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The Bose-Hubbard Hamiltonian (BHH) for a dimer

H =
∑
i=1,2

[
Ein̂i +

U

2
n̂i(n̂i − 1)

]
−
K

2
(â†2â1 + â†1â2)

N particles in a double well is like spin j = N/2 system

H = −EĴz + UĴ2
z − KĴx

Similar to the Josephson Hamiltonian

H(n̂, ϕ) = U(n̂− ε)2 −
1

2
KN cos(ϕ)

n̂ = Ĵz = occupation difference

ϕ = conjugate phase

Rabi regime: u < 1 (no islands)

Josephson regime: 1 < u < N2 (sea, islands, separatrix)

Fock regime: u > N2 (empty sea)

K = hopping

U = interaction

E = E2 − E1 = bias

u ≡ NU
K

, ε ≡ E
K

Assuming u>1 and |ε| < εc

Sea, Islands, Separatrix

εc =
(
u2/3 − 1

)3/2



WKB quantization (Josephson regime)

h = Planck cell area in steradians =
4π

N+1

A(Eν) =
(

1

2
+ ν

)
h ν = 0, 1, 2, 3, ...

ω(E) ≡ dE

dν
=

[
1

h
A′(E)

]−1

ωK ≈ K = Rabi Frequency

ωJ ≈
√
NUK = Josephson Frequency

ω+ ≈ NU = Island Frequency

ωx ≈
[
log

(
N2

u

)]−1

ωJ

Eigenstates |Eν〉 are like strips

along contour lines of H.



Wavepacket dynamics

MeanField theory (GPE) = classical evolution of a point in phase space
SemiClassical theory = classical evolution of a distribution in phase space
Quantum theory = recurrences, fluctuations (WKB is very good)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 φ / π 

 n
/j 

 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 φ / π 

 n
/j 

 
Any operator Â can be presented by the phase-space function AW(Ω)

〈
Â
〉

= trace[ρ̂ Â] =

∫
dΩ

h
ρW(Ω)AW(Ω)



Recurrences and fluctuations

~S = 〈 ~J〉/(N/2) = (Sx, Sy , Sz)

OccupationDifference = (N/2) Sz

OneBodyCoherence = S2
x + S2

y + S2
z

FringeVisibility =
[
S2
x + S2

y

]1/2
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Spectral analysis of the fluctuations: dependence on u and on N , various preparations.



The preparations, and their LDOS P (E)
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∼

[
1 −
(

2E
NK

)2]−1/2

∼ BesselI
[
E−E-
NU

]
∼ BesselK

[
E−Ex
NU

]
∼ exp

[
− 1
N

(
E−Ex
ωJ

)2]



The participation number M

M ≡
[∑
ν

P(Eν)
2

]−1

= number of participating levels in the LDOS

In the semiclassical analysis there is scaling with respect to (u/N)1/2

which is [the width of the wavepacket] / [the width of the separatix]

M ≈ ClassicalPrefactor×N [TwinFock preparation]

M ≈ √
N [CoherentState] (for (u/N)1/2 > 1)

M ≈
[
log

(
N
u

)]√
N [Edge] ; (easy to get the classical limit)

M ≈
[
log

(
N
u

)]√
u [Pi] ; (quasi periodic large fluctuations)

M ≈ √
u [Zero] ; (locking)



Analysis

* Spectral content: characteristic frequency ωosc

* Fluctuations: S(t) and RMS[S(t)]
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The spectral content of Sx
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ωosc ≈ 2ωJ [Zero]

ωosc ≈ 1×
[
log

(
N
u

)]−1
2ωJ [Pi]

ωosc ≈ 2×
[
log

(
N
u

)]−1
2ωJ [Edge]

ωosc ≈
(
u
N

)1/2
2ωJ [u� N ]



Fluctuations of Sx
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Naive expectation: phase spreading diminishes coherence.

In the Fock regime 〈Sx〉∞ ≈ 0 [Leggett’s “phase diffusion”]

In the Josephson regime 〈Sx〉∞ is determined by u/N .

Sx ≈ 1/3 [TwinFock]

Sx ≈ exp[−(u/N)] [Zero]

Sx ≈ −1− 4/ log
[

1
32

(u/N)
]

[Pi]

RMS
[
〈A〉t

]
=

[
1

M

∫
C̃cl(ω)dω

]1/2

RMS [Sx(t)] ∼ N−1/4 [ Edge]

RMS [Sx(t)] ∼ (log(N))−1/2 [ Pi]

TwinFock: Self induced coherence leading to Sx ≈ 1/3.

Zero: Coherence maintained if u/N < 1 (phase locking).

Pi: Fluctuations are suppressed by u.

Edge: Fluctuations are suppressed by N (classical limit).



Erratic vs Noisy driving

H = UĴ2
z − (K + f(t))Ĵx

f(t)f(t′) = 2Dδ(t− t′)

Initial state: S = (−1, 0, 0)

Master Equation:
dρ

dt
= −i[H0, ρ]−D[Jx, [Jx, ρ]]

Quantum Zeno Effect:

[Khodorkovsky Kurizki Vardi 2008]

|S|noise ≈ exp

{
−

1

N

w2
J

D
t

} 0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|S
|

time [Josephson periods]

Statistics for erratic driving:

|S|f(t) ≈ exp

{
−

2

N
sinh2(Λ)

}
|S|median ≈ exp

{
−

2

N
sinh2(µ(t))

}
|S|average ≈ exp

{
−

1

N

[
e2σ(t)2 cosh(2µ(t))− 1

]}



The many body Landau-Zener transition
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Dynamical scenarios:

adiabatic/diabatic/sudden



Occupation Statistics
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Summary

• Semiclassical analysis (WKB and Wigner-Weyl are beyond MFT)

• The dependence of the participation number M on u and on N .

• Fluctuations and recurrences, study of ωosc and S(t) and RMS[S(t)]

• Noise driven dimer: Improved Quantum Zeno effect analysis for S(t)

• Erratic driving: analysis of the statistics of |S(t)| -
challenging the system-bath paradigm

• Occupation statistics in a time dependent Landau-Zener scenario:
identification of the adiabatic / diabatic / sudden crossovers.
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