BEC dynamics in a few site systems

Doron Cohen Ben-Gurion University

Maya Chuchem (BGU/Phys) [1,3,4] Tsampikos Kottos (Wesleyan) [3,4,5,6] Katrina Smith-Mannschott (Wesleyan) [3,4] Moritz Hiller (Gottingen) [3,4,5,6] Amichay Vardi (BGU/Chem) [1,2,3] Erez Boukobza (BGU/Chem) [1,2]

\$BSF, \$DIP, \$FOR760

- [1] Occupation dynamics & fluctuations (PRL 2009)
- [2] Occupation dynamics & fluctuations (PRA 2009)
- [3] Occupation dynamics & fluctuations (arXiv 2010)

- [4] Landau-Zener dynamics (PRL 2009)
- [5] Quantum stirring (EPL 2008)
- [6] Quantum stirring (PRA 2008)

The Bose-Hubbard Hamiltonian (BHH) for a dimer

$$\mathcal{H} = \sum_{i=1,2} \left[\mathcal{E}_i \hat{n}_i + \frac{U}{2} \hat{n}_i (\hat{n}_i - 1) \right] - \frac{K}{2} (\hat{a}_2^{\dagger} \hat{a}_1 + \hat{a}_1^{\dagger} \hat{a}_2)$$

N particles in a double well is like spin j = N/2 system $\mathcal{H} = -\mathcal{E}\hat{J}_z + U\hat{J}_z^2 - K\hat{J}_x + \text{const}$

Classical phase space $\mathcal{H}(\theta,\varphi) = \frac{NK}{2} \left[\frac{1}{2} u(\cos\theta)^2 - \varepsilon \cos\theta - \sin\theta \cos\varphi \right]$ $\mathcal{H}(\hat{n}, \varphi) = (\text{similar to Josephson/pendulum Hamiltonian})$

 $\hat{J}_z = (N/2)\cos(\theta) = \hat{n} = \text{occupation difference}$ $\hat{J}_x \approx (N/2)\sin(\theta)\cos(\varphi), \qquad \underline{\varphi = \text{relative phase}}$

Rabi regime: u < 1 (no islands) Fock regime: $u > N^2$ (empty sea)

Josephson regime: $1 < u < N^2$ (sea, islands, separatrix)

K = hoppingU = interaction $\mathcal{E} = \mathcal{E}_2 - \mathcal{E}_1 = \text{bias}$

$$u \equiv \frac{NU}{K}, \qquad \varepsilon \equiv \frac{\mathcal{E}}{K}$$

Assuming u > 1 and $|\varepsilon| < \varepsilon_c$ Sea, Islands, Separatrix

$$\varepsilon_c = (u^{2/3} - 1)^{3/2}$$

 $A_c \approx 4\pi (1 - u^{-2/3})^{3/2}$

WKB quantization (Josephson regime)

$$h = \text{Planck cell area in steradians} = \frac{4\pi}{N+1}$$
$$A(E_{\nu}) = \left(\frac{1}{2} + \nu\right)h \qquad \nu = 0, 1, 2, 3, ...$$
$$\omega(E) \equiv \frac{dE}{d\nu} = \left[\frac{1}{h}A'(E)\right]^{-1}$$
$$\omega_K \approx K = \text{Rabi Frequency}$$
$$\omega_J \approx \sqrt{NUK} = \sqrt{u} \,\omega_K$$
$$\omega_+ \approx NU = u \,\omega_K$$
$$\omega_+ \approx NU = u \,\omega_K$$
$$\omega_x \approx \left[\log\left(\frac{N^2}{u}\right)\right]^{-1} \omega_J$$

The preparations

Eigenstates $|E_{\nu}\rangle$ are like strips along contour lines of \mathcal{H} .

Coherent state $|\theta\varphi\rangle$ is like a minimal Gaussian wavepacket.

Fock state $|n\rangle$ is like equi-latitude annulus.

Fock n=0 preparation - exactly half of the particles in each site Fock coherent $\theta=0$ preparation - all particles occupy the left site Coherent $\varphi=0$ preparation - all particles occupy the symmetric orbital Coherent $\varphi=\pi$ preparation - all particles occupy the antisymmetric orbital

Wavepacket dynamics

MeanField theory (GPE) = classical evolution of a point in phase space SemiClassical theory = classical evolution of a distribution in phase space Quantum theory = recurrences, fluctuations (WKB is very good)

Any operator \hat{A} can be presented by the phase-space function $A_{W}(\Omega)$

$$\langle \hat{A} \rangle = \operatorname{trace}[\hat{\rho} \ \hat{A}] = \int \frac{d\Omega}{h} \rho_{\mathrm{W}}(\Omega) A_{\mathrm{W}}(\Omega)$$

P(E) = the LDOS of the preparations

M = the participation number

In the semiclassical analysis there is scaling with respect to $(u/N)^{1/2}$ which is [the width of the wavepacket] / [the width of the separatix]

$$M \approx \left[\log \left(\frac{N}{u} \right) \right] \sqrt{u} \qquad [\text{Pi}] \qquad \rightsquigarrow \text{(quasi periodic large fluctuations)}$$
$$M \approx \left[\log \left(\frac{N}{u} \right) \right] \sqrt{N} \qquad [\text{Edge}] \qquad \rightsquigarrow \text{(easy to get the classical limit)}$$

Recurrences and fluctuations

Spectral analysis of the fluctuations: dependence on u and on N, various preparations.

Temporal behavior

The spectral content of S_x

Fluctuations of S_x

Naive expectation: phase spreading diminishes coherence. In the Fock regime $\langle S_x \rangle_{\infty} \approx 0$ [Leggett's "phase diffusion"] In the Josephson regime $\langle S_x \rangle_{\infty}$ is determined by u/N.

$$\overline{S_x} \approx \frac{1/3}{S_x} \approx \exp[-(u/N)] \qquad [TwinFock]$$

$$\overline{S_x} \approx \exp[-(u/N)] \qquad [Zero]$$

$$\overline{S_x} \approx -1 - 4/\log\left[\frac{1}{32}(u/N)\right] \qquad [Pi]$$

$$\operatorname{RMS}\left[\left\langle A\right\rangle_{t}\right] = \left[\frac{1}{M}\int \tilde{C}_{\mathrm{cl}}(\omega)d\omega\right]^{1/2}$$
$$\operatorname{RMS}\left[S_{x}(t)\right] \sim \qquad N^{-1/4} \qquad [\text{ Edge}]$$
$$\operatorname{RMS}\left[S_{x}(t)\right] \sim \quad (\log(N))^{-1/2} \qquad [\text{ Pi}]$$

TwinFock: Self induced coherence leading to $\overline{S_x} \approx 1/3$. **Zero:** Coherence maintained if u/N < 1 (phase locking). **Pi:** Fluctuations are suppressed by u.

Edge: Fluctuations are suppressed by N (classical limit).

The many body Landau-Zener transition

N=30, k=1, U=0.27

Occupation Statistics

Quantum Stirring in a 3 site system

Control parameters:

$$X_1 = \left(\frac{1}{k_2} - \frac{1}{k_1}\right)$$
$$X_2 = \mathcal{E}_0 \qquad (\mathcal{E}_1 = \mathcal{E}_2 = 0)$$

 $\boldsymbol{X} = (X_1, X_2)$

U = the inter-atomic interaction

$$\hat{\mathcal{H}} = \sum_{i=0}^{2} \mathcal{E}_{i} n_{i} + \frac{U}{2} \sum_{i=0}^{2} \hat{n}_{i} (\hat{n}_{i} - 1) - k_{c} (\hat{b}_{1}^{\dagger} \hat{b}_{2} + \hat{b}_{2}^{\dagger} \hat{b}_{1}) - \frac{k_{1}}{k_{1}} (\hat{b}_{0}^{\dagger} \hat{b}_{1} + \hat{b}_{1}^{\dagger} \hat{b}_{0}) - \frac{k_{2}}{k_{2}} (\hat{b}_{0}^{\dagger} \hat{b}_{2} + \hat{b}_{2}^{\dagger} \hat{b}_{0})$$

The induced current: $I = -G\dot{\mathcal{E}}$ $(G = G_2)$

The pumped particles:
$$Q = \oint I dt = \oint G \cdot dX$$
 (per cycle)

Stirring of BEC

strong attractive interaction: classical ball dynamics negligible interaction $(|U| \ll \kappa/N)$: mega-crossing weak repulsive interaction: gradual crossing strong repulsive interaction $(U \gg N\kappa)$: sequential crossing

Results for the geometric conductance

$$G(R) = -N \frac{(k_1^2 - k_2^2)/2}{[(\varepsilon - \varepsilon_-)^2 + 2(k_1 + k_2)^2]^{3/2}} - \left[\frac{k_1 - k_2}{k_1 + k_2}\right] \frac{1}{3U}$$

$$G(R) \approx (k_1 - k_2) \sum N - (\delta \varepsilon_n)^2$$

$$G(F) = -\left(\frac{k_1 - k_2}{k_1 + k_2}\right) \sum_{n=1}^{N} \frac{(\delta \varepsilon_n)^2}{[(\varepsilon - \varepsilon_n)^2 + (2\delta \varepsilon_n)^2]^{3/2}},$$

mega crossing gradual crossing

sequential crossing

where:

 $R = \text{Rabi regime } (U \ll \kappa/N)$ $J = \text{Josephson regime } (\kappa/N \ll U \ll N\kappa)$ $F = \text{Fock regime } (U \gg N\kappa)$

Observation:

It is possible to pump $Q \gg N$ per cycle.

Summary

- Semiclassical and WKB analysis of the dynamics
- Occupation statistics in a time dependent scenario
- The adiabatic / diabatic / sudden crossovers
- Quantum stirring: mega / gradual / sequential crossings

