One body decoherence: fluctuations, recurrences and statistics

Doron Cohen, Ben-Gurion University

Maya Chuchem (BGU/Phys) [1,3,4] Amichay Vardi (BGU/Chem) [1,2,3,5] Erez Boukobza (BGU/Chem) [1,2,5] Christine Khripkov (BGU/Chem) [6] Tsampikos Kottos (Wesleyan) [3,4] Katrina Smith-Mannschott (Wesleyan) [3,4] Moritz Hiller (Freiburg) [3,4]

\$BSF, \$DIP, \$FOR760

- [1] Dynamics & fluctuations (PRL 2009)
- [2] Dynamics & fluctuations (PRA 2009)
- [3] Dynamics & fluctuations (PRA 2010)

- [4] Sweep operation, Landau-Zener (PRL 2009)
- [5] Periodic driving, Chaos (PRL 2010)
- [6] Erratic vs Noisy driving, Zeno (2011)

The Bose-Hubbard Hamiltonian (BHH) for a dimer

$$\mathcal{H} = \sum_{i=1,2} \left[\mathcal{E}_i \hat{n}_i + \frac{U}{2} \hat{n}_i (\hat{n}_i - 1) \right] - \frac{K}{2} (\hat{a}_2^{\dagger} \hat{a}_1 + \hat{a}_1^{\dagger} \hat{a}_2)$$

N particles in a double well is like spin j = N/2 system

$$\mathcal{H} = -\mathcal{E}\hat{J}_z + U\hat{J}_z^2 - K\hat{J}_x$$

Similar to the Josephson Hamiltonian

$$\mathcal{H}(\hat{n},\varphi) = U(\hat{n}-\epsilon)^2 - \frac{1}{2}KN\cos(\varphi)$$

 \hat{J}_z = occupation difference =

conjugate phase

Rabi regime: Fock regime: $u > N^2$

u < 1 (no islands) Josephson regime: $1 < u < N^2$ (sea, islands, separatrix) (empty sea)

K = hoppingU = interaction $\mathcal{E} = \mathcal{E}_2 - \mathcal{E}_1 = \text{bias}$

$$u \equiv \frac{NU}{K}, \qquad \varepsilon \equiv \frac{\mathcal{E}}{K}$$

Assuming u > 1 and $|\varepsilon| < \varepsilon_c$ Sea, Islands, Separatrix

$$\varepsilon_c = \left(u^{2/3} - 1\right)^{3/2}$$

WKB quantization (Josephson regime)

0

15

20

-1

10

n

5

 $\frac{4\pi}{N+1}$ Eigenstates $|E_{\nu}\rangle$ are like strips h = Planck cell area in steradians =along contour lines of \mathcal{H} . $A(E_{\nu}) = \left(\frac{1}{2} + \nu\right)h \qquad \nu = 0, 1, 2, 3, \dots$ $\omega(E) \equiv \frac{dE}{d\nu} = \left[\frac{1}{h}A'(E)\right]^{-1}$ ഗ[ം] 0 0 S $\omega_K \approx K = \text{Rabi Frequency}$ + WKB $\omega_J \approx \sqrt{NUK} = \text{Josephson Frequency}$ numeric analytic \approx NU = Island Frequency E_2

$$\omega_{\mathbf{x}} \approx \left[\log\left(\frac{N^2}{u}\right)\right]^{-1} \omega_{J}$$

Wavepacket dynamics

MeanField theory (GPE) = classical evolution of a point in phase space SemiClassical theory = classical evolution of a distribution in phase space Quantum theory = recurrences, fluctuations (WKB is very good)

Any operator \hat{A} can be presented by the phase-space function $A_{W}(\Omega)$

$$\langle \hat{A} \rangle = \operatorname{trace}[\hat{\rho} \ \hat{A}] = \int \frac{d\Omega}{h} \rho_{\mathrm{W}}(\Omega) A_{\mathrm{W}}(\Omega)$$

Recurrences and fluctuations

Spectral analysis of the fluctuations: dependence on u and on N, various preparations.

The preparations, and their LDOS P(E)

The participation number M

$$M \equiv \left[\sum_{\nu} P(E_{\nu})^2\right]^{-1} = \text{number of participating levels in the LDOS}$$

In the semiclassical analysis there is scaling with respect to $(u/N)^{1/2}$ which is [the width of the wavepacket] / [the width of the separatix]

$$M \approx _{\text{ClassicalPrefactor}} \times N$$
 [TwinFock preparation]
 $M \approx \sqrt{N}$ [CoherentState] (for $(u/N)^{1/2} > 1$)

$$M \approx \left[\log \left(\frac{N}{u} \right) \right] \sqrt{N} \qquad []$$
$$M \approx \left[\log \left(\frac{N}{u} \right) \right] \sqrt{u} \qquad []$$
$$M \approx \sqrt{u} \qquad []$$

 $\begin{bmatrix} Edge \end{bmatrix} \rightsquigarrow (easy to get the classical limit)$ $\begin{bmatrix} Pi \end{bmatrix} \rightsquigarrow (quasi periodic large fluctuations)$ $\begin{bmatrix} Zero \end{bmatrix} \rightsquigarrow (locking)$

Analysis

- * Spectral content: characteristic frequency $\omega_{\rm osc}$
- * Fluctuations: $\overline{S(t)}$ and RMS[S(t)]

The spectral content of S_x

Fluctuations of S_x

Naive expectation: phase spreading diminishes coherence. In the Fock regime $\langle S_x \rangle_{\infty} \approx 0$ [Leggett's "phase diffusion"] In the Josephson regime $\langle S_x \rangle_{\infty}$ is determined by u/N.

$$\overline{S_x} \approx \frac{1/3}{S_x} \approx \exp[-(u/N)] \qquad [TwinFock]$$

$$\overline{S_x} \approx \exp[-(u/N)] \qquad [Zero]$$

$$\overline{S_x} \approx -1 - 4/\log\left[\frac{1}{32}(u/N)\right] \qquad [Pi]$$

$$\operatorname{RMS}\left[\left\langle A\right\rangle_{t}\right] = \left[\frac{1}{M}\int \tilde{C}_{\mathrm{cl}}(\omega)d\omega\right]^{1/2}$$
$$\operatorname{RMS}\left[S_{x}(t)\right] \sim \qquad N^{-1/4} \qquad [\text{ Edge}]$$
$$\operatorname{RMS}\left[S_{x}(t)\right] \sim \quad (\log(N))^{-1/2} \qquad [\text{ Pi}]$$

TwinFock: Self induced coherence leading to $\overline{S_x} \approx 1/3$. **Zero:** Coherence maintained if u/N < 1 (phase locking). **Pi:** Fluctuations are suppressed by u.

Edge: Fluctuations are suppressed by N (classical limit).

Erratic vs Noisy driving

$$\mathcal{H} = U\hat{J}_z^2 - (K + f(t))\hat{J}_x$$
$$\overline{f(t)f(t')} = 2D\delta(t - t')$$
Initial state: $S = (-1, 0, 0)$

Master Equation: $\frac{d\rho}{dt} = -i[\mathcal{H}_0, \rho] - D[J_x, [J_x, \rho]]$

Quantum Zeno Effect: [Khodorkovsky Kurizki Vardi 2008] $|S|_{\text{noise}} \approx \exp\left\{-\frac{1}{N}\frac{w_J^2}{D}t\right\}$

Statistics for erratic driving:

$$|S|_{f(t)} \approx \exp\left\{-\frac{2}{N}\sinh^{2}(\Lambda)\right\}$$
$$|S|_{\text{median}} \approx \exp\left\{-\frac{2}{N}\sinh^{2}(\mu(t))\right\}$$
$$|S|_{\text{average}} \approx \exp\left\{-\frac{1}{N}\left[e^{2\sigma(t)^{2}}\cosh(2\mu(t)) - 1\right]\right\}$$

The many body Landau-Zener transition

Occupation Statistics

Adiabtic-diabatic (quantum) crossover Diabatic-sudden (semiclassical) crossover

Summary

- Semiclassical analysis (WKB and Wigner-Weyl are beyond MFT)
- The dependence of the participation number M on u and on N.
- Fluctuations and recurrences, study of ω_{osc} and $\overline{S(t)}$ and RMS[S(t)]
- Noise driven dimer: Improved Quantum Zeno effect analysis for $\overline{S(t)}$
- Erratic driving: analysis of the statistics of |S(t)| challenging the system-bath paradigm
- Occupation statistics in a time dependent Landau-Zener scenario: identification of the adiabatic / diabatic / sudden crossovers.

