization is τerg ∼ 1/D. But if w/D is large, we have to
incorporate an activation factor; accordingly,

τerg = 1

D
exp

[w

D

]
. (17)

Figure 3(a) shows the distribution of the phase for two initial
conditions, as obtained by a finite-time numerical simulation.
It is compared with the steady-state solution. The dynamics of
r depends only on 2ϕ and is dominated by the distribution at
the vicinity of cos(2ϕ) ∼ 1. We therefore display in Fig. 3(b)
the distribution of ϕ modulo π . We deduce that the transient
time of the ln(r) spreading is much shorter than τerg.

For the later calculation of wr we have to know the moments
of the angular distribution. From Eq. (16) we obtain

Xn ≡ 〈cos(2nϕ)〉∞ = In

(
w

2D

)
I0

(
w

2D

) . (18)

Here In(z) are the modified Bessel functions. For small z

we have In(z) ≈ [1/n!](z/2)n, while for large z we have
In(z) ≈ (2πz)−1/2ez. The dependence of the Xn on n for
representative values of w/D is illustrated in Fig. 4(a).

For the later calculation of Dr we have to know also the
temporal correlations. We define

Cn(t) = 〈cos(2nϕt ) cos(2ϕ)〉∞ − XnX1, (19)

where a constant is subtracted such that Cn(∞) = 0. We use
the notations

cn ≡
∫ ∞

0
Cn(t)dt (20)

FIG. 4. (a) Values of Xn versus n for some values of w/D. From
bottom to top: w/D = 1, 2, 3, 4, 5. (b)Values of �n versus n for the
same values of w/D, the larger w/D, the smaller �1. (c) �n versus
n for large w/D. Here w/D = 400. The asymptotic approximation,
Eq. (22), is indicated by the blue line.

and

�n ≡ Cn(0) = 1
2 (Xn+1 + Xn−1) − XnX1. (21)

In order to find an asymptotic expression we use

In(z) ≈ ez

√
2πz

[
1 − 4n2−1

(8z)
+ (4n2−1)(4n2−9)

2(8z)2

]

and get

�n ≈ 2
(w

D

)−2
n2 for

(w

D

)
 1. (22)

The dependence of the �n on n for representative values of
w/D is illustrated in Figs. 4(b) and 4(c).

V. RADIAL SPREADING

If follows from Eq. (14) that the radial stretching rate is

wr = w〈cos(2ϕ)〉∞ = X1w. (23)

A rough interpolation for X1 that is based on the asymptotic
expressions for the Bessel functions in Eq. (18) leads to the
following approximation:

wr ≈ w
[
1 − exp

(
− w

4D

)]
. (24)

The exact result as well as the approximation is illustrated in
Fig. 1 and compared with the results of numerical simulations.

For the second moment it follows from Eq. (14) that the
radial diffusion coefficient is

Dr = w2
∫ ∞

0
C1(t)dt = c1w

2. (25)

If we assume that the ergodic angular distribution is isotropic,
the calculation of C1(t) becomes very simple, namely,

C1(t) = 1
2 〈cos 2(ϕt − ϕ0)〉 = 1

2e−4D|t |. (26)

This expression implies a correlation time τ = 1/(2D), such
that c1 = (1/2)�1τ is half the “area” of the correlation
function whose “height” is �1 = 1/2. Thus we get for the
radial diffusion coefficient Dr = w2/(8D).
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But in fact the ergodic angular distribution is not isotropic,
meaning that X1 is not 0 and �1 < 1/2. If w is not too large,
we may assume that the correlation time τ is not affected. Then
it follows that a reasonable approximation for the correlation
function is

C1(t) ≈ �1e
−2|t |/τ , (27)

leading to

Dr ≈ 1

2
�1τw2 = �1

w2

4D
. (28)

This approximation is compared to the exact result that
we derive later in Fig. 2. Unlike the rough approximation
Dr = w2/(8D), it captures the observed nonmonotonic depen-
dence of Dr versus w, but quantitatively it is an overestimate.

VI. EXACT CALCULATION
OF THE DIFFUSION COEFFICIENT

We now turn to finding an exact expression for the diffusion
coefficient, Eq. (25), by calculating c1 of Eq. (20). Propagating
an initial distribution ρ0(ϕ) with the FPE, Eq. (15), we define
the moments:

xn = 〈cos(2nϕt )〉0 = 〈cos(2nϕ)〉t
=

∫
cos(2nϕ)ρt (ϕ)dϕ. (29)

The moments equation of motion resulting from the FPE is
[15]

d

dt
xn = −n xn + Wn(xn−1 − xn+1), (30)

where n = 4Dn2 and Wn = wn. Due to 0 = W0 = 0 the
zeroth moment x0 = 1 does not change in time. Thus the rank
of Eq. (30) is less than its dimension reflecting the existence
of a zero mode xn = Xn that corresponds to the steady state of
the FPE. We use the subscript “∞” to indicate the steady-state
distribution. Any other solution xn(t) goes to Xn in the long-
time limit, while all the other modes are decaying. To find
Xn the equation should be solved with the boundary condition
X∞ = 0 and normalized such that X0 = 1. Clearly this is not
required in practice: because we already know the steady-state
solution, Eq. (15), hence Eq. (18).

We define xn(t ; ϕ0) as the time-dependent solution for an
initial preparation ρ0(ϕ) = δ(ϕ − ϕ0). Then we can express
the correlation function of Eq. (19) as follows:

Cn(t) = 〈xn(t ; ϕ) cos(2ϕ)〉∞ − XnX1. (31)

By linearity the Cn(t) obey the same equation of motion as do
the xn(t), but with the special initial conditions Cn(0) = �n.
Note that C0(t) = 0 at any time. In the infinite-time limit
Cn(∞) = 0 for any n.

Our interest is in the area cn as defined in Eq. (20). Writing
Eq. (30) for Cn(t) and integrating it over time we get

n cn − Wn(cn−1 − cn+1) = �n. (32)

This equation should be solved with the boundary conditions
c0 = 0 and c∞ = 0. The solution is unique because the n = 0
site has been effectively removed, and the truncated matrix is
no longer with zero mode. One possible numerical procedure

is to start iterating with c1 as initial condition and to adjust it
such that the solution will go to 0 at ∞. An optional procedure
is to integrate the recursion backwards as explained in the next
section. The bottom line is the expression

Dr = c1w
2 = −

∞∑
n=1

(−1)n

n
�nXnw, (33)

where Xn and �n are given by Eq. (18) and Eq. (21),
respectively.

The leading term approximation Dr ≈ �1X1w is consistent
with the heuristic expression Dr ≈ (1/2)�1τw2 of Eq. (28)
upon the identification

τ = 2

w

[
1 − exp

(
− w

4D

)]
. (34)

This expression reflects the crossover from diffusion-limited
(τ ∝ 1/D) to drift-limited (τ ∝ 1/w) spreading. Figure 2
compares the approximation that is based on Eq. (28) with
Eq. (34) to the exact result, Eq. (33).

In the limit (w/D) → 0 the asymptotic result for the
radial diffusion coefficient is Dr = w2/(8D). We now turn
to figing out the asymptotic result in the other extreme
limit (w/D) → ∞. The large-w/D approximation, which is
based on the first term of Eq. (33), with the limiting value
X1 = 1, provides the asymptotic estimate Dr ≈ 2D2/w. This
expression is based on the asymptotic result, Eq. (22), for �n

with n = 1. In fact we can do better and add all the higher
order terms. Using Abel summation we get

Dr = 2
D2

w

∞∑
n=1

(−1)n−1n = 1

2

D2

w
. (35)

Thus the higher order terms merely add a factor 1/4 to
the asymptotic result. If we used Eq. (28), we would have
obtained the wrong prediction Dr ≈ D/2, which ignores the
τ dependence of Eq. (34).

VII. DERIVATION OF THE RECURSIVE SOLUTION

In this section we provide the details of the derivation that
leads from Eq. (32) to Eq. (33). We define W±

n = ∓Wn and
rewrite the equation in the more general form

−W+
n cn+1 + ncn − W−

n cn−1 = �n. (36)

A similar problem was solved in Ref. [16], while here we
present a much simpler treatment. First, we solve the associ-
ated homogeneous equation. The solution cn = Xn satisfies

−W+
n Xn+1 + nXn − W−

n Xn−1 = 0 (37)

and one can define the ratios Rn = Xn/Xn−1. Note that these
ratios satisfy a simple first-order recursive relation. However,
we bypass this stage because we can extract the solution from
the steady-state distribution.

We write the solution of the nonhomogeneous equation as

cn := Xnc̃n (38)

and we get the equation

−W+
n Xn+1c̃n+1 + nXnc̃n − W−

n Xn−1c̃n−1 = �n.
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Clearly it can be rewritten as

−W+
n Xn+1(c̃n+1 − c̃n) + W−

n Xn−1(c̃n − c̃n−1) = �n.

We define the discrete derivative

ãn := c̃n − c̃n−1 (39)

and obtain a reduction to a first-order equation:

−W+
n Xn+1ãn+1 + W−

n Xn−1ãn = �n. (40)

This can be rewritten in a simpler way by appropriate definition
of scaled variables. Namely, we define the notations

R̃n = W+
n

W−
n

Rn, �̃n = �n

W+
n

(41)

and the rescaled variable

an := Xnãn (42)

and then solve the an recursion in the backwards direction:

a∞ = 0, an = R̃n[�̃n + an+1]. (43)

If all the Rn were unity, it would imply that a1 − a∞ equals∑
�n. So it is important to verify that the “area” converges.

Next we can solve in the forward direction the cn recursion for
the nonhomogeneous equation, namely,

c0 = 0, cn = Rncn−1 + an. (44)

In fact we are only interested in

c1 = a1 = R̃1�̃1 + R̃1R̃2�̃2 + · · · . (45)

Note that in our calculation R̃n = −Rn, and therefore
R̃1 . . . R̃n = (−1)nXn.

VIII. MOMENTS OF THE RADIAL SPREADING

The moments of a lognormal distribution are given by the
following expression:

ln〈rn〉 = μn + 1
2σ 2n2. (46)

On the basis of the discussion following Eq. (14), if one
assumed that the radial spreading at time t could be globally
approximated by the lognormal distribution (tails included), it
would follow that

d

dt
ln〈rn〉 = nwr + n2Dr. (47)

In Fig. 5 we plot the lognormal-based expected growth rate of
the second and the fourth moments as a function of w/D. For
small w/D there is good agreement with the expected results,
which are w2/D and 3w2/D, respectively. For large w/D

the dynamics is dominated by the stretching, meaning that
wr ≈ w, while Dr → 0, so again we have a trivial agreement.
But for intermediate values of w/D the lognormal moments
constitute an overestimate compared with the exact analytical
results that we derive in the next section. In fact also the exact
analytical result looks like an overestimate compared with the
results of numerical simulations. But the latter is clearly a
sampling issue that is explained in Appendix D.

FIG. 5. Scaled moments versus w/D. Solid red lines are the
exact results for the second and fourth moments, given by Eq. (48)
and Eq. (60), and the large w/D asymptotic values are at 2 and 4,
respectively. These are compared with the numerical results (black
symbols) and contrasted with the lognormal prediction (dashed
orange lines). The latter provides an overestimate for intermediate
values of w/D.

The deviation of the lognormal moments from the exact
results indicates that the statistics of large deviations is not
captured by the central limit theorem. This point is illustrated
in Fig. 6. The Gaussian approximation constitutes a good
approximation for the body of the distribution but not for

(a)
0.00

0.01

0.02

ρ

(b)
−8

−6

−4

−2

0

Ln
(P

)

1250 1300

Ln(r)

FIG. 6. (a) Distribution of ln(r) for w/D = 10/3 after time
wt = 2000 with initial conditions r = 1 and ϕ = 0. Numerical results
(green histogram), which are based on 2000 realizations, are fitted to a
Gaussian distribution (blue line). (b) Inverse cumulative probability of
the same distribution. The dotted black line indicates the numerically
determined value ln 〈r2〉1/2 ≈ 1323. This value is predominated by
the tail of the distribution. The Gaussian fit fails to reproduce this
value and provides a gross overestimate, ln 〈r2〉1/2 ≈ 1701.
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the tails that dominate the moment calculation. Clearly, the
actual distribution can be described as a bounded lognormal
distribution, meaning that it has a natural cutoff which is
implied by the strict inequality wr < w. The stretching rate
cannot be faster than w. But in fact, as shown in Fig. 6(b), the
deviation from the lognormal distribution occurs even before
the cutoff is reached.

Below we carry out an exact calculation for the second and
fourth moments. In the former case we show that

d

dt
ln〈r2〉 ∼ 2((w2 + D2)1/2 − D). (48)

This agrees with the lognormal-based prediction w2/D for
(w/D) 	 1 and goes to 2w for (w/D)  1, as could be
anticipated.

Before we consider the derivation of this result we would
like to illuminate its main features by considering a simple
reasoning. Let us ask ourselves what the result would be
if the spreading were isotropic (wr = 0). In this case the
moments of spreading can be calculated as if we are dealing
with the multiplication of random numbers. Namely, assuming
that the duration of each step is τ = 1/(2D) and treating
t as a discrete index, Eq. (13) implies that the spreading is
obtained by multiplication of uncorrelated stretching factors
exp[wτ cos(ϕ)]. Each stretching exponent has zero mean and
dispersion σ 2

1 = (1/2)[wτ ]2, which implies Dr = σ 2
1 /(2τ ).

Consequently we get for the moments

〈rn〉 = [〈enwτ cos(2ϕ)〉]t/τ rn
0 , (49)

leading to

d

dt
ln〈rn〉 = 1

τ
ln[I0(

√
2nσ1)]. (50)

This gives a crossover from n2Dr for σ1 	 1 to nw for σ1  1,
reflecting isotropic lognormal spreading in the former case
and pure stretching in the latter case. So again we see that the
asymptotic limits are easily understood, but for the derivation
of the correct interpolation, say Eq. (48), further effort is
required.

IX. EXACT CALCULATION OF THE MOMENTS

We here perform an exact calculation of the moments. One
can associate with the Langevin equation, Eq. (1), an FPE for
the distribution and, from that, derive the equation of motion
for the moments. The procedure is explained and summarized
in Appendix E. For the first moments we get

d

dt
〈x〉 = w〈x〉 − D〈x〉, (51)

d

dt
〈y〉 = −w〈y〉 − D〈y〉, (52)

with the solution

〈x〉 = x0 exp[−(D − w)t], (53)

〈y〉 = y0 exp[−(D + w)t]. (54)

For the second moments

d

dt

(〈x2〉
〈y2〉

)
= [−2D + 2Dσ 1 + 2wσ 3]

(〈x2〉
〈y2〉

)
, (55)

d

dt
〈xy〉 = −4D〈xy〉, (56)

where σ are Pauli matrices. The solution is⎛
⎜⎝

〈x2〉
〈y2〉
〈xy〉

⎞
⎟⎠ =

[
e−2Dt M 0

0 e−4Dt

]⎛
⎜⎝

x2
0

y2
0

x0y0

⎞
⎟⎠, (57)

where M is the following matrix:

cosh[2(w2+D2)1/2t] + sinh[2(w2+D2)1/2t]
Dσ 1 + wσ 3√

w2+D2
.

For an initial isotropic distribution we get 〈r2〉t = Mr2
0 , where

M = e−2Dt cosh[2(w2 + D2)1/2t]

+ D√
w2 + D2

e−2Dt sinh [2(w2 + D2)1/2t]. (58)

The short-time t dependence is quadratic, reflecting “ballistic”
spreading, while for long times

〈r2〉t ≈ r2
0

2

(
1 + D√

w2+D2

)

× exp[2((w2 + D2)1/2 − D)t]. (59)

From here we get Eq. (48). For the fourth moments the
equations are separated into two blocks of even-even powers
and odd-odd powers in x and y. For the even block,

d

dt

⎛
⎜⎝

〈x4〉
〈x2y2〉
〈y4〉

⎞
⎟⎠ = 2M̃

⎛
⎜⎝

〈x4〉
〈x2y2〉
〈y4〉

⎞
⎟⎠, (60)

where

M̃ =

⎛
⎜⎝

2(w−D) 6D 0

D −6D D

0 6D −2(w+D)

⎞
⎟⎠. (61)

The eigenvalues of this matrix are the solution of λ3 +
10Dλ2 + (16D2 − 4w2)λ − 24Dw2 = 0. There are two neg-
ative roots and one positive root. For small w/D the latter is
λ ≈ (3/2)(w2/D), and we get that the growth rate is 3w2/D

as expected from the log-normal statistics.

X. DISCUSSION

In this work we have studied the statistics of a stochastic
squeeze process, defined by Eq. (1). Consequently we are able
to provide a quantitatively valid theory for the description
of the noise-affected decoherence process in bimodal Bose-
Einstein condensates, a.k.a. the QZE. As the ratio w/D is
increased, the radial diffusion coefficient of ln(r) changes in
a nonmonotonic way from Dr = w2/(8D) to Dr = D2/(2w),
and the nonisotropy is enhanced, namely, the average stretch-
ing rate increases from wr = w2/(4D) to the bare value
wr = w. The analytical results, Eq. (23) and Eq. (33), are
illustrated in Fig. 1 and Fig. 2,

Additionally we have solved for the moments of r . One
observes that the central limit theorem is not enough for
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this calculation, because the moments are predominated by
the non-Gaussian tails of the ln(r) distribution. In particular,
we have derived for the second moment the expression
〈r2〉t = Mr2

0 , with M given by Eq. (58), or optionally one
can use the practical approximation, Eq. (48).

The main motivation for our work comes form the interest
in the BJJ. From the mathematical point of view the BJJ
can be regarded as a quantum pendulum. It has both stable
and unstable fixed points. Its dynamics has been explored by
numerous experiments. We mention, for example, Ref. [17],
in which both Josephson oscillations (“liberations”) and self-
trapping (“rotations”) were observed, and Ref. [18], in which
a.c. and d.c. Josephson effects were observed. The phase
space of the device is spherical, known as the Bloch sphere.
A quantum state corresponds to a quasidistribution (Wigner
function) on that sphere and can be characterized by the Bloch
vector �S. The length F = |�S| of the Bloch vector reflects the
one-body coherence and has to do with the “fringe visibility”
in a time-of-flight measurement. If all the particles are initially
condensed in the upper orbital of the BJJ, it corresponds to a
coherent F = 1 wave packet that is positioned on top of the
hyperbolic point, which corresponds to the upper position of
the pendulum. The dynamics has been thoroughly analyzed in
Ref. [2] and experimentally demonstrated in Ref. [3].

To the best of our knowledge, neither the Kapitza effect [12]
nor the Zeno effect has been demonstrated experimentally in
the BJJ context. We expect the decay of F to be suppressed
due to the periodic or the noisy driving, respectively. Let us
clarify the experimental significance of our results for the full
statistics of the radial spreading in the latter case. In order to
simplify the discussion, let us assume that the definition of
F is associated with the measurement of a single coordinate
x̂. Measurement of x̂ is essentially the same as probing of
an occupation difference. From the semiclassical perspective
(Wigner function picture) the phase-space coordinate x sat-
isfies Eq. (1), where ω(t) arises from frequent interventions,
or measurements, or noise that comes from the surroundings.
Using the Feynman-Vernon perspective, each x outcome of
the experiment can be regarded as the result of one realization
of the stochastic process. The “coherence” is determined by
the second moment of x̂. But it is implied by our discussion
of the sampling problem that it is impractical to determine this
second moment from any realistic experiment (rare events are
not properly accounted). The reliable experimental procedure
would be to keep the full probability distribution of the
measured x variable and to extract the μ and the σ that
characterize its lognormal statistics. For the latter we predict
nontrivial dependence on w/D.

Still, from a purely mathematical point of view, one might
be curious about the validity of the heuristic QZE expression,
Eq. (4). We have pointed out in Sec. I that the lognormal
assumption implies that it should be replaced by Eq. (7), which
reduces to Eq. (4) only for short times if the noise is very strong
(small w/D). We note that the expression reported originally
in Ref. [11] was slightly different, namely,

S(t) = e4Dr t cosh(2wrt) − 1. (62)

The difference is due to the assumption (there) that it is α, as
defined in Appendix A, rather than r , which has a lognormal

distribution. In physical terms this is like ignoring the initial
isotropy of the preparation, hence creating an artifact—an
artificial transient. In any case we found in the present work
that none of these expressions are correct. This is because the
tail of the distribution is bounded. From Eq. (48) we deduce
that a practical approximation would be

S(t) = 2((w2 + D2)1/2 − D) t. (63)

Note that both Eq. (7) and Eq. (63) agree with the heuristic
expectation (w2/D)t for (w/D) 	 1 and goes to the bare
nonsuppressed value 2wt for (w/D)  1. The difference
between them is at intermediate values of w/D, where the
lognormal prediction is an overestimate. On the other hand, in a
realistic experiment, we expect an underestimate as illustrated
in Fig. 5.

APPENDIX A: THE SQUEEZE OPERATION

The squeeze operation is described by a real symplectic
matrix that has unit determinant and trace |a| > 2. Any such
matrix can be expressed as

U =
(

a b

c d

)
= ±eαH [ad − cb = 1], (A1)

where H is a real traceless matrix that satisfies H2 = 1. Hence
it can be expressed as a linear combination of the three Pauli
matrices,

H = n1σ 1 + in2σ 2 + n3σ 3, (A2)

with n2
1 − n2

2 + n2
3 = 1. Consequently,

U = ±[cosh(α)1 + sinh(α)H]. (A3)

We define the canonical form of the squeeze operation as

� =
(

exp(α) 0

0 exp(−α)

)
. (A4)

Then we can obtain any general squeeze operation via
similarity transformation, which involves rescaling of the axes
and rotation and, on top, an optional reflection.

We can operate with U on an initial isotropic cloud that has
radius r0 = 1. Then we get a stretched cloud that has spread
〈r2〉 = A r2

0 , where

A ≡ 〈r2〉|r0=1 = cosh(2α). (A5)

We also define the “spreading” as

S = A − 1 = 2 sinh2(α). (A6)

The notation α has no meaning for a stochastic squeeze
process, while the notation A ≡ 〈r2〉 can still be used. In
the latter case the average is over the initial conditions and
also over realizations of ω(t), implying that in Eq. (A5) the
cosh(2α) should be averaged over α.

APPENDIX B: NUMERICAL SIMULATIONS

There are numerous numerical schemes that allow the
simulation of a Langevin equation, for example, the Milstein,
the Runge-Kutta, and higher-order approximations such as the
truncated Taylor expansion [19]. These schemes are based
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on iterative integration of the Langevin equation, then Taylor
expansion of the solution in small dt . The dynamics generated
by Eq. (1) is symplectic, however, the numerical methods listed
above do not respect this constraint. Instead one can exploit
the linear nature of the problem. Namely, Eq. (1) is rewritten as

ṙ t = H(t)r t , (B1)

H = H s + H r (t), (B2)

where H s and H r are the generators of the stretching and
the angular diffusion, respectively, while r t = (xt ,yt ). If H r

were constant, the solution of Eq. (B1) would be obtained
by simple exponentiation of H , namely, r tf = U r0, with
U = exp[(H r + H s)tf ]. Choosing a small enough time
interval dt and using the Suzuki-Trotter formula, the latter
equation is approximated by

U = U tf . . . U3dt U2dt Udt , (B3)

U t = exp (H sdt) exp (H rdt), (B4)

where U t gives the evolution of the vector r t for short-time dt ,
namely, r t = U t r t−dt . Equation (B3) is valid also for
time-dependent H , where the small step evolution, Eq. (B4),
takes the form

U t =
(

ew dt 0

0 e−w dt

)(
cos αt − sin αt

sin αt cos αt

)
. (B5)

The uncorrelated random variables αt have zero mean and are
taken from a box distribution of width

√
24D dt , such that their

variance is 2D dt . As a side note we remark that with Taylor
expansion of Eq. (B5) to second order in dt , the Milstein
scheme is recovered. The radial coordinate r is calculated
under the assumption that the preparation is (x0 = 1, y0 = 0).
Accordingly, what we calculate for each realization is

r =
√

U 2
xx + U 2

yx. (B6)

In Fig. 7(a) we display the distribution of trace a for many
realizations of this stochastic squeeze process. Rarely the
result is a rotation, and therefore in the text we refer to it as
“squeeze.” From the trace we get the squeeze exponent α, and
from Eq. (B6) we get the radial coordinate r . The correlation
between these two squeeze measures is illustrated in Fig. 7(b).
For the long-time simulations that we perform in order to
extract various moments, we observe full correlation (not
shown). In order to extract the various moments, we perform
the simulation for a maximum time of wt = 7500, with the
initial condition r0 = (1,0).

We note that the results in Sec. IX for the evolution of the
moments can be recovered by averaging over the product of
the evolution matrices. For the first moments we get the linear
relation 〈r t 〉 = 〈U〉r0, where

〈U〉 = 〈
. . . U t3 U t2 U t1

〉 = [〈U t 〉]t/dt

=
(

e−(D+w)t 0

0 e−(D−w)t

)
. (B7)

A similar procedure can be applied for calculation of the higher
moments.

FIG. 7. We consider 2000 realizations of a stochastic squeeze
process. For each realization trace a = trace(U) is calculated. (a)
Cumulative count of the a values. Green circles represent positive
values; blue rectangle, negative values. Here (w/D) = 10/3 and
wt = 40. For simulations with longer times the distributions of
positive and negative values become identical (not shown). (b)
Scatterplots of |a| versus the radial coordinate r . For simulations
with longer times we get a full correlation.

APPENDIX C: RELATION TO THE QZE

It is common to represent the quantum state of the bosonic
Josephson junction by a Wigner function on the Bloch sphere
(see [2] for details). A coherent state is represented by a
Gaussian-like distribution, namely,

ρ(0)(x,y) ≈ 2 exp

[
− 1

h̄
(x2 + y2)

]
, (C1)

where x and y are local conjugate coordinates. The Wigner
function is properly normalized with the integration measure
dxdy/(2πh̄). The dimensionless Plank constant is related
to the number N of bosons, namely, h̄ = (N/2)−1. After a
squeeze operation one obtains a new state, ρ(t)(x,y). The
survival probability is

P(t) = Tr [ρ(0)ρ(t)] = 1

cosh(α)
= 1

1+ 1
2S(t)

. (C2)

However, it is more common, both theoretically and exper-
imentally, to quantify the decay of the initial state via the
length of the Bloch vector, namely, F(t) = |�S(t)|. It has been
explained in Ref. [11] that

F(t) ≈ exp{−h̄ sinh2(α)} = exp

{
− h̄

2
S(t)

}
. (C3)

Compared with the short-time approximation of Eq. (C2),
namely, P ≈ exp[−(1/2)S(t)], note the additional h̄ = 2/N

factor in Eq. (C3). This should be expected: the survival
probability drops to 0 even if a single particle leaves the
condensate. Contrary to that, the fringe visibility reflects the
expectation value of the condensate occupation, and hence its
decay is much slower. Still, both depend on the spreading S(t).

The dynamics that is generated by Eq. (1) does not change
the direction of the Bloch vector but, rather, shortens its length,
meaning that the one-body coherence is diminished, reflecting
the decay of the initial preparation. Using the same coordinates
as in Ref. [11] the Bloch vector is �S(t) = (S,0,0), hence all
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the information is contained in the measurement of a single
observable, a.k.a. the fringe visibility measurement.

For a noiseless canonical squeeze operation we have D = 0
and α = wt , hence one obtains S(t) = 2 sinh2(wt), which is
quadratic for short times. In contrast to that, for a stochastic
squeeze process Eq. (C3) should be averaged over realizations
of ω(t). Thus F(t) is determined by the full statistics that we
have studied in this paper.

At this point we would like to remind the reader of
the common QZE argument that leads to the estimate of
Eq. (4). One assumes that for strong D the time for phase
randomization is τ = 1/(2D). Dividing the evolution into τ

steps and assuming that at the end of each step the phase is
totally randomized (as in projective measurement), one obtains

A(t) ≈ [A(τ )]t/τ ≈ [1 − 2(wτ )2]t/τ (C4)

≈ exp[−(w2/D)t]. (C5)

The overbar indicates the average over realizations, as dis-
cussed following Eq. (A5). The short-time expansion of the
exponent is linear rather than quadratic, and the standard
QZE expression, Eq. (4), is recovered. This approximation
is justified in the “Fermi golden rule regime,” namely, for
τ 	 t 	 tr , during which the deviation from isotropy can
be treated as a first-order perturbation. For longer times, and
definitely for weaker noise, the standard QZE approximation
cannot be trusted.

APPENDIX D: SAMPLE MOMENTS
OF A LOGNORMAL DISTRIBUTION

Consider a lognormal distribution of r values. This mean
that the ln r values have a Gaussian distribution. For a finite
sample of N values, one can calculate the sample average and
the sample variance of the ln r values in order to get a reliable
estimate for μ and σ and then calculate the moments 〈rn〉 via
Eq. (46). But a direct calculation of these moments provides
a gross underestimate as illustrated in Fig. 8. This is because

FIG. 8. ln 〈r2〉 versus σ for a lognormal distribution. Without loss
of generality μ = 0. The true result is represented by the red line.
Numerical estimates based on 102 and 105 realizations are indicated
by green crosses and blue rectangles, respectively. For the latter set of
realizations we get a much better estimate using an optional procedure
(black circles). Namely, we calculate the sample average and the
sample variance of the ln r values in order to determine μ and σ and
then use Eq. (46) to estimate the moments.

the direct average is predominated by rare values that belong
to the tail of the distribution.

The lesson is that direct calculation of moments for a
logwide distribution cannot be trusted. It can provide a lower
bound to the true results, not an actual estimate.

APPENDIX E: FOKKER-PLANCK EQUATION FROM
A LANGEVIN EQUATION

We provide a short derivation for the FPE that is associated
with a given Langevin equation. From this we obtain the
equations of motion for observables. For the sake of generality
we write the Langevin equation as follows:

ẋj = vj + gj ω(t) ≡ fj , (E1)

〈ω(t)ω(t ′)〉 = 2Dδτ (t − t ′). (E2)

The vj and the gj are some functions of the xi . Equa-
tion (1) is obtained upon the identification xj = (x,y) and
vj = (wx,−wy), and gj = (−y,x). The “noise” has zero aver-
age, namely, 〈ω(t)〉 = 0, and is characterized by a correlation
time τ . Accordingly δτ (t − t ′) has a short but finite width,
which is later taken to be 0.

For a particular realization of the noise, the continuity
equation for the Liouville distribution ρ(x) reads

∂ρ

∂t
= − ∂

∂xj

(fjρ). (E3)

We are interested in ρ(x) averaged over many realizations of
the noise ω. In its current form Eq. (E3) cannot be averaged,
because ρ and f are not independent variables. To overcome
this issue Eq. (E3) is integrated iteratively. To second order
one obtains

ρ(t + dt) − ρ(t) = −
∫ t+dt

t

dt ′
∂

∂xj

fj (t ′)

×
[
ρ(t) −

∫ t ′

t

dt ′′
∂

∂xk

fk(t ′′)ρ(t)

]
. (E4)

Performing the average over realizations of the noise, a
nonvanishing noise-related term arises from the correlator of
Eq. (E2). Then performing the dt ′′ integral over the broadened
δ one obtains a 1/2 factor. Dividing both sides by dt and taking
the limit dt → τ → 0, one obtains

∂ρ

∂t
= − ∂

∂xj

[
vjρ − gjD

∂

∂xi

(giρ)

]
. (E5)

Terms that originate from higher order iterations or moments
are O(dt) or vanish in the τ → 0 limit. Equation (E5) is the
FPE that is associated with the Stratonovich interpretation of
Eq. (E1) (see Eq. (4.3.45) on p. 100 of [20]).

An observable X is a function of the x variables. In order to
obtain an equation of motion for 〈x〉, we multiply both sides
of Eq. (E5) by X and integrate over x. Using integration by
parts and dropping the boundary terms, we get the desired
equation:

d

dt
〈x〉 =

〈
∂X

∂xj

(
vj + ∂gj

∂xi

Dgi

)〉
+

〈
∂2X

∂xi∂xj

gjDgi

〉
. (E6)
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In the text we use this equation for the moments of the
distribution (x, y, x2, xy, y2, x4, x2y2, y4).

Remark concerning various interpretations of the Langevin
equation: The Langevin equation defined by Eq. (E1) and
Eq. (E2), with τ → 0, can be written as an integral equation,

xj (t) − xj (0) =
∫ t

0
vjdt ′ +

∫ t

0
gjdW (t), (E7)

where

W (t) =
∫ t

0
ω(t ′)dt ′, (E8)

dW (t) = W (t + dt) − W (t). (E9)

The second integral in Eq. (E7) is interpreted as a Riemann-
Stieltjes-like integral [21],∫ t

0
gjdW (t) = lim

N→∞

N∑
n

gj (x̄)[W (tn) − W (tn−1)],

where

x̄ = λxi(tn−1) + (1 − λ)xi(tn) (E10)

with 0<λ<1, and 0 = t0 < . . . < tN = t . Because of the
singular nature of the stochastic process W (t), the final result

of this integral depends on the chosen value of λ. Each
choice provides a different “interpretation” of the Langevin
equation [22]: for λ = 1, the equation is interpreted as “Itô”;
for λ = 1/2, it is interpreted as “Stratonovich”; and for λ = 0,
it is interpreted as “Hänggi-Klimontovich.” Each interpretation
produces a different FPE. The Stratonovich interpretation leads
to Eq. (E5), while for the other interpretations the right-hand
side of Eq. (E5) is replaced with

− ∂

∂xj

[
vjρ − D

∂

∂xi

(gjgiρ)

]
(Itô), (E11)

− ∂

∂xj

[
vjρ − gjgiD

∂

∂xi

(ρ)

]
(Hänggi). (E12)

In the specific case of Eq. (1) with g = (−y,x), we have
∂igiρ = gi∂iρ. Consequently the same FPE is obtained for
both the Stratonovich and the Hänggi interpretations. We note
that turning off the squeeze in Eq. (1) (w = 0) and using either
of these interpretations, the FPE becomes

∂

∂t
ρ(x,y,t) = D

(
x

∂

∂y
− y

∂

∂x

)2

= D
∂2

∂ϕ2
ρ, (E13)

which is clearly the required equation. However, if one uses
the Itô prescription, an additional term appears in the FPE,
namely, −D∂x(xρ) − D∂y(yρ).
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