Celebrating 65th birthday of Rick Heller

The rate of heating in vibrating billiards

Doron Cohen Ben-Gurion University

Alex Stotland (BGU) Lou Pecora (NRL) Nir Davidson (Weizmann)

$$\mathcal{H}_{ ext{total}} = \{E_n\} - f(t)\{V_{nm}\}$$

Alex Barnett (Harvard 2000-2001) Rick Heller (Harvard)

Tsampikos Kottos (Wesleyan) Holger Schanz (Gottingen 2005-2006) Michael Wilkinson (UK) Bernhard Mehlig (Goteborg)

http://www.bgu.ac.il/~dcohen

\$ISF, \$GIF, \$DIP, \$BSF

Dynamics and spectral intensities

 $\operatorname{FT}\left[\langle\psi(0)|\psi(t)\rangle\right] \sim \left|\langle E_n|\psi\rangle\right|^2$ Semiclassical approaches to chaos S(E) S_(E)

613

Les Houches 1989

Fig. 38. Ideally ergodic (left) and typically found (right) spectral intensities and envelopes. Both spectra have the same low resolution envelope.

Analogous relation between correlation function and band-profile:

$$\operatorname{FT}\left[\langle V(0)V(t)\rangle\right] \sim \left|\langle E_n|\hat{V}|E_m\rangle\right|^2$$

[Feingold-Peres]

Bandprofile, sparsity and texture

The rate of heating: LRT and SLRT predictions

$$\mathcal{H}_{\text{total}} = \{E_n\} - f(t)\{V_{nm}\}$$

f(t) =low freq noisy driving

 \rightarrow diffusion in energy space: $D_0 = \frac{4}{3\pi} \frac{\mathsf{M}^2 v_{\mathrm{E}}^3}{L_x} \,\overline{\dot{f}^2}$

 $\rightarrow energy absorption:$ $<math>\dot{E} = (particles/energy) \times D$ Beyond the "Wall Formula"

[Beyond the "Drude Formula"]

$$D_{\text{LRT}} = g_c D_0 \qquad [\text{``classical''}]$$
$$D_{\text{SLRT}} = g_s D_{\text{LRT}} \qquad [\text{``quantum''}]$$

LRT applies if the driven transitions are slower than

the environmental relaxation, else SLRT applies

Perspective and references

The classical LRT approach: Ott, Brown, Grebogi, Wilkinson, Jarzynski, Robbins, Berry, Cohen The Wall formula (I): Blocki, Boneh, Nix, Randrup, Robel, Sierk, Swiatecki, Koonin The Wall formula (II): Barnett, Cohen, Heller [1] - regarding g_c Semi Linear response theory: Cohen, Kottos, Schanz... [2-6] Billiards with vibrating walls: Stotland, Cohen, Davidson, Pecora [7,8] - regarding g_s Sparsity: Austin, Wilkinson, Prosen, Robnik, Alhassid, Levine, Fyodorov, Chubykalo, Izrailev, Casati

$$u = (t_{\rm R} / t_{\rm L})^{-1} = (R/L)^{-1} = \text{deformation}$$

$$\hbar = \lambda_{\rm E} / L = 2\pi/(k_{\rm E}L) =$$
function of E

- [1] A. Barnett, D. Cohen, E.J. Heller (PRL 2000, JPA 2000)
- [2] D. Cohen, T. Kottos, H. Schanz (JPA 2006)
- [3] S. Bandopadhyay, Y. Etzioni, D. Cohen (EPL 2006)
- [4] M. Wilkinson, B. Mehlig, D. Cohen (EPL 2006)
- [5] A. Stotland, R. Budoyo, T. Peer, T. Kottos, D. Cohen (JPA/FTC 2008)
- [6] A. Stotland, T. Kottos, D. Cohen (PRB 2010)
- [7] A. Stotland, D. Cohen, N. Davidson (EPL 2009)
- [8] A. Stotland, L.M. Pecora, D. Cohen (arXiv 2010)

Digression - Bilha Segev (1963-2005)

Technion(1988-1996), Harvard (1996-1998), BGU (1998-2005).

Heating of particles by "shaking" the box

$$\mathcal{H}_{ ext{total}} pprox \mathcal{H} + f(t) V$$

f(t) =low freq noisy driving

$$\tilde{C}(\omega) = \operatorname{FT} \langle V(t)V(0) \rangle$$

 $\tilde{S}(\omega) = \operatorname{FT} \langle \dot{f}(t)\dot{f}(0) \rangle$

Kubo formula:

$$\boldsymbol{D} = \int_0^\infty \tilde{C}(\omega) \tilde{S}(\omega) d\omega = g_c \frac{4}{3\pi} \frac{\mathsf{M}^2 v_{\rm E}^3}{L_x} \, \overline{\boldsymbol{f}^2}$$

- $g_c \sim 1$ for "wiggle" deformation.
- $g_c \gg 1$ for "piston" type deformation.
- $g_c \ll 1$ for dilations, translations and rotations.

Barnett, Cohen, Heller (PRL 2000, JPA 2000)

Heating of particles by "vibrating" a piston

$$\mathcal{H}_{\text{total}} \approx \left[\mathcal{H}_0 + U \right] + f(t)V$$

$$\mathcal{H} = \text{rectangular} \left(L_x \times L_y \right)$$

$$U = \text{deformation} \left(u = L/R \right)$$

$$\tilde{C}(\omega) = \text{FT} \left\langle V(t)V(0) \right\rangle$$

$$\begin{split} C(\omega \gg 1/t_{\rm L}) &= \frac{8}{3\pi} \frac{\mathsf{M}^2 v_{\rm E}^3}{L_x} \equiv C_{\infty} \\ \tilde{C}(\omega \ll 1/t_{\rm L}) \approx C_{\infty} \times \left(\frac{1}{u}\right) \times \ln\left(\frac{2}{\omega t_R}\right) \end{split}$$

Kubo formula:

$$\boldsymbol{D} = \int_0^\infty \tilde{C}(\omega) \tilde{S}(\omega) d\omega = g_c \frac{4}{3\pi} \frac{\mathsf{M}^2 v_{\rm E}^3}{L_x} \, \overline{\dot{f}^2}$$

Stotland, Pecora, Cohen (2010)

The sparsity of the perturbation matrix

The Hamiltonian in the
$$\boldsymbol{n} = (n_x, n_y)$$
 basis:
 $\mathcal{H} = \text{diag}\{E_n\} + \boldsymbol{u}\{U_{nm}\} + f(t)\{V_{nm}\}$

The matrix elements for the wall displacement:

 $V_{nm} = -\delta_{n_y,m_y} \times \frac{\pi^2}{\mathsf{M}L_x^3} n_x m_x$ [sparse]

The Hamiltonian in the E_n basis: $\mathcal{H} = \text{diag}\{E_n\} + f(t)\{V_{nm}\}$

The Kubo formula (LRT):

$$oldsymbol{D} \;=\; \pi arrho_{ ext{E}}\; \langle \langle |V_{mn}|^2
angle
angle_a \, \overline{\dot{f}^2} \;=\; g_c oldsymbol{D}_0$$

$\{|V_{nm}|^2\}$ as a random matrix $X = \{x\}$

$$egin{aligned} s[m{X}] &\equiv & rac{\mathrm{PN}\left[m{X}
ight]}{\mathrm{PN}\left[m{X}^{\mathrm{unf}}
ight]} =_{\mathrm{sparsity}} \ g_s[m{X}] &\equiv & rac{\langle\langlem{X}
angle
angle_s}{\langlem{X}
angle
angle_a} = & \mathrm{connectivity} \end{aligned}$$

Histogram of x:

For a random sparse matrix: $s, g_s \ll 1$

For a uniform (along diagonals): $s = g_s = 1$

For a Gaussian matrix: $s = 1/3, g_s \sim 1$

RMT modeling, generalized VRH approx scheme

- log-normal distribution q
- finite bandwidth b

$$s = q^2 = (\text{median/mean})^2$$

$$g_s \approx q \exp\left[2\sqrt{-\ln q \ln(b)}\right]$$

Digression: Generalized VRH

Definition of the typical matrix element for a range ω transition:

$$\left(\frac{\omega}{\Delta}\right) \operatorname{Prob}\left(x > x_{\omega}\right) \sim 1$$

In the standard-like case (ring with strong disorder):

 $x_{oldsymbol{\omega}}~pprox~v_{
m F}^2~\exp\left(rac{\Delta_l}{|\omega|}
ight)$

[corresponding to a log-box distribution]

An example for the power spectrum of the driving:

 $\tilde{S}(\omega) \propto \exp\left(-\frac{|\omega|}{T}\right)$ [here the temparature $T \iff \omega_c$]

Generalized VRH estimate:

 $D_{\rm SLRT} \approx \int x_{\omega} \ \tilde{S}(\omega) d\omega$ [should be contrasted with]

$$D_{
m LRT} = \int ilde{C}(\omega) \; ilde{S}(\omega) d\omega$$

In the standard-like case (ring with strong disorder):

$$D_{\rm SLRT} \approx \int \exp\left(\frac{\Delta_l}{|\omega|}\right) \, \exp\left(-\frac{|\omega|}{T}\right) \, d\omega$$

The resistor network calculation

$$\mathcal{H} = \{E_n\} - f(t)\{V_{nm}\}$$

 $\boldsymbol{D} = \boldsymbol{G} \ \overline{f^2}$
 $\boldsymbol{G}_{\mathrm{LRT}} = \pi \varrho \langle \langle |V_{nm}|^2 \rangle \rangle_a$
 $\boldsymbol{G}_{\mathrm{SLRT}} = \pi \varrho \langle \langle |V_{nm}|^2 \rangle \rangle_s$

$$g_s \equiv \frac{\langle \langle |V_{nm}|^2 \rangle \rangle_s}{\langle \langle |V_{nm}|^2 \rangle \rangle_a}$$

LRT applies if the driven transitions are slower than the environmental relaxation

$$g_{nm} = 2\varrho^{-3} \frac{|V_{nm}|^2}{(E_n - E_m)^2} \,\delta_0(E_n - E_m)$$

 $\langle \langle |V_{nm}|^2 \rangle \rangle_s \equiv \text{inverse resistivity}$

Digression: the Fermi golden rule picture

Master equation:

$$\frac{dp_n}{dt} = -\sum_m w_{nm}(p_n - p_m)$$

The Hamiltonian in the standard representation:

 $\mathcal{H} = \{E_n\} - f(t)\{V_{nm}\}$

The transformed Hamiltonian:

$$\tilde{\mathcal{H}} = \{E_n\} - \dot{f}(t) \left\{ \frac{iV_{nm}}{E_n - E_m} \right\} \qquad \tilde{S}(\omega) \equiv \operatorname{FT} \langle \dot{f}(t)\dot{f}(0) \rangle = 2\pi \overline{|\dot{f}|^2} \,\delta_0(E_n - E_m)$$

The FGR transition rate due to the low frequency noisy driving:

$$w_{nm} = \left| rac{V_{nm}}{E_n - E_m}
ight|^2 ilde{S}(E_n - E_m) \equiv \pi arrho^3 \, {\sf g}_{nm} \, \overline{\dot{f}^2}$$

The LRT / SLRT formula

$$\boldsymbol{D} = \operatorname{average} \left[\frac{1}{2} \sum_{n} (E_n - E_m)^2 \boldsymbol{w_{nm}} \right] = \pi \varrho \left\langle \left\langle |V_{nm}|^2 \right\rangle \right\rangle \times \overline{\dot{f}^2} \equiv \boldsymbol{G} \, \overline{\dot{f}^2}$$

Digression: random walk and the calculation of the diffusion coefficient

 w_{nm} = probability to hop from m to n per step.

$$\operatorname{Var}(n) = \sum_{n} [w_{nm}t] (n-m)^2 \equiv 2Dt$$

For n.n. hopping with rate w we get D = w.

The continuity equation:

$$\frac{\partial p_n}{\partial t} = -\frac{\partial}{\partial n} J_n$$

Fick's law:

$$J_n = -D\frac{\partial}{\partial n}p_n$$

The diffusion equation:

$$\frac{\partial p_n}{\partial t} = D \frac{\partial^2}{\partial n^2} p_n$$

If we have a sample of length N then $J = -\frac{D}{N} \times [p_N - p_0]$

D/N = inverse resistance of the chain

If the w are not the same:

$$\frac{D}{N} = \left[\sum_{n=1}^{N} \frac{1}{w_{n,n-1}}\right]^{-1}$$

Hence, for n.n. hopping $D = \langle \langle w \rangle \rangle_{harmonic}$

FGR: $w_{nm} \sim |V_{nm}|^2$ $D = \langle \langle |V_{nm}|^2 \rangle \rangle$

SLRT vs LRT

$$\mathcal{H}_{ ext{total}}~pprox~\mathcal{H}+f(t)V$$

 $\tilde{C}(\omega) = \operatorname{FT} \langle V(t)V(0) \rangle$ $\tilde{S}(\omega) = \operatorname{FT} \langle \dot{f}(t)\dot{f}(0) \rangle$

Kubo formula:
$$\boldsymbol{D} = \int \tilde{C}(\omega) \tilde{S}(\omega) d\omega$$

SLRT example: $\boldsymbol{D} = \left[\int R(\omega) \left[\tilde{S}(\omega) \right]^{-1} d\omega \right]^{-1}$

Linear response implies $\tilde{S}(\omega) \mapsto \lambda \tilde{S}(\omega) \implies D \mapsto \lambda D$ $\tilde{S}(\omega) \mapsto \sum_{i} \tilde{S}_{i}(\omega) \implies D \mapsto \sum_{i} D_{i}$

The weak quantum chaos regime

Consider $\mathcal{H}(u)$, where u is a control parameter. Generically there are 3 parametric regimes [1]:

- First order perturbation theory regime
- Wigner / Fermi-Golden-Rule / Kubo regime
- Non-perturbative / SC / Lyapunov regime

Deforming a chaotic billiard [2,3] The Wigner regime: $u_c < u < u_b$

 $u_c = \hbar^{3/2}$ mixing of levels starts $u_b = \hbar^1$ mixing saturates (~bandwidth)

Deforming a rectangular billiard [4]

The WQC regime: $u_c < u < u_s$

$$u_c = \hbar^2$$
 mixing of levels starts
 $u_s = \hbar^{1/2}$ mixing saturates $(g_s \sim 1)$

- [1] Cohen (PRL 1999, Annals 2000)
- [2] Cohen and Heller (PRL 2000)
- [3] Cohen, Barnett, Heller (PRE 2001)
- [4] Stotland, Pecora, Cohen (2010)

Estimates for an experiment

Consider ⁷⁷Rb atoms at $T = 0.1 \,\mu\text{K} \quad \rightsquigarrow \quad \lambda_E = 1 \,\mu\text{m}$ Linear size of the trap $L = 10 \,\mu\text{m} \quad \rightsquigarrow \quad h = \lambda_E/L = 0.01$, SLRT suppression factor for $u \sim 10\%$ deformation is $g_s \sim 0.1$

- Ballistic frequency $\omega_L \approx 220 \,\mathrm{Hz}$
- Lyapunov frequency $\omega_R \approx 70 \,\text{Hz}$, Driving $\omega_c \sim \omega_R$
- Level spacing $\omega_0 \approx 7.5 \,\mathrm{Hz}$

FGR condition: $D/\omega_0^3 < (\omega_c/\omega_0)^{\text{power}}$, power=2,3

Measurability condition: $D/(T^2\omega_L) > 10^{-3}$

Conclusions

(*) Wigner (~ 1955):

The perturbation is represented by a random matrix whose elements are taken from a Gaussian distribution.

Not always...

- 1. "weak quantum chaos" \implies (log-wide distribution).
- 2. The heating process \sim a percolation problem.
- 3. Resistors network calculation to get G_{SLRT} .
- 4. Generalization of the VRH estimate
- 5. SLRT is essential whenever the distribution of matrix elements is wide ("sparsity") or if the matrix has "texture".