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Both in atomic and in mesoscopic physics it is interesting to consider the energy time dependence of
a parametrically driven chaotic system. We assume an Hamiltahla®, P; x(1)) wherex(t) = Vr.
The velocityV is slow in the classical sense but not necessarily in the quantum-mechanical sense. The
crossover (in time) from ballistic to diffusive energy spreading is studied. Dissipation is the associated
irreversible growth of the average energy. It is found that a dimensionless velggitfetermines the
nature of the dynamics, and controls the route towards quantal-classical correspondence. A perturbative
regime and a nonperturbative semiclassical regime are distinguished. [S0031-9007(99)09400-4]

PACS numbers: 03.65.Bz, 03.65.Sq, 05.40.—a, 05.45.Mt

Consider a system that is described by an Hamiltoniaon proper implementation of QM considerations. These
H(Q,P;x) where (Q,P) are canonical variables and considerations should further clarify what it means to
x is a parameter. For example, may represent the have smalli, and what happens i is not very small.
position of a large object (“piston” or “Brownian par- The clarification of these issues is the main purpose of the
ticle”) which is located inside a cavity, and tH@®, P) present Letter.
variables may describe the motion of one or few “gas The interest in quantum dissipation is very old [2—4].
particles.” Assume that fowr(z) = const the motion There are a few approaches to the subject. The most
(0(1), P(v)) is classicallychaotic,and characterized by a popular is theeffective-bath approacf2]. When applied
correlation timer.;. Just for simplicity of the following to “our” problem (as defined above) it means that the
presentation one may identify, with the ergodic time chaotic (Q, P) degrees of freedom are replaced by an
[1]. In this Letter we are interested in the time-dependeneffective bath that has the samspectral properties.
case where = V. The velocityV is assumed to be slow This may be either harmonic bath (with infinitely many
in the classical sense. It is not necessarily slow in thescillators) or random-matrix-theory (RMT) bath. It turns
gquantum-mechanical (QM) sense. The notion of slownessut that quantal-classical correspondence (QCC) is a
is an important issue that we discuss in detail. Becauseatural consequence of this procedure: The dissipation
V # 0, the energy is not a constant of motion. We studycoefficient u turns out to be the same classically and
the crossover (in time) from ballistic to diffusivenergy  quantum mechanically. The effective-bath approach will
spreading,and the associated irreversible growth of thenot be adopted in this Letter since its applicability is
average energg = (J ). By definition, this growth has a matter of conjecture. We want to have a direct
the meaning ofissipation. It is common todefinethe  understanding of quantum dissipation.
dissipation coefficientu via E = uV?, where E is The understanding aflassicaldissipation, in the sense
the dissipation rate. The correspondence between quant@l this Letter, is mainly based on Refs. [3,4]. Quantum
dissipation and classical dissipation should not be taken asechanically much less is known. Varioperturbative
obvious. Itis expected that in thie— 0 limit the quantal methodshave been used [4—6] in order to obtain an ex-
u will become similar to the classical. However, this pression for the quantum-mechanical These meth-
is just an expectation. The actual “proof’ should be basedds are (essentially) variations of the well known Fermi

0031-900799/82(25)/4951(5)$15.00 © 1999 The American Physical Society 4951



VOLUME 82, NUMBER 25 PHYSICAL REVIEW LETTERS 21 UNE 1999

golden rule (FGR). Theimple FGR expression for ~ for a microcanonical average ovép(0), P(0)), whereE
does not violate the expected correspondence with this the energy. Note again that we still assuiiie= 0.
classical result. However, this has been challenged modthe temporal correlations of the stochasticlike force
clearly by Wilkinson and Austin (WA) [5]. They came are Cg(7r) = (F()F(t + 7)). It is assumed that the
up with a surprising conclusion that we paraphrase as folelassicalCg(7) is characterized by a correlation timg.
lows: A proper FGR picture, supplemented by an inno-The intensity of fluctuations is described by the parameter
cent looking RMT assumption, leads tonaodifiedFGR  » = C(0). The power spectrum of the fluctuatiofig(w)
expression; in ther — 0 the modified FGR expression is defined via a Fourier transform.
disagrees with the classical result. This observation was For finite V the energyE (1) = H (Q(t), P(1); x(¢)) is
the original motivation for the present study. not a constant of motion. After timethe energy change
The outline of this Letter is as follows: In the issimplyE(r) — £(0) = -V ff)j-“(t) dt. Letus assume
next paragraph we give a terse outline of our mainthat atr = 0 we have anicrocanonical distributiorof ini-
observations. Then we start with a brief review of thetial “points.” For short times < 7., one can prove that
classical picture. Most importantlyit should be realized the evolving phase-space distribution is still confined to the
that the analysis of dissipation is reduced to the study omitial energy surface. Thus the evolving distribution re-
energy spreading.This observation is valid classically mains equal to the initial microcanonical distribution. This
as well as quantum mechanically, and constitutes thés the so-called classicaldden approximationSquaring
cornerstone in the derivation of the universal fluctuation-E () — £ (0) and averaging over initial conditions we find
dissipation (FD) relation. The rest of the paragraphs ar¢hat for short times we have a ballistic energy spreading:
dedicated to the presentation of the QM considerations.
We establish QCC in the limik — 0 using semiclassical (Z@®) ~ EOF) = €0 x (V1)*. ()
considerations. The detailed discussion of the RMTThis ballistic behavior is just a manifestation of the para-
approach of WA is deferred to a long paper [7]. metric energy changéF = (0 /ox)éx. For longer
The main object discussed in this Letter is the transitionimes ¢ > 7.,) we get a diffusive energy spreading,
probability kernelP;(n | m). The variablem denotes the

initial energy preparation of the system. lItis a level index (E@) = EOF) ~ 2Det, (2)
in the QM case. After time the parametetr = x(0) has T
anew valuex = x(z). Therefore it is possible to define a Dg = ZvV*©. )

new set of (instantaneous) energy eigenstates that are la- . o
beled by the index. Thus, the kemep,(n | m), regarded 1hus (for # > 7) the evolving phase-space distribu-
as a function ofs, describes an evolving energy distribu- fion is concentrated around the evolving energy surface
tion. One may wonder whether the quantum-mechanica?'[_(Q’P;x(t)_) = E. This s the so-called classicadlia-
P.(n|m) is similar to the corresponding classical object.Patic approximation. It becomes exact if one takes [after
We distinguish betweedetailedQCC andrestrictedQCC. substitution of (3) into (2)] the formal limiv — 0, keep-
The latter term implies that only the second moment of thé"9 VZ constant. It should be evident that for finitethere
spreading profile is considered. The crossover from ballS ventually a breakdown of the adiabatic approximation.
listic to diffusive energy spreading happens at 7;. In The time ;. of this breakdovyn is estimated in the nex.t
order tocapturethis crossover within quantum mechanics, Paragraph.  The only approximation that was involved in
a proper theory for the quant#, (n | m) should be con- the above analysis is thatF (1) F(t + 7)) = Ce(r). A
structed. We define a scaled velocityg. Our first main ~ Strct equality applies (by definition) only i = 0. De-
observation is thatpr < 1 is a necessary condition for tailed discussion of this apprOX|mat|on is quite _s;ra|ghtfor-
the applicability ofperturbation theory. In the perturba- ward '[7]. It leads to th«-:lassu_:al slowness conditiorf-or .
tive regime the quanta, (n | m) is notsimilar to the classi- the p|ston_ example one easily concludes that the v_elocny
cal P,(n | m), and there is no detailed QCC, but still one canV of t_he piston should t_)e much smaller compared with the
establishrestrictedQCC. If upg > 1, then the crossover Velocity of the gas particle(s).

atr ~ 7o is out of reach for perturbation theory. Con- The dlffusflon across the. evolving energy surface leads
sequently, a nonperturbative approach is essential. Thi§ @n associated systematic growth of the average energy
turns out to be the case in the limit— 0. Our second E- This is due to thet dependence of the diffusion
main observation is thatpy > 1 is a necessary condition Process. The rate of energy growthEs= uV?>. The

for detailedQCC. The latter is the consequencesefni- dissipation coefficient is related to the intensity of the

classicalconsiderations. fluctuations as follows:
The starting point for the classical theory of dissipation 1 1 9
[3,5] is the statistical characterization of the fluctuating K= o(B) 9E (g(E)v). (4)

quantity F (1) = —(0H /ox), assuming thak = const.
Without loss of generality [8] it is further assumed that theHere g(E) = 9g{)(E) is the classical density of states
average force isF)s = 0. The angular brackets stand and Q) (E) is the phase-space volume which is enclosed
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by the respective energy surface. A canonical energgre of quite general nature, providgenuinediffusive be-
averaging over the above FD relation leads to the familiahavior is established: It is argued [7] thBf(n | m) can
form w = v/2kT, where T is the temperature. The be written as the convolution &¥ kernelsP,, (n | m) such
irreversible growth of the average energy € uV?) thatr = Nty and 7 < 1 < t. Using general argu-
implies that the fluctuating quantityF () has a nonzero mentation, the same as in the derivation of the “central
average. Namely(F) = —uV. In case of the piston limit theorem,” one concludes tha&,(n | m) obeys a dif-
example the latter is commonly named “friction” force. fusion equation. The diffusion coefficiem; is deter-
The classical adiabatic approximation (2) is valid as longnined by the second moment 8f,(n | m), and hence it
as the systematic growth of the average eneffg) (s IS given by (3). Most importantly, higher moments of
much smaller thar/2Dg7. It leads to an estimate for the Py, (n|m) become irrelevant. The validity of the above
classical break timey,, = v/(uV)>2. argumentation is conditioned by the requirement of hav-
In order to make a smooth transition from the classicaind the separation of time scale$ < f.. This is a

to the QM formulation we define the following kernels: ~ main ingredient in thelassical definition of slownessn
the QM case we try to use the same reasoning in order to

Pi(n|m) = tracép, ) U(t) pmx0)] (5)  derive a FD relation that corresponds to (4). The crucial
— step is to establish the diffusive behavior (2) for a limited
Plnlm) = tacq o Pmao]- © time scale which is required to be much longer than
In the classical contexp, (Q, P) is defined as the mi- The quantum-mechanicdbg will hopefully correspond
crocanonical distribution that is supported by the energyo (3). This correspondence is natpriori guaranteed.
surfaceH (Q, P; x(t)) = E,. The energyE, corresponds This is the main issue that we address in the rest of this
to the phase-space volume= Q(E). Inthe QM context Letter. First we discuss the conditions for having QCC
pnx(0, P) is defined as the Wigner function that representdor the parametric kerneP(n | m). Then we discuss the
the energy eigenstate(x)). The phase-space propagatordeparture ofP,(n | m) from P(n|m). The conditions for
is denoted symbolically byl (¢). In the classical case it having either detailed or at least restricted QCC will be
simply repositions points in phase space. In the QM casspecified.
it has a more complicated structure. The trace operation is The quantap, ,(Q, P), unlike its classical version, has
justdQ dP integration. It is convenient to measure phase-a nontrivial transverse structure. For a curved energy sur-
space volumerd = Q(E)] in units of 27 /)? whered is  face the transverse profile looks like Airy function, and it
the number of degrees of freedom. This way we can obis characterized by a widthsc = [e1(/i/7¢1)?]/? where
tain a “classical approximation” for the QM kernel, sim- & is a classical energy scale. For the piston example
ply by makingn andm integer variables. If the classical e, = E is the kinetic energy of the gas particle. Given
approximation is similar to the QM kernel, then we saya parametric changéx = Vr we can define a classi-
that there is detailed QCC [9]. If only the second momentcal energy scaléE = dx via (1). This parametric en-
is similar, then we say that there is restricted QCC. Theergy scale characterizes the transverse distance between
parametric kerneP(n | m) is just the projection of the ini- the intersecting energy surfaces that suppauty)) and
tial energy surface/eigenstate (labeledyon the new |n(x + 8x)). ConsideringP(n |m), it should be legiti-
set of energy surfaces/eigenstates (labeled)byFor the  mate to neglect the transverse profile of Wigner function
parametric kernel, only the parametric chadge= Vris  provideddE; > Agc. This condition can be cast into
important. The actual time)(to realize this change is not the forméx > Sxsc wheredxsc = Asc/(W v /7q). If
important (by definition). This is not true for the actual 6x << dxsc we cannot argue that there is detailed QCC.
kernelP,(n|m). The latter is defined as the projection of On the other hand, we cannot rule out such QCC. We
an evolving surface/eigenstate, wheneis taken as the address this issue shortly.
initial preparation. In the QM case we may use more con- If §x is sufficiently small it should be possible to get
ventional notation and writ®;(n | m) = |U,,,(¢)|> where  an approximation fofl',,,(x), and hence foP(n | m), via
U, (1) = (n(x(2))[U(£)|m(0)) are the matrix elements of perturbation theory. It turns out that in the perturbative
the evolution operator. Similarly, the parametric kernelregime P(n | m) is characterized by a core-tail structure
P(n|m) is related to the transformation matfl,,,(x) =  that does not correspond to the classifdh | m). De-
(n(x) | m(0)). tailed definition and discussion of the core-tail structure
Let us paraphrase the classical discussion that leadg] are not required for the following considerations. The
to (4). By definition, the departure aP;(n|m) from  only important (nontrivial) observation is that in spite of
P(n|m) marks the breakdown of the sudden approximathe lack of detailed QCC there is still restricted QCC.
tion. The spreading aP,(n | m), which is implied by (2), Namely, the second moment is still given By.. An
reflects the deviation from the (classical) adiabatic apestimate for the breakdown of perturbation theory can be
proximation. The stochastic nature of the spreading omasily obtained using heuristic considerations as follows:
long times implies a systematic growth of the average enThe range of first-order transitions is determined by the
ergy. The considerations that lead to the FD relation (4pandwidthA, = 7/7. of the matrix(0H /9x),,. See
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Ref. [6]. In the perturbative regim&(n | m) is nonvan- the respective kerneP;(n|m). Then it is possible to
ishing only if |E, — E,,| < A,. Perturbation theory is calculate the second moment of the energy spreading and
inapplicable unless the spreading is on an energy scale obtain an expression that looks like (2). Expression (3)
0E, < A,. This condition can be cast into the form for Dg applies, provided is replaced by an effective noise
dx < dxp Where intensity,

Sxpre = h/y[vel7 . @

pelt = f 49 (@) F (). ©)
We havedx, = /i and dxsc « /3. Therefore, typi- — 27
cally, the two parametric scales are well separated: We dphe detailed derivation of this result will be presented
not have a theory for the intermediate parametric regim@|sewhere [7]. Formally it looks exactly the same as either
Sxpn < 6x < dxsc. The only thing that we can say the simple FGR result [4] or the WA result [5]. But
with confidence is that the core-tail structureRtf [ m) is  thjs formal similarity is quite misleading. The difficult
washed away onc&x > dxp. We do not know whether issye is howF () is defined. This function describes
there is an additional crossover once we go pasic.  the effectivepower spectrum of the driving force. It is
Therefore it is more meaningful to state tléat > Sx, IS the Fourier transform of a correlation functidi(r) with
anecessaryondition for detailed QCC, rather than spec-the conventionF(0) = 1. The latter is characterized by a
ifying the sufficientconditionéx > dxsc. 5 correlation timer.. The demonstration that the intrinsic
We now discuss the actual transition probability ker-is much larger tham is the main challenge of the theory
nel P(n|m). Recall that our objective is toapturethe 7] The impliedrestrictedQCC is explained below.
crossover at ~ 7. Therefore it is essential to distin- ~ \We discuss the physical consequences of (9). For
guish between two possibilities: W7 < dx,ritmeans  this purpose we first explain how the QM fluctuation
that the crossover happens in a regime where perturbaticgbectrum looks. The fluctuating quantif§(z) should be
theory is still valid. On the other hand, ¥7¢ > Sxp handled as an operator. The quan@!(r) is similar
it means that the crossover is out of reach for perturbatiofy the classicalCg(r) provided r < . See Ref. [6].
theory. Itis then essential to use nonperturbative considyere ¢, = li/A is the Heisenberg time and is the
erations. The sufficient condition for the applicability of mean level spacing. The associat€gd(w) reflects the
semiclassical theory i%'7.) > dxsc. Thus we come t0 gjscrete nature of the energy levels, but its envelope is
the conclusion that the following generic dimensionlessy|assical-like. Theconditions for restrictedQCC are
parameter controls QCC: obtained by inspection of (9): The functiofig(7) is
vpr = scaled velocity= /D1 /Ay . (8) characterized by two distinguished time scales, which are
o ) . 7a and ry. The function F(7) is characterized by a
If vpr <1 then it is feasible to extend perturbation gingle time scale.. Accordingly, we have the following
theory beyondr;. This issue is discussed in the next poggibilities: If 7, < 7. then the transitions arband
paragraphs. In the limiz — 0 we havevpr > 1 and  |imited and we gets™ = (7./7q) X v If 7. > 7

perturbation theory is inapplicable. However,ufr IS {hen the transitions areesonance limitedand we get

sufficiently large then semiclassical consideration can beeft ~ el |n the latter casd (w) is essentially like a

used in order to argue that the classical result is valid alsgg|t4 function. However#(w) should not be too narrow.
in the QM domain. Before we go on, we mention anNgmely, if r. > 1y then the effective noise intensity

additional restriction on QCC that pertains B(n | m).  pecomes vanishingly small. This is because individual
The evolving (classical) distributioft! (1) pm.x0) becomes |ayels are resolved. The conditian > 7 is satisfied

more and more convoluted as a function of time. This isyn|y for extremely slow velocities. This is the so-called
because of the mixing behavior that characterizes ChaOt'@M-adiabatic regime. There Landau-Zener transitions

dynamics. For: > 1y the intersections with a given gre the ultimate mechanism for energy spreading and
instantaneous energy surfagebecome very dense, and dissipation [5], and QCC is net priori guaranteed.

no longer can be resolved by quantum mechanics. The | thank Eric Heller and Shmuel Fishman for stimulating
semiclassical break times, is related to the failure yiscyssions.

of the stationary phase approximation [10]. In order
to establish the crossover from ballistic to diffusive
energy spreading using a semiclassical theory we should
satisfy the condition < #,. This velocity-independent
condition turns out to be not very restrictive [10], and we which is defined later. In specific examples it may be

can safely assume that it is typically satisfied. , smaller than the ergodic time. This is the case with the
We are now left with the question whether restricted piston example. Assuming that successive collisions with

[1] By definition the correlation timer, pertains to F(z)

QCC is maintained in the perturbative regime for 7. - its faces are uncorrelated,, is just the duration of a
Indeed, ifvpgr < 1, perturbation theory can be used in collision. (For hard wallsr,, ~ 0.) On the other hand,
order to get an approximation fdJ,,,(z) and hence for the ergodic time is related to the ballistic time.

4954



VOLUME 82, NUMBER 25

PHYSICAL REVIEW LETTERS 21 UNE 1999

(2]

(3]

R. Beck and D.H.E. Gross, Phys. Le#t7, 143 (1973);
R. Zwanzig, J. Stat. Phys9, 215 (1973); D.H.E.
Gross, Nucl. PhysA240, 472 (1975); A.O. Caldeira and
A.J. Leggett, Physica (Amsterdani21A, 587 (1983);
A. Bulgac, G.D. Dang, and D. Kusnezov, Phys. Reb&:
196 (1998); D. Cohen, Phys. Rev. Let8, 2878 (1997);
D. Cohen, J. Phys. 81, 8199-8220 (1998).

J. Blocki et al., Ann. Phys. (N.Y.)113 330 (1978);
E. Ott, Phys. Rev. Lett42, 1628 (1979); M. Wilkinson,
J. Phys. A23, 3603 (1990); C. Jarzynski, Phys. Rev. Lett.
74, 2937 (1995).

S.E. Koonin, R.L. Hatch, and J. Randrup, Nucl. Phys.
A283, 87 (1977); S. E. Koonin and J. Randrup, Nucl. Phys.
A289, 475 (1977).

M. Wilkinson, J. Phys. A21, 4021 (1988); M. Wilkinson
and E. J. Austin, J. Phys. 28, 2277 (1995).

M.V. Berry and J.M. Robbins, Proc. R. Soc. London
A 442, 659 (1993); J.M. Robbins and M.V. Berry,
J. Phys. A25, L961 (1992).

[7]
(8]

9]

(10]

D. Cohen, cond-mat/9902168.

Without loss of generality we assumgF) = 0. This
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gas particle which is affected by collisions with a small
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nonzero average component @7 /ox) corresponds to

a conservative force, and should be subtracted from the
definition of F.

“Detailed QCC” does not mean complete similarity. The
classical kernel is typically characterized by various non-
Gaussian features, such as sharp cutoffs, delta singulari-
ties, and cusps. These features are expected to be smeared
in the QM case. The discussion of the latter issue is be-
yond the scope of the present Letter.
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