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We analyze the full statistics of a stochastic squeeze process. The model’s two parameters are the
bare stretching rate w, and the angular diffusion coefficient D. We carry out an exact analysis to
determine the drift and the diffusion coefficient of log(r), where r is the radial coordinate. The results
go beyond the heuristic lognormal description that is implied by the central limit theorem. Contrary
to the common ”Quantum Zeno” approximation, the radial diffusion is not simply Dr = (1/8)w2/D,
but has a non-monotonic dependence on w/D. Furthermore, the calculation of the radial moments
is dominated by the far non-Gaussian tails of the log(r) distribution.

I. INTRODUCTION

In this paper we analyze the full statistics of a stochas-
tic squeeze process that is described by the Langevin
equation (Stratonovich interpretation):

ẋ = wx − ω(t)y

ẏ = −wy + ω(t)x (1)

where the average rotation frequency is 〈ω(t)〉 = 0, with
fluctuations that looks like white noise:

〈ω(t′)ω(t′′)〉 = 2Dδ(t′ − t′′) (2)

Accordingly the model has two parameters: the angular
diffusion coefficient D of the polar phase, and the bare

stretching rate w of the radial coordinate r =
√
x2 + y2.

The squeeze operation is of interest in numerous fields
of science and engineering, but our main motivation orig-
inates from the quantum mechanical arena, where it is
known as parametric amplification. In particular it de-
scribes the dynamics of a Bosonic Josephson junction,
given that all the particles are initially condensed in the
upper orbital (see [1] and references therein). Such prepa-
ration is unstable, but it can be stabilized by introducing
frequent measurements or by introducing noise. This is
the so-called “quantum Zeno effect” (QZE) [2–6].

The stochastic squeeze process that is described by
Eq.(1) constitutes a prototype model for QZE. The model
has been considered in [7, 8], and later the shortcomings
of its analysis were recognized in [9]. The (x, y) of Eq.(1)
are local canonical conjugate coordinates in the vicinity
of an hyperbolic (unstable) fixed-point in phase space.
The essence of the QZE in this context is the observation
that the introduction of the noise leads to slow-down of
the quantum decoherence process, meaning that the de-
cay of the initial preparation is suppressed. Namely, for
strong noise (large D in Eq.(2)) the radial spreading due
to w is inhibited.

Outline.– The QZE motivation for the analysis of
Eq.(1) is introduced in Sections II. Numerical results for
the radial spreading are presented in Section III. These
do not agree with the common expectations and hence
motivate the analysis of the phase randomization in Sec-
tions IV and V. Consequently the exact calculation of the
log(r) diffusion is presented in Sections VI and VII, while

the r moments are analyzed in Sections VIII and IX.
Some extra details regarding the QZE perspective and
other technicalities are provided in the Appendices.

II. SEMICLASSICAL PERSPECTIVE

In this section we clarify the semiclassical perspective
for the QZE model of [7, 8]. Following [9] we motivate
the detailed analysis of this model.

For a particular realization of ω(t) the evolution that is
generated by Eq.(1) is represented by a symplectic matrix(

x(t)
y(t)

)
= U

(
x0
y0

)
(3)

The matrix is characterized by its trace a = trace(U). If
|a| < 2 it means elliptic matrix (rotation). If |a| > 2 it
means hyperbolic matrix. In the latter case, the radial
coordinate r is stretched in one major direction by some
factor exp(α), while in the other major direction it is
squeezed by factor exp(−α). Hence a = ±2 cosh(α). If
we operate with U on an initial isotropic cloud that has
radius r0, then we get a stretched cloud with

〈
r2
〉

= A r20,
where A = cosh(2α). For more details see Appendix A.
The numerical procedure of generating a stochastic pro-
cess that is described by Eq. (1) is explained in Ap-
pendix B. Rarely the result is a rotation. So from now
on we refer to it as “squeeze”.

The initial preparation can be formally described as a
minimal wavepacket at the origin of phase-space. The
local canonical coordinates are (x, y), or optionally one
can use the polar coordinates (ϕ, r). The initial spread
of the wavepacket is

〈
r2
〉

= ~. In the case of a Bosonic
Josephson Junction the dimensionless Planck constant is
related to the number of particles, namely ~ = 2/N . In
the absence of noise (D = 0) the wavepacket is stretched
exponentially in the x direction, which implies a very
fast decay of the initial preparation. This decay can be
described by functions P(t) and F(t) that give the sur-
vival probability of the initial state, and the one-body
coherence of the evolving state. For precise definitions
see Appendix C.

We now consider the implication of having a noisy de-
phasing term (D > 0). The common perspective is to say



2

that this noise acts like a measurement of the r coordi-
nate, which randomizes the phase ϕ over a time scale
τ ∼ 1/D, hence introducing a “collapse” of the wave-
function. The succession of such interventions (see Ap-
pendix C) leads to a relatively slow exponential decay of
the coherence, namely F(t) = exp {−(~/2)S(t)}, where

S(t) =

(
w2

D

)
t (4)

The stronger the noise (D), the slower is the decay
of F(t). Similar observation applies to P(t). Using
a semiclassical perspective [9] it has been realized that
S(t) = A(t)−A(0). Note that by definition ~A(t) is the
spread

〈
r2
〉

of the evolving phase-space distribution.

The well known QZE expression Eq.(4), in spite of its
popularity, poorly describes the decoherence process [9].
In fact, it agrees with numerical simulations only for ex-
tremely short times for which (w2/D)t� 1. The semi-
classical explanation is as follows: In each τ -step of the
evolution the phase-space distribution is stretched by a
random factor λn = exp[αn], where the αn are uncor-
related random variables. Hence by the central limit
theorem the product λ = λt...λ2λ1 has lognormal distri-
bution, where log(λ) has some average µ ∝ t and vari-
ance σ2 ∝ t that determine an A(t) and hence S(t) that
differs from the naive expression of Eq.(4). The essence
of the QZE is that µ and σ2 are inversely proportional to
the intensity of the erratic driving. Consequently one has
to distinguish between 3 time scales: the “classical” time
for phase ergodization τ ∼ D−1 which is related to the
angular diffusion; the “classical” time for loss of isotropy
tr ∼ (w2/D)−1 that characterizes the radial spreading;
and the “quantum” coherence time tc ∼ (1/~)tr, after
which F(t)� 1.

In [9] the time dependence of µ and σ has been de-
termined numerically. Here we would like to work out a
proper analytical theory. It turns out that a quantitative
analysis of the stochastic squeezing process requires to go
beyond the above heuristic description. The complica-
tion arises because what we have is not multiplication of
random number, but multiplication of random matrices.
Furthermore we shall see that the calculation of moments
requires to go beyond central limit theorem, because they
are dominated by the far tails of the distribution.

In the concluding section X we shall clarify that from
an experimental point of view the formal expression
F(t) = exp {−(~/2)S(t)} is not very useful. For practical
purpose it is better to consider the full statistics of the
Bloch-vector, and to determine µ and σ via a standard
fitting procedure.

III. PRELIMINARY CONSIDERATIONS

Below we are not using a matrix language, but address
directly the statistical properties of an evolving distribu-
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FIG. 1. Scaled stretching rate wr/w versus w/D. The nu-
merical results (black symbols) are based on simulations with
2000 realizations. The lines are for the naive result Eq.(10)
(green dotted); the exact result Eq.(20) (red solid); and its
practical approximation Eq.(21) (blue dashed-dotted). For
large values of w/D we get wr/w = 1, as for a pure stretch.
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FIG. 2. Scaled diffusion coefficient Dr/w versus w/D. The
numerical results (black symbols) are based on simulations
with 2000 realizations. The lines are for the naive result
Eq.(11) (green dotted); the exact result Eq.(30) (red solid);
and the approximation Eq.(25) with τ = 1/(2D) (blue dashed-
dotted), and with Eq.(31) (dashed orange line).

tion. In (ϕ, r) polar coordinates Eq.(1) takes the form

ϕ̇ = −w sin(2ϕ) + ω(t) (5)

ṙ = [w cos(2ϕ)] r (6)

We see the equation for the phase decouples, while for
the radius

d

dt
ln(r(t)) = w cos(2ϕ) (7)

The RHS has some finite correlation time τ ∼ 1/D, and
therefore ln(r) is like a sum of t/τ uncorrelated random
variables. It follows from the central limit theorem that
for long time the main body of the ln(r) distribution can
be approximated by a normal distribution, with some
average µ ∝ t, and some variance σ2 ∝ t. Consequently
we can define a radial stretching rate wr and a radial
diffusion coefficient Dr via the following asymptotic time
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dependence:

µ = wrt (8)

σ2 = 2Drt (9)

Our objective is to find explicit expression for wr and Dr,
and also to characterize the full statistics of r(t) in terms
of these two parameters, that are determined by the bare
model parameters (w,D). We shall see that the statistics
of r(t) is described by a bounded lognormal distribution.

Some rough estimates are in order. For large D
one naively assumes that due to ergodization of the
phase µ = 〈cos(2ϕ)〉w is zero, while σ2 ∼ (wτ)2(t/τ).
Hence one deduces that wr → 0 while Dr ∝ w2/D. A
more careful approach that takes into account the non-
isotropic distribution of the phase gives [9] the asymp-
totic results

wr ∼ w2

4D
(10)

Dr ∼ w2

8D
(11)

The dimensionless parameter that controls the accuracy
of this result is w/D. These approximations are satis-
factory for w/D � 1, and fails otherwise, see Fig.1 and
Fig.2. For large w/D we get wr → w, while Dr → 0.

IV. PHASE ERGODIZATION

The Fokker-Planck equation that is associated with
Eq.(5) is

∂ρ

∂t
=

∂

∂ϕ

[(
D

∂

∂ϕ
+ w sin(2ϕ)

)
ρ

]
(12)

It has the canonical steady state solution

ρ∞(ϕ) ∝ exp
[ w

2D
cos(2ϕ)

]
(13)

If we neglect the cosine potential in Eq. (12) then the
time for ergodization is τerg ∼ 1/D. But if w/D is large
we have to incorporate an activation factor, accordingly

τerg =
1

D
exp

[w
D

]
(14)

Fig.3(a) shows the distribution of the phase for two differ-
ent initial conditions, as obtained by a finite time numeri-
cal simulation. It is compared with the steady state solu-
tion. The dynamics of r depends only on 2ϕ, and is dom-
inated by the distribution at the vicinity of cos(2ϕ) ∼ 1.
We therefore display in Fig. 3(b) the distribution of ϕ
modulo π. We deduce that the transient time of the
ln(r) spreading is much shorter than τerg.

For the later calculation of wr we have to know the
moments of the angular distribution. From Eq.(13) we
obtain:

Xn ≡ 〈cos(2nϕ)〉∞ =
In
(
w
2D

)
I0
(
w
2D

) (15)

(a)

0.00

0.25

0.50

0.75

1.00

ρ
(φ
)

0-π -π/2 π/2 π

φ

(b)

0-π/2 π/2
φ

FIG. 3. (a) Phase distribution for (w/D) = 10/3 after
time (wt) = 6, with initial conditions ϕ = 0 (filled, yellow)
and ϕ = π/2 (green bars) with 2000 realizations. For larger
times, both reach the steady state of Eq.(13) (red line). (b)
The distributions of ϕ modulo π.

Here In(z) are the modified Bessel functions. For small
z we have In(z) ≈ [1/n!](z/2)n, while for large z we have
In(z) ≈ (2πz)−1/2ez. The dependence of the Xn on n for
representative values of w/D is illustrated in the upper
panel of Fig.4.

For the later calculation of Dr we have to know also
the temporal correlations. We define

Cn(t) = 〈cos(2nϕt) cos(2ϕ)〉∞ −XnX1 (16)

where a constant is subtracted such that Cn(∞) = 0. We
use the notations

cn ≡
∫ ∞
0

Cn(t)dt (17)

and

∆n ≡ Cn(0) =
1

2
(Xn+1 +Xn−1)−XnX1 (18)

In order to find an asymptotic expression we use

In(z) ≈ ez√
2πz

[
1− 4n2−1

(8z)
+

(4n2−1)(4n2−9)

2(8z)2

]
and get

∆n ≈ 2
(w
D

)−2
n2 for

(w
D

)
� 1 (19)

The dependence of the ∆n on n for representative values
of w/D is illustrated in the lower panel of Fig.4.

V. RADIAL SPREADING

If follows from Eq.(7) that the radial stretching rate is

wr = w 〈cos(2ϕ)〉∞ = X1w (20)

A rough interpolation for X1 that is based on the asymp-
totic expressions for the Bessel functions in Eq.(15) leads
to the following approximation

wr ≈ w
[
1− exp

(
− w

4D

)]
(21)
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FIG. 4. (a) The values of Xn versus n for some values of
w/D. From bottom to top w/D = 1, 2, 3, 4, 5. (b) The values
of ∆n versus n for the same values of w/D, from top to bottom
at n=1. (c) ∆n versus n for large w/D. Here w/D = 400.
The asymptotic approximation Eq.(19) is indicated by blue
line.

The exact result as well as the approximation are illus-
trated in Fig.1 and compared with the results of numer-
ical simulations.

For the second moment it follows from Eq.(7) that the
radial diffusion coefficient is

Dr = w2

∫ ∞
0

C1(t)dt = c1w
2 (22)

If we assume that the ergodic angular distribution is
isotropic, the calculation of C1(t) becomes very simple,
namely,

C1(t) =
1

2
〈cos 2(ϕt − ϕ0)〉 =

1

2
e−4D|t| (23)

This expression implies a correlation time τ = 1/(2D),
such that c1 = (1/2)∆1τ is half the “area” of the corre-
lation function whose “height” is ∆1 = 1/2. Thus we get
for the radial diffusion coefficient Dr = w2/(8D).

But in fact the ergodic angular distribution is not
isotropic, meaning that X1 is not zero, and ∆1 < 1/2.
If w is not too large we may assume that the correlation
time τ is not affected. Then it follows that a reasonable
approximation for the correlation function is

C1(t) ≈ ∆1e−2|t|/τ (24)

leading to

Dr ≈ 1

2
∆1τw

2 = ∆1
w2

4D
(25)

This approximation is compared to the exact result that
we derive later in Fig.2. Unlike the rough approximation
Dr = w2/(8D), it captures the observed non-monotonic
dependence of Dr versus w, but quantitatively it is an
over-estimate.

VI. THE EXACT CALCULATION OF THE
DIFFUSION COEFFICIENT

We now turn to find an exact expression for the dif-
fusion coefficient Eq. (22) by calculating c1 of Eq.(17).
Propagating an initial distribution ρ0(ϕ) with the FPE
Eq.(12) we define the moments:

xn = 〈cos(2nϕt)〉0 = 〈cos(2nϕ)〉t

=

∫
cos(2nϕ) ρt(ϕ)dϕ (26)

The moments equation of motion resulting from the FPE
is [10]:

d

dt
xn = −Λn xn + Wn (xn−1 − xn+1) (27)

where Λn = 4Dn2 and Wn = wn. Due to Λ0 = W0 = 0
the zeroth moment x0 = 1 does not change in time. Thus
the rank of Eq.(27) is less than its dimension reflecting
the existence of a zero mode xn = Xn that corresponds
to the steady state of the FPE. We shall use the subscript
”∞” to indicate the steady state distribution. Any other
solution xn(t) goes to Xn in the long time limit, while all
the other modes are decaying. To find Xn the equation
should be solved with the boundary condition X∞ = 0,
and normalized such that X0 = 1. Clearly this is not
required in practice: because we already know the steady
state solution Eq.(12), hence Eq.(15).

We define xn(t;ϕ0) as the time-dependent solution for
an initial preparation ρ0(ϕ) = δ(ϕ− ϕ0). Then we can
express the correlation function of Eq.(16) as follows:

Cn(t) = 〈xn(t;ϕ) cos(2ϕ)〉∞ −XnX1 (28)

By linearity the Cn(t) obey the same equation of motion
as that of the xn(t), but with the special initial conditions
Cn(0) = ∆n. Note that C0(t) = 0 at any time. In the
infinite time limit Cn(∞) = 0 for any n.

Our interest is in the area cn as defined in Eq.(17).
Writing Eq.(27) for Cn(t), and integrating it over time
we get

Λn cn − Wn (cn−1 − cn+1) = ∆n (29)

This equation should be solved with the boundary condi-
tions c0 = 0 and c∞ = 0. The solution is unique because
the n = 0 site has been effectively removed, and the trun-
cated matrix is no longer with zero mode. One possible
numerical procedure is to start iterating with c1 as initial
condition, and to adjust it such that the solution will go
to zero at infinity. An optional procedure is to integrate
the recursion backwards as explained in the next section.
The bottom line is the following expression

Dr = c1w
2 = −

∞∑
n=1

(−1)n

n
∆nXnw (30)

where Xn and ∆n are given by Eq.(15) and Eq.(18) re-
spectively.
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The leading term approximation Dr ≈ ∆1X1w is con-
sistent with the heuristic expression Dr ≈ (1/2)∆1τw

2 of
Eq.(25) upon the identification

τ =
2

w

[
1− exp

(
− w

4D

)]
(31)

This expression reflects the crossover from diffusion-
limited (τ ∝ 1/D) to drift-limited (τ ∝ 1/w) spreading.
Fig. 2 compares the approximation that is based on
Eq.(25) with Eq.(31) to the exact result Eq.(30).

In the limit (w/D) → 0 the asymptotic result for the
radial diffusion coefficient is Dr = w2/(8D). We now
turn to figure out what is the asymptotic result in the
other extreme limit (w/D)→∞. The large w/D ap-
proximation that is based on the first term of Eq.(30),
with the limiting value X1 = 1, provides the asymptotic
estimate Dr ≈ 2D2/w. This expression is based on the
asymptotic result Eq.(19) for ∆n with n = 1. In fact we
can do better and add all the higher order terms. Using
Abel summation we get

Dr = 2
D2

w

∞∑
n=1

(−1)n−1n =
1

2

D2

w
(32)

Thus the higher order terms merely add a factor 1/4 to
the asymptotic result. If we used Eq.(25), we would have
obtained the wrong prediction Dr ≈ D/2 that ignores
the τ dependence of Eq.(31).

VII. DERIVATION OF THE RECURSIVE
SOLUTION

In this section we provide the details of the deriva-
tion that leads from Eq. (29) to Eq. (30). We define
W±n = ∓Wn and rewrite the equation in the more general
form

−W+
n cn+1 + Λncn −W−n cn−1 = ∆n (33)

A similar problem was solved in [11], while here we
present a much simpler treatment. First we solve the as-
sociated homogeneous equation. The solution cn = Xn

satisfies

−W+
n Xn+1 + ΛnXn −W−n Xn−1 = 0 (34)

and one can define the ratios Rn = Xn/Xn−1. Note that
these ratios satisfies a simple first-order recursive rela-
tion. However we bypass this stage because we can ex-
tract the solution from the steady state distribution.

We write the solution of the non-homogeneous equa-
tion as

cn := Xnc̃n (35)

and we get the equation

−W+
n Xn+1c̃n+1 + ΛnXnc̃n −W−n Xn−1c̃n−1 = ∆n

Clearly it can be re-written as

−W+
n Xn+1(c̃n+1 − c̃n) +W−n Xn−1(c̃n − c̃n−1) = ∆n

We define the discrete derivative

ãn := c̃n − c̃n−1 (36)

And obtain a reduction to a first-order equation:

−W+
n Xn+1ãn+1 +W−n Xn−1ãn = ∆n (37)

This can be re-written in a simpler way by appropriate
definition of scaled variables. Namely, we define the no-
tations

R̃n =
W+
n

W−n
Rn ∆̃n =

∆n

W+
n

(38)

and the rescaled variable

an := Xnãn (39)

and then solve the an recursion in the backwards direc-
tion:

a∞ = 0; an = R̃n

[
∆̃n + an+1

]
(40)

If all the Rn were unity it would imply that a1 − a∞
equals

∑
∆n. So it is important to verify that the ”area”

converges. Next we can solve in the forward direction the
cn recursion for the non-homogeneous equation, namely,

c0 = 0; cn = Rncn−1 + an (41)

In fact we are only interested in

c1 = a1 = R̃1∆̃1 + R̃1R̃2∆̃2 + ... (42)

Note that in our calculation the R̃n = −Rn, and therefore
R̃1 · · · R̃n = (−1)nXn.

VIII. THE MOMENTS OF THE RADIAL
SPREADING

The moments of a lognormal distribution are given by
the following expression

ln〈rn〉 = µn +
1

2
σ2n2 (43)

On the basis of the discussion after Eq. (7), if one as-
sumed that the radial spreading at time t could be glob-
ally approximated by the lognormal distribution (tails
included), it would follow that

d

dt
ln〈rn〉 = nwr + n2Dr (44)

In Fig.5 we plot the lognormal-based expected growth-
rate of the 2nd and the 4th moments as a function of
w/D. For small w/D there is a good agreement with the
expected results, which are w2/D and 3w2/D respec-
tively. For large w/D the dynamics is dominated by the
stretching, meaning that wr ≈ w, while Dr → 0, so again
we have a trivial agreement. But for intermediate values
of w/D the lognormal moments constitute an overesti-
mate when compared with the exact analytical results
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FIG. 5. Scaled moments versus w/D. The red solid lines
are the exact results for the 2nd and 4th moments, given by
Eq.(45) and Eq.(60), and the large w/D asymptotic values
are at 2 and 4, respectively. These are compared with the
numerical results (black symbols), and contrasted with the
Lognormal prediction (orange dashed lines). The later pro-
vides an overestimate for intermediate values of w/D.

that we derive in the next section. In fact also the exact
analytical result looks like an overestimate when com-
pared with the results of numerical simulations. But the
latter is clearly a sampling issue that is explained in Ap-
pendix D.

The deviation of the lognormal moments from the ex-
act results indicates that the statistics of large devia-
tions is not captured by the central limit theorem. This
point is illuminated in Fig.6. The Gaussian approxima-
tion constitutes a good approximation for the body of
the distribution but not for the tails that dominate the
moment-calculation. Clearly, the actual distribution can
be described as a bounded lognormal distribution, mean-
ing that it has a natural cutoff which is implied by the
strict inequality wr < w. The stretching rate cannot be
faster than w. But in fact, as observed in Fig.6b, the
deviation from the lognormal distribution happens even
before the cutoff is reached.

Below we carry out an exact calculation for the 2nd
and 4th moments. In the former case we show that

d

dt
ln〈r2〉 ∼ 2

(
(w2 +D2)1/2 −D

)
(45)

This agree with the lognormal-based prediction w2/D for
(w/D)� 1, and goes to 2w for (w/D)� 1, as could be
anticipated.

Before we go the derivation of this result we would like
to illuminates its main features by considering a simple-
minded reasoning. Let us ask ourselves what would be
the result if the spreading was isotropic (wr = 0). In
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FIG. 6. (a) Distribution of ln(r) for w/D = 10/3 after time
wt = 2000 with initial conditions r = 1 and ϕ = 0. Numerical
results (green histogram), that are based on 2000 realizations,
are fitted to a Gaussian distribution (blue line). (b) In-
verse cumulative probability of the same distribution. The
black dotted line indicate the numerically determined value

ln
〈
r2
〉1/2 ≈ 1323. This value is predominated by the tail

of the distribution. The Gaussian fit fails to reproduce this

value, and provides a gross over-estimate ln
〈
r2
〉1/2 ≈ 1701.

such case the moments of spreading can be calculated
as if we are dealing with the multiplication of random
numbers. Namely, assuming that the duration of each
step is τ = 1/(2D), and treating t as a discrete index,
Eq.(6) implies that the spreading is obtained by multipli-
cation of uncorrelated stretching factors exp[wτ cos(ϕ)].
Each stretching exponent has zero mean and dispersion
σ2
1 = (1/2)[wτ ]2, which implies Dr = σ2

1/(2τ). Conse-
quently we get for the moments

〈rn〉 =
[〈

enwτ cos(2ϕ)
〉]t/τ

rn0 (46)

leading to

d

dt
ln〈rn〉 =

1

τ
ln
[
I0

(√
2nσ1

)]
(47)

This gives a crossover from n2Dr for σ1 � 1 to nw for
σ1 � 1, reflecting isotropic lognormal spreading in the
former case, and pure stretching in the latter case. So
again we see that the asymptotic limits are easily under-
stood, but for the derivation of the correct interpolation,
say Eq.(45), further effort is required.

IX. THE EXACT CALCULATION OF THE
MOMENTS

We turn to perform an exact calculation of the mo-
ments. The Langevin equation Eq.(1) is of the general
form

ẋj = vj +Gj ω(t) (48)

〈ω(t)ω(t′)〉 = 2Dδ(t− t′) (49)

Namely, Eq. (1) is obtained upon the identification
xj = (x, y) and vj = (x,−y), and Gj = (−y, x). The
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Stratonovich interpretation is used in order to associate
with it an FPE, from which the Ito equation of motion
for the moments can be derived, namely,

d

dt
〈X〉 =

〈
∂X

∂xj

(
vj +

∂Gj
∂xi

DGi

)〉
+

〈
∂2X

∂xi∂xj
GjDGi

〉
(50)

For the first moments we get

〈ẋ〉 = w 〈x〉 −D 〈x〉 (51)

〈ẏ〉 = −w 〈y〉 −D 〈y〉 (52)

with the solution

〈x〉 = x0 exp[−(D − w)t] (53)

〈y〉 = y0 exp[−(D + w)t] (54)

For the second moments

d

dt

( 〈
x2
〉〈

y2
〉 ) =

[
− 2D + 2Dσ1 + 2wσ3

]( 〈
x2
〉〈

y2
〉 ) (55)

d

dt
〈xy〉 = −4D 〈xy〉 (56)

where σ are Pauli matrices. The solution is: 〈x2〉〈
y2
〉

〈xy〉

 =

[
e−2DtM 0

0 e−4Dt

] x20
y20
x0y0

 (57)

where M is the following matrix:

cosh[2(w2+D2)1/2t] + sinh[2(w2+D2)1/2t]
Dσ1 + wσ3√

w2+D2

For an initial isotropic distribution we get 〈r2〉t = Mr20,
where

M = e−2Dt cosh[2(w2 +D2)1/2t] (58)

+
D√

w2 +D2
e−2Dt sinh [2(w2 +D2)1/2t]

The short time t dependence is quadratic, reflecting “bal-
listic” spreading, while for long times〈

r2
〉
t
≈ r20

2

(
1 +

D√
w2+D2

)
×

exp
[
2
(

(w2 +D2)1/2 −D
)
t
]

(59)

From here we get Eq.(45). For the 4th moments the equa-
tions are separated into two blocks of even-even powers
and odd-odd powers in x and y. For the even block:

d

dt

 〈
x4
〉〈

x2y2
〉〈

y4
〉
 = 2M̃

 〈
x4
〉〈

x2y2
〉〈

y4
〉
 (60)

where

M̃ =

2(w−D) 6D 0
D −6D D
0 6D −2(w+D)

 (61)

The eigenvalues of this matrix are the solution of λ3 +
10Dλ2 + (16D2 − 4w2)λ − 24Dw2 = 0. There are two
negative roots, and one positive root. For small w/D the
latter is λ ≈ (3/2)(w2/D), and we get that the growth-
rate is 3w2/D as expected from the log-normal statistics.

X. DISCUSSION

In this work we have studied the statistics of a stochas-
tic squeeze process, defined by Eq. (1). Consequently
we are able to provide a quantitatively valid theory for
the description of the noise-affected decoherence pro-
cess in bimodal Bose-Einstein condensates, aka QZE.
As the ratio w/D is increased, the radial diffusion co-
efficient of ln(r) changes in a non-monotonic way from
Dr = w2/(8D) to Dr = D2/(2w), and the non-isotropy
is enhanced, namely the average stretching rate increases
from wr = w2/(4D) to the bare value wr = w. The ana-
lytical results Eq.(20) and Eq.(30) are illustrated in Fig.1
and Fig.2,

Additionally we have solved for the moments of r. One
observes that the central limit theorem is not enough for
this calculation, because the moments are predominated
by the non-Gaussian tails of the ln(r) distribution. In
particular we have derived for the second moment the
expression 〈r2〉t = Mr20 with M that is given by Eq.(58),
or optionally one can use the practical approximation
Eq.(45).

Let us clarify the experimental significance of the re-
sults that we have obtained for the full statistics of the
radial spreading. In an actual experiment the standard
approach is to perform a “fringe feasibility” measurement
that corresponds, from a theoretical perspective, to the
expectation value of some operator (it is essentially like
measurement of an occupation difference). This leads
to the definition of the coherence F(t) in terms of the
Bloch vector. In our notations it is the expectation
value of some operator Ŝ = S(x̂, ŷ), see Appendix C.
For sake of discussion, let us say that we are interested
in
〈
x̂2
〉
. In a semiclassical perspective (Wigner function

picture) the phase-space coordinate x satisfies Eq. (1),
where ω(t) arises from frequent interventions, or mea-
surements, or noise that comes from the surrounding.
Using a Feynman-Vernon perspective, each x outcome of
the experiment can be regarded as the result of one re-
alization of the stochastic process. The “coherence” is
determined by the second moment of x̂. But it is implied
by our discussion of the sampling problem that it is im-
practical to determine this second moment from any real-
istic experiment (rare events are not properly accounted).
The reliable experimental procedure would be to keep the
full probability distribution of the measured x variable,
and to extract the µ and the σ that characterize its log-
normal statistics. For the latter we predict non-trivial
dependence on w/D.
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Appendix A: The squeeze operation

The squeeze operation is described by a real symplectic
matrix that has unit determinant and trace |a| > 2. Any
such matrix can be expressed as follows:

U =

(
a b
c d

)
= ±eαH [ad− cb = 1] (A1)

where H is a real traceless matrix that satisfies H2 = 1.
Hence it can be expressed as a linear combination of the
three Pauli matrices:

H = n1σ1 + in2σ2 + n3σ3 (A2)

with n21 − n22 + n23 = 1. Consequently

U = ± [cosh(α)1 + sinh(α)H] (A3)

We define the canonical form of the squeeze operation as

Λ =

(
exp(α) 0

0 exp(−α)

)
(A4)

Then we can obtain any general squeeze operation via
similarity transformation that involves re-scaling of the
axes and rotation, and on top an optional reflection.

We can operate with U on an initial isotropic cloud
that has radius r0 = 1. Then we get a stretched cloud
that has spread

〈
r2
〉

= A r20, where

A ≡
〈
r2
〉∣∣
r0=1

= cosh(2α) (A5)

We also define the “spreading” as

S = A− 1 = 2 sinh2(α) (A6)

The notation α has no meaning for a stochastic squeeze
process, while the notation A ≡

〈
r2
〉

still can be used.
In the latter case the average is over the initial condi-
tions and also over realizations of ω(t), implying that in
Eq.(A5) the cosh(2α) should be averaged over α.

Appendix B: Numerical simulations

The analysis of a stochastic process can be based either
on a direct Langevin type approach, or on a solution of
the associated Fokker-Plank equation [12]. While for the
analytic treatment we have preferred the latter, for the
numerical simulations we have preferred the former. So
what we are doing is a straightforward evolution using
a discretized version of Eq.(1). Namely, we divide the
time into small dt intervals (dt � τ), and regard t as a
discrete index. The evolution of a vector rt = (xt, yt)
during each interval is given by rt+dt = Utrt, where

Ut =

(
cosαt − sinαt
sinαt cosαt

) (
ew dt 0

0 e−w dt

)
(B1)

The uncorrelated random variables αt have zero mean,
and are taken from a box distribution of width

√
24Ddt,

(b)
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FIG. 7. We consider 2000 realizations of a stochastic squeeze
process. For each realization the trace a = trace(U) is calcu-
lated. (a) The cumulative count of the a values. Green points
are for positive values, while blue rectangles are for negative
values. Here (w/D) = 10/3 and wt = 40. For simulations
with longer times the distribution of positive and negative
values become identical (not shown). (b) Scatter plot of |a|
versus the radial coordinate r. For simulations with longer
times we get full correlation.

such that their variance is 2Ddt. The evolution over time
t is obtained by multiplication of t/dt matrices. The
radial coordinate r is calculated under the assumption
that the the preparation is (x0=1, y0=0. Accordingly,
what we calculate for each realization is

r =
√
U2
xx + U2

yx (B2)

In Fig. 7a we display the distribution of the trace a
for many realizations of such stochastic squeeze process.
Rarely the result is a rotation, and therefore in the main
text we refer to it as “squeeze”. From the trace we get
the squeeze exponent α, and from Eq.(B2) we get the
radial coordinate r. The correlation between these two
squeeze measures is illustrated in Fig.7b. For the long
time simulations that we perform in order to extract var-
ious moments, we observe full correlation (not shown).
In order to extract the various moments, we perform the
simulation for a maximum time of wt = 7500, with the
initial condition r0 = (1, 0).

We note that the results of Section IX for the evolu-
tion of the moments can be recovered by averaging over
product of the evolution matrices. For the first moments
we get the linear relation 〈rt〉 = 〈U〉 r0, where

〈U〉 = 〈... Ut3 Ut2 Ut1〉 = [〈Ut〉]t/dt

=

(
e−(D+w)t 0

0 e−(D−w)t

)
(B3)

Similar procedure can be applied for the calculation of
the higher moments.



9

Appendix C: Relation to QZE

It is common to represent the quantum state of the
bosonic Josephson junction by a Wigner function on the
Bloch sphere, see [1] for details. A coherent state is rep-
resented by a Gaussian-like distribution, namely

ρ(0)(x, y) ≈ 2 exp

[
−1

~
(x2 + y2)

]
(C1)

where x and y are local conjugate coordinates. The
Wigner function is properly normalized with integra-
tion measure dxdy/(2π~). The dimensionless Plank con-
stant is related to the number N of Bonsons, namely
~ = (N/2)−1. After a squeeze operation one obtains a
new state ρ(t)(x, y). The survival probability is

P(t) = Tr
[
ρ(0)ρ(t)

]
=

1

cosh(α)
=

1

1+ 1
2S(t)

(C2)

However it is more common, both theoretically and ex-
perimentally to quantify the decay of the initial state via

the length of the Bloch vector, namely F(t) = |~S(t)|. It
has been explained in [9] that

F(t) ≈ exp
{
−~ sinh2(α)

}
= exp

{
−~

2
S(t)

}
(C3)

Comparing with the short time approximation of
Eq. (C2), namely P ≈ exp[−(1/2)S(t)], note the addi-
tional ~ = 2/N factor in Eq. (C3). This should be
expected: the survival probability drops to zero even
if a single particle leaves the condensate. Contrary to
that, the fringe visibility reflects the expectation value of
the condensate occupation, and hence its decay is much
slower. Still both depend on the spreading S(t).

The dynamics that is generated by Eq. (1) does not
change the direction of the Bloch vector, but rather short-
ens its length, meaning that the one-body coherence is
diminished, reflecting the decay of the initial preparation.
Using the same coordinates as in [9] the Bloch vector is
~S(t) = (S, 0, 0), hence all the information is contained in
the measurement of a single observable, aka fringe visi-
bility measurement.

For a noiseless canonical squeeze operation we have
D = 0 and α = wt, hence one obtains S(t) = 2 sinh2(wt)
which is quadratic for short times. In contrast to that, for
a stochastic squeeze process Eq.(C3) should be averaged
over realizations of ω(t). Thus F(t) is determined by the
full statistics that we have studied in this paper.

At this point we would like to remind the reader what
is the common QZE argument that leads to the estimate
of Eq.(4). One assumes that for strong D the time for
phase randomization is τ = 1/(2D). Dividing the evolu-
tion into τ -steps, and assuming that at the end of each
step the phase is totally randomized (as in projective
measurement) one obtains

A(t) ≈
[
A(τ)

]t/τ
≈

[
1− 2(wτ)2

]t/τ
(C4)

≈ exp
[
(w2/D)t

]
(C5)

The overline indicates average over realizations, as dis-
cussed after Eq.(A5). The short time expansion of ex-
ponent is linear rather than quadratic, and the standard
QZE expression Eq.(4) is recovered. This approximation
is justified in the “Fermi Golden rule regime”, namely
for τ � t� tr, during which the deviation from isotropy
can be treated as a first-order perturbation. For longer
times, and definitely for weaker noise, the standard QZE
approximation cannot be trusted.

Appendix D: Sample moments of a lognormal
distribution

Consider a lognormal distribution of r values. This
mean that the ln r values have a Gaussian distribution.
For a finite sample of N values, one can calculate the
sample average and the sample variance of the ln r val-
ues in order to get a reliable estimate for µ and σ, and
then calculate the moments 〈rn〉 via Eq.(43). But a di-
rect calculation of these moments provides a gross under-
estimate as illustrated in Fig.8. This is because the direct
average is predominated by rare values that belong to the
tail of the distribution.

The lesson is that direct calculation of moments for
log-wide distribution cannot be trusted. It can provide a
lower bound to the true results, not an actual estimate.
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σ 2

FIG. 8. ln
〈
r2
〉

versus σ for Lognormal distribution. Without
loss of generality µ = 0. The true result is represented by red
line. Numerical estimate based on 102 and 105 realizations
are indicated by green crosses and blue rectangles, respec-
tively. For the latter set of realization we get a much better
estimate using an optional procedure (black dots). Namely,
we calculate the sample average and the sample variance of
the ln r values in order to determine µ and σ, and then use
Eq.(43) to estimate the moments.
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