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a b s t r a c t

A current can be induced in a closed device by changing control parameters. The amount Q of particles

that are transported via a path of motion is characterized by its expectation value /QS, and by its

variance VarðQ Þ. We show that quantum mechanics invalidates some common conceptions about this

statistics. We first consider the process of a double path crossing, which is the prototype example for

counting statistics in multiple path non-trivial geometry. We find out that contrary to the common

expectation, this process does not lead to partition noise. Then we analyze a full stirring cycle that

consists of a sequence of two Landau–Zener crossings. We find out that quite generally counting

statistics and occupation statistics become unrelated, and that quantum interference affects them in

different ways.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Consider a closed isolated quantum system, say a 3-site ring
as in Fig. 1. Quite generally, in the absence of magnetic field, the
stationary states of the system carry zero current. If one wants to
have a non-zero current I through a section of the device, one has
either to prepare it in a non-stationary state or to drive the
system. Driving means changing some parameters in time.
During a time period t the amount of particles that get through
the section is Q . One may ask what is the distribution of the
measured Q , and in particular what is the expectation value
/QS, and what is the variance VarðQ Þ. This is known as counting

statistics [3–5].
Typically the driving is periodic, and Q is defined as the

amount of particles that are transported per period. The
feasibility to have non-zero Q (non-zero ‘‘DC’’ current) due to
periodic (‘‘AC’’) driving is known in the context of open geometry
as ‘‘quantum pumping’’ [1,2]. We use the term ‘‘quantum
stirring’’ [6,7] in order to describe the analogous effect with
regard to a closed device [8].

The theory of quantum pumping and counting statistics in
open geometries is well studied. Any attempt to adopt ideas from
this literature to the present context of quantum stirring is
dangerous, and likely to result in major misconceptions, which
following [9,10] we would like to highlight. For this purpose let us
consider the simplest model that can be imagined: a particle in a
ll rights reserved.
3-site system (Fig. 1). We assume that we have a control over the
potential u of the left site, and over the couplings c1 and c2 that
bind the left site to the right sites. The transported Q is measured
through one of these two bonds. Let us introduce two simple
questions that will be answered later on.

Question 1. We start with a very negative u and prepare a
particle in the left site. Then we gradually raise u so as to have an
adiabatic transfer of the particle to the right side. If we had c1a0
but c2 ¼ 0 one obviously expects in the strict adiabatic limit Q ¼ 1
with zero variance. We ask: what would be the corresponding
result if we have jc1j ¼ jc2j, and more generally how does the
result depend on the relative size of the couplings? If the jc1j

coupling is larger, does the result reflect having (say) Q ¼ 1 with
70% probability and Q ¼ 0 with 30% probability?

Question 2. During a cycle a conventional pump takes an
electron from the left lead and ejects it to the right lead. Hence the
pumped charge per cycle for a leaky pump is Qo1. Now we
integrate this quantum pump into a closed circuit and operate it.
We ask what is the statistics of Q in the new (integrated)
configuration. Can it be much different? What are the maximal
/QS and minimal VarðQ Þ that can be achieved per cycle? Are they
both proportional to the number of the cycles as in the classical
reasoning, leading to �

ffiffi
t
p

signal to noise ratio?
Outline. In the next section we define the model and the

counting operator QðtÞ. In Sections 3 and 4 we discuss the
restricted quantum-classical correspondence that applies to
the analysis of single path crossing, while in Section 5 we
consider multiple path geometries. How to treat interference in a
sequence of Landau–Zener crossings and the analysis of quantum
stirring are discussed in Section 6. The long time counting
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Fig. 2. The adiabatic levels of the 3-site Hamiltonian during one period of a

pumping cycle. In the absence of coupling ðc1 ¼ c2 ¼ 0Þ the E0 ¼ uðtÞ level

intersects the symmetric Eþ ¼ 1 level. With non-zero coupling these intersections

become avoided crossings, and the particle follows adiabatically the thickened

lines. For presentation purpose we indicate that either c1 or c2 equal zero

(‘‘blocked’’), but in the general analysis we allow any splitting ratio, including the

possibility c1 ¼ c2 of having the same amplitude to take either of the two paths.
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Fig. 1. Toy models that are analyzed in this paper: a particle in a 2-site system

(upper illustration), and a particle in a 3-site system (lower illustration). Initially

the particle is prepared in the j0S site where it has a potential energy u. The

hopping amplitudes per unit time (the c’s) are also indicated. In the case of a 3-site

system, the time units are chosen such that the hopping amplitude per unit time

between j1S and j2S equals unity, while the other amplitudes are assumed to be

small ðjc1j; jc2j51Þ. The current is measured through the dotted section.

M. Chuchem, D. Cohen / Physica E 42 (2010) 555–560556
statistics is discussed in Sections 7 and 8. The relation to the
theory of spreading and dissipation is illuminated in Section 9.
The main observations are summarized in Section 10.
2. Modeling

We consider the 3-site system of Fig. 1 which is described by
the Hamiltonian

H ¼

u c1 c2

c1 0 1

c2 1 0

0
B@

1
CA ð1Þ

We label the sites by i ¼ 0;1;2. We have control over the potential
E0 ¼ u of the left site ð0Þ. The two right sites ð1 and 2Þ are
permanently coupled to each other forming a double well with
energy levels E� ¼ �1 and Eþ ¼ þ1. We also have relatively small
couplings ðjc1j

2; jc2j
2
51Þ that allow transitions between the left

and the right sites.
Later we consider the stirring cycle which is described in Fig. 2.
Its operation is inspired by the common peristaltic mechanism.
Namely, the coupling constants c1 and c2 are regarded as ‘‘valves’’.
In the first half of the cycle c2 ¼ 0 and u is raised, leading to an
adiabatic transfer from-left-to-right via the 081 bond. In the
second half of the cycle c1 ¼ 0 and u is lowered, leading to an
adiabatic transfer from-right-to-left via the 082 bond. The net
effect is to pump one particle per cycle.

The matrix representation of the operator which is associated
with the current through the 081 bond is

I ¼

0 ic1 0

�ic1 0 0

0 0 0

0
B@

1
CA ð2Þ

In the Heisenberg picture the time dependent current operator is
defined as IðtÞ ¼ UðtÞyIUðtÞ, where UðtÞ is the evolution operator.
Consequently the counting operator is defined as

Q ¼

Z t

0
Iðt0Þ dt0 ð3Þ

The counting operator, unlike the current operator, is not a
conventional observable in quantum mechanics. What can be
measured in practice are only the first two moments of Q, which
are /QS and VarðQ Þ. Still, on the mathematical side, it is
convenient to treat Q the same way as one treats conventional
observables. Namely, to regards its eigenvalues Qr as the possible
outcomes of a measurement, and to associate with a given
preparation c a probability distribution

PðQrÞ ¼ j/QrjcSj2 ½naive!� ð4Þ

We shall refer to Eq. (4) as the naive definition of the full counting
statistics. The physical definition of PðQ Þ is much more compli-
cated [3,4], but it leads to the same first and second moments [9].
In the present paper we are not interested in the full counting
statistics, but only in the first two moments, and therefore, for
presentation purpose, we adopt the naive point of view.
3. Single path crossing

Let us consider first the very simple case of 2-site systems with
left site ð0Þ and right site ð1Þ. The particle is prepared in the left
site and after some time has some probability p to be found in the
right site. This probability can be regarded as the expectation
value of the occupation operator N that has the eigenvalues 0 or
1 depending on whether the particle is in state 0 or state 1.

In the classical analysis the possible outcomes of a measure-
ment are N ¼ Q ¼ 1 if the particle goes from left to right, and
N ¼ Q ¼ 0 otherwise. Obviously one should find out that

PðQ Þ ¼
p for Q ¼ 1

1� p for Q ¼ 0

(
ð5Þ

It follows that the kth moment is /QkS ¼ p and therefore

/QS ¼ p ð6Þ

VarðQ Þ ¼ ð1� pÞp ð7Þ

In the quantum mechanical treatment the counting operator is
the integral over the current operator which has zero trace, so it
should also be a 2� 2 traceless Hermitian matrix which we write
in the i ¼ 0;1 basis as

Q ¼
þQJ iQ?
�iQ�? �QJ

 !
ð8Þ
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If the particle is initially prepared in the 0 site then /QS ¼ QJ and
VarðQ Þ ¼ jQ?j

2. So now the question arises whether one should
expect an agreement between the quantum result and the
classical results for the first and second moments. In the next
section we argue that for a single path geometry the answer is yes:
The first and second moments of Q should both equal p. It follows
that the matrix that represents the counting operator in the i ¼

0;1 basis is expressible in terms of p and an extra phase:

Q ¼
þp i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞp

p
eif

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞp

p
e�if �p

 !
ð9Þ

Later we are going to use this expression as a building block in the
analysis of a multiple crossing scenario.

For completeness we note that from the above analysis it
follows that the eigenvalues of the counting operator are Q7 ¼

7
ffiffiffi
p
p

with

PðQ Þ ¼
ð1þ

ffiffiffi
p
p
Þ=2 for Q ¼ Q�

ð1�
ffiffiffi
p
p
Þ=2 for Q ¼ Qþ

(
ð10Þ

which should be contrasted with Eq. (5). The proper analysis [9] of
the full counting statistics gives a more complicated quasi-
distribution that neither agrees with the naive nor with the
classical result, but still has the same first and second moments.

The above analysis has assumed nothing about the detailed
form of the 2� 2 Hamiltonian. We merely had assumed that the
particle was prepared in site 0, and that after time t there is some
probability p to find the particle in site 1. However, in the later
sections we are going to discuss specifically adiabatic crossings.
During such a process the on-site energies ðE0 ¼ uðtÞ and E1 ¼

constÞ cross each other, and due to the inter-site coupling ð¼ cÞ the
particle is adiabatically transferred from 0 to 1. Still there is some
small probability for a non-adiabatic transition, so called Land-
au–Zener transition [11], that would leave the particle in 0. There
is a well known formula that allows to calculate the probability of
such transition:

PLZ ¼ exp �2p c2

_u

� �
ð11Þ

Consequently the probability to find the particle in the right side
at the end of the process is

p ¼ 1� PLZ ð12Þ

Note that it becomes 100% in the strict adiabatic limit.
4. Quantum-classical correspondence

For a single path transition we can prove that the first two
moments of Q should be in agreement with the classical
expectation. This is based on the relation between the occupation
operator N (whose eigenvalues are 0 and 1), and the counting
operator Q (whose eigenvalues do not have a classical interpreta-
tion). The relation is implied by the Heisenberg picture equation
of motion:

d

dt
NðtÞ ¼ IðtÞ ð13Þ

Integrating over time we get

NðtÞ �Nð0Þ ¼ Q ð14Þ

Assuming that the particle is initially prepared in the left site we
get for the k ¼ 1;2 moments of Q

/QkS ¼ /ðNðtÞ �Nð0ÞÞkS ¼ /NkSt ¼ p ð15Þ

It is important to realize that the derivation cannot be extended to
the k42 moments because NðtÞ does not commute with Nð0Þ. In
fact it is not difficult to calculate the higher moments: one just has
to realize that from Eq. (9) it follows that Q2

¼ p1, and
consequently the even moments are pk=2, while the odd moments
are pðkþ1Þ=2. Optionally this result can be obtained from Eq. (10) as
in Ref. [9].

In the single path transition problem we say that we have
restricted quantum-classical correspondence. The first two mo-
ments come out the same as in the classical calculation.
Encouraged by this observation let us speculate what should be
the results in more complicated circumstances that involve
multiple path geometries.

Let us consider our 3-site system (Fig. 1). We would like to
analyze the first half of the cycle which is described by Fig. 2. The
particle is initially prepared in the left site. We gradually raise u so
as to have an adiabatic transfer of the particle to the right side. The
occupation probability of the right side at the end of the process is
denoted by p. But now we have to remember that the particle
could get there either via the 081 bond or via the 082 bond.
Motivated by a stochastic point of view one may argue that the
process is like partitioning of a current, and therefore

/QS ¼ lp ð16Þ

VarðQ Þ ¼ ð1� lpÞlp ½stochastic� ð17Þ

where the splitting ratio is

l ¼
jc1j

2

jc1j
2 þ jc2j

2
½stochastic� ð18Þ

If for example we have a strict adiabatic process with p ¼ 1 and
the splitting ratio is l ¼ 1=2, then the stochastic expectation is to
have VarðQ Þ ¼ ð1=2Þ2. Furthermore, considering a multi-cycle
stirring process, one may argue that the variance should be
accumulated in a stochastic manner:

VarðQ Þ p time ½stochastic� ð19Þ

All the results above that are labeled as ‘‘stochastic’’ might apply
in the case of a non-coherent processes, or in the case of open
geometries with leads attached to equilibrated reservoirs. Below
we are going to show that the above ‘‘stochastic’’ results do not
apply to the analysis of coherent transport in multiple path closed
geometries.
5. Double path adiabatic crossing

For c1 ¼ c2 ¼ 0 the 3-site Hamiltonian of Eq. (1) is diagonal in
the jE0S, jE�S, jEþS basis. If we limit ourselves to processes which
involve adiabatic crossings of jE0S and jEþS, as in Fig. 2, then
transitions to jE�S can be neglected and we can work with a 2� 2
Hamiltonian in the jE0S and jEþS representation

H ¼
uðtÞ c

c 1

� �
ð20Þ

where c ¼ ðc1 þ c2Þ=
ffiffiffi
2
p

. In the same representation the current
operator of Eq. (2) takes the form

I ¼ l
0 ic

�ic 0

� �
ð21Þ

where the splitting ratio is

l ¼
c1

c1 þ c2
ð22Þ

which should be contrasted with the stochastic expression
equation (18). If we had l ¼ 1 it would be the same problem as
single path crossing. The multiple path geometry is reflected in
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having I8lI and consequently Q8lQ. It follows that

/QS ¼ lp ð23Þ

VarðQ Þ ¼ l2
ð1� pÞp ð24Þ

The latter expression for the variance should be contrasted with
the stochastic expression Eq. (17). We now turn to discuss two
surprises that are associated with the above results.

The first surprise comes out from Eq. (22): it is the possibility
to have l outside of the range ½0;1�. This happens if c1 and c2 are
opposite in sign and close in absolute value. So we can cook a
cycle such that the splitting is into 700% in one path and �600%
in the other. What does it mean? After some reflection one
realizes that a proper way to describe the dynamics is to say that
the driving _u induces a circulating current in the system. Using a
classical-like phrasing one may argue that during the transition
the particle can encircle the ring 6 times before it makes the final
crossing to the right side.

The second surprise comes out from Eq. (24): it is the way in
which l appears in the variance calculation. Consider for example
a strict adiabatic process with p ¼ 1. If say l ¼ 1=2 we do not get
VarðQ Þ ¼ ð1=2Þ2 but rather VarðQ Þ ¼ 0. One may say that we do not
have an incoherent partitioning of the current, but rather a
noiseless exact splitting of the wavepacket. This should be
contrasted with the common picture of getting shot noise due
to partition of current in open geometries.
6. Quantum stirring

We can use the results that have been obtained in previous
sections in order to calculate Q for the full stirring cycle which is
described in Fig. 2. For this purpose we regard the full stirring
cycle as a sequence of two Landau–Zener crossings, where the first
is characterized by a splitting ratio lT while the second is
characterized by a different splitting ratio lU. The net effect is

/QS ¼ lT � lU þ OðPLZÞ ð25Þ

An optional way to derive this result is to make a full 3 level
calculation using the Kubo formula [8]. Here we have bypassed
the long derivation by making a reduction to a multiple path
crossing problem. The naive expectation is to have jQjo1 if the
valves are leaky. But by playing with the splitting ratio we can get
jQjb1 per cycle. In the language of the Kubo formalism [8,6] this
happens if the pumping cycle encloses a degeneracy. A large Q
reflects a huge circulating current which is induced by the driving.

We can regard the stirring as an induced persistent current.
Having figured out what is /QS, the next challenge in line is to
calculate the variance VarðQ Þ. For this purpose we regard the full
stirring cycle as a sequence of two Landau–Zener crossings. The
one period evolution operator can be written as

UðcycleÞ ¼ ½TUU
LZ T�e�iu½UT

LZ � ð26Þ

We now explain the ingredients of this expression. The adiabatic
approximation for the ULZ of a single Landau–Zener crossing is
well known (see, e.g. Ref. [12]),

ULZ �

ffiffiffiffiffiffiffi
PLZ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PLZ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PLZ

p ffiffiffiffiffiffiffi
PLZ

p

 !
ð27Þ

In the strict adiabatic limit PLZ ¼ 0 and we denote the respective
matrix by Uð0ÞLZ . In the first and second crossings PLZ might be
different and accordingly we use the notations UT

LZ and UU
LZ . The

diagonal matrix u ¼ diagfjþ;j�g contains the dynamical phases
that are accumulated in the upper and lower levels during the
time between the two crossings and we use the notation ~j for the
phase difference. The transposition operator T is required because
in the second half of the cycle the roles of the lower and the upper
states are interchanged. The expression for the total Land-
au–Zener transition probability is an interference of the two
possible ways to get to the upper level, either by making the
transition in the first crossing or in the second crossing:

p � j
ffiffiffiffiffiffiffi
PT

LZ

q
�e�i ~j

ffiffiffiffiffiffiffi
PU

LZ

q
j2 ð28Þ

Physically p is the probability not to come back to the initial site.
The strict adiabatic limit is p ¼ 0.

We turn now to calculate Q in leading order for PLZ51. The
operator QT

LZ is obtained by integrating over IðtÞ ¼ UðtÞyIUðtÞ

with UðtÞ ¼ UT
LZðtÞ. But in the second half of the cycle UðtÞ is given

by Eq. (26), with UU
LZ replaced by UU

LZ ðtÞ. Consequently we getZ
IðtÞdt � QT

LZ � ½Te�iuUT
LZ �
yQU

LZ ½Te�iuUT
LZ �

The first term in this expression is Eq. (9) multiplied by lT, with
the p of Eq. (12), and with f ¼ �p=2 corresponding to the phase
convention in Eq. (27) [9]. Then the second term in this expression
becomes

lU
�ð1� dpÞ idq

�idq þð1� dpÞ

 !
ð29Þ

where

dp ¼ þ2PT
LZ þ PU

LZ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

LZPU
LZ

q
cosð ~jÞ ð30Þ

dq ¼ �2
ffiffiffiffiffiffiffi
PT

LZ

q
þ

ffiffiffiffiffiffiffi
PU

LZ

q
expði ~jÞ ð31Þ

It is easily verified that for l ¼ 1 we have indeed an agreement
with the restricted quantum-classical correspondence relation of
Eq. (15) where p is given by Eq. (28). For la1 the result for the
expectation value /QS is in agreement with Eq. (25). For the
variance we get

VarðQ Þ � j ~lT

ffiffiffiffiffiffiffi
PT

LZ

q
þ ei ~jlU

ffiffiffiffiffiffiffi
PU

LZ

q
j2 ð32Þ

where ~lT ¼ lT � 2lT This is a generalization of a result that we
had obtained using an adiabatic formalism in a previous
publication [10]. The appearance of ~lT instead of lT reflects the
definite site preparation at t ¼ 0,... Notice that the adiabatic
approximation with ~lT ¼ lT is formally obtained by replacing
ULZ with Uð0ÞLZ .

One should realize that the interference expresses itself
differently in the expressions for p and for VarðQ Þ. One may re-
phrase this observation by saying that for a 3-site ring geometry,
unlike the case of a 2-site geometry, there is no trivial relation
between the counting statistics and the occupation statistics.
7. Long time statistics of induced currents

In this section we would like to consider the long time
behavior of the counting statistics for either non-driven or
periodically driven systems. In the latter context it is convenient
to define U � UðTÞ as the one-period (Floque) evolution operator,
and Q � QðTÞ as the one-period counting operator, where T ¼ 1 is
the period. The interest is in the counting statistics after t periods.
Accordingly Eq. (3) takes the form

QðtÞ ¼

Z t

0
Iðt0Þdt0 ¼ Qþ U�1QU þ 	 	 	 þ U�tQUt

It should be clear that in this latter discrete version the operator Q
(which is like flow per period) plays the same role as the operator
I (flow per unit time). For this reason we are not going to
duplicate the discussion below, and stick to continuous time
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notations. Having defined I as the current through a specified
bond (or more generally it would be replaced by the flow per-
period), we can decompose it into a ‘‘DC’’ part and oscillatory part
as follows:

IðtÞ ¼
X
n;m

jnSeiðEn�EmÞt Inm/mj � I þ dIðtÞ ð33Þ

where

I �
X

En¼Em

jnSInm/mj ð34Þ

In the absence of magnetic fields the stationary state of on-driven
system is characterized by zero ‘‘DC’’ current and we get I ¼ 0,
unless the Hamiltonian has a degeneracy. For a periodically driven
systems n are defined as the eigenstates of the Floque operator
and in general we have Ia0. Accordingly

QðtÞ ¼ tI þ
X

EnaEm

jnS i
1� eiðEn�EmÞt

En � Em

� �
Inm /mj

The non-zero elements of the oscillatory term are all off-diagonal,
while those of I may be both diagonal and non-diagonal.
However, without loss of generality we can choose the n basis
such that I is diagonal. If the preparation is a superposition of
Floque eigenstates, then both the average and the dispersion grow
linearly. Accordingly, in general, the asymptotic value of the
relative dispersion

ffiffiffiffiffiffiffiffi
Var
p

ðQ Þ=/QS does not go to zero. In order to
make it go to zero we have to especially prepare the system in an n

eigenstate. For such special preparation /QðtÞS grows linearly
while the dispersion is oscillating around a constant value:

VarðQ Þ ¼
X

m

2jInmj
2

ðEn � EmÞ
2
½1� cosððEn � EmÞtÞ�

¼ VarðQ Þ þ oscillations ð35Þ

The time averaged value of the dispersion VarðQ Þ is given above by
the first term (without the cosine). The time averaged value is not
always of physical interest. If only two levels are involved, then
VarðQ Þ drops to zero periodically. This applies also if several levels
are involved, as long as their spacing differences are not resolved.
The example in the following section demonstrates these
considerations.

8. Example for long time counting statistics

The simplest way to illustrate the discussion of the previous
section is to consider the counting statistics which is associated
with the persistent current in a clean ring. For simplicity we
consider N-site ring. The position eigenstates are labeled as x ¼

0;1;2; . . . ; while the momentum eigenstates are labeled as p ¼

kn ¼ ð2p=NÞn with n ¼ 0;71;72; . . . . The Hamiltonian is

H ¼ �cD� cD�1
¼ �2ccosðpÞ ð36Þ

where D ¼ expð�ipÞ is the 1-site displacement operator, and
c is the hopping amplitude. The eigen-energies are En ¼

�2ccosð2pn=NÞ. Thanks to the n8� n degeneracy of the
spectrum the ring can support a persistent current even in the
absence of a magnetic field. The velocity operator is a three
diagonal matrix

v ¼ i½H; x� ¼ icD� icD�1
¼ 2csinðpÞ ð37Þ

We measure the current through the 081 bond. Accordingly

I ¼ �ic½j1S/0j � j0S/1j� ð38Þ

We realize that

½IðtÞ�nm ¼ �ic
1

N
½eikn � e�ikm � eiðEn�EmÞt ð39Þ
Upon time averaging only the n ¼ m terms survive and they equal
�ið1=NÞ2csinðknÞ. Thus we have the identification

I ¼
1

N
v ð40Þ

If the energies were equally spaced with some level spacing
D ¼ ð2p=NÞvF, the motion of the particle would be strictly
periodic. The period of the motion 2p=D would be the time to
make one round along the ring. In such case one easily realizes
that the variance VarðQ Þ becomes zero at the end of each period.
But if one takes the true dispersion into account, one realizes that
this periodicity is not strict: after some time the quasi-periodic
(rather than periodic) nature of the motion is exposed. The long
time average of the fluctuating variance can be calculated using
Eq. (35), leading to

VarðQ Þ ¼
XN

ma7n

2jInmj
2

ðEn � EmÞ
2
�

1

p2

X1
n¼1

1

n2
¼

1

6
ð41Þ

Thus, even if a particle is prepared in a definite stationary velocity
eigenstate, still the counting at the end of a period does not yield a
certain result. This uncertainty is related to the non-linearity of
the spectrum.
9. Counting, spreading, and dissipation

The analysis of the long time behavior of the counting statistics
along the lines of the previous section is not very illuminating
once we turn to consider driven systems of greater complexity.
Technically this is because the quasi-energies, unlike En become
dense in the ½0;2p� interval. It is therefore more illuminating to
observe that in the latter case the theory of counting is strongly
related to the theory of spreading in real or in energy space.

Let us assume that we have a ring, and that the current is
measured through a section x. [In the tight binding model we can
associate a location xi with each site, and Eq. (38) is an example
for an expression for the current through a section at x0oxox1.]
For a ring of length L it is convenient to re-define the current
operator as

I :¼
1

L

Z L

0
dxI ¼

1

L
v ð42Þ

which is essentially the velocity operator. Thus we get a relation
between the counting operator and the spreading in real space

QðtÞ ¼
1

L
ðxðtÞ � xð0ÞÞ ð43Þ

where xðtÞ is the non-periodic extension of the position operator.
This procedure is nice but it should be clear that the re-definition
of the current operator implies that possibly important informa-
tion is lost.

More generally we can define an ‘‘associated’’ physical problem
as follows. Assume that the particles are charged (for simplicity
we set e ¼ 1), and the current is driven by an electro-motive-force
(EMF) which is induced by a vector potential

Aðx; tÞ ¼ FðtÞdðx� x0Þ ð44Þ

Then the rate of energy absorption is proportional to the current
and to the EMF ð� _FÞ

dH

dt
¼
@H

@t
¼
@H

@F
_F ¼ � _F �I ð45Þ

Thus the transported charge Q implies energy absorption

Qabsorption � ðHðtÞ �Hð0ÞÞ ¼ � _F � Q ð46Þ

The energy absorption can be either positive or negative, but if the
system is chaotic it can be argued that its dispersion, and hence
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the average are growing as a function of time. The same applies to
Q. Namely

VarðQ Þ ¼

Z t

0

Z t

0
/IðtÞIðt0ÞSdt dt0 ð47Þ

Thus both the counting statistics and the dissipation reflect the
fluctuations of the current (Kubo). This point of view is quite
powerful. Instead of thinking about ‘‘counting statistics’’ (which is
quite abstract) we can think about ‘‘energy absorption’’ for which
we have better intuition and better theoretical tools for analysis.
10. Summary

In closed geometries counting statistics does not obey the
common stochastic point of view, but rather reflects the coherent
nature of the quantum transport. For a single path crossing in a 2-
site system the first and second moments coincide with the naive
classical expectation due to a restricted quantum-classical
correspondence principle that can be established. But more
generally, in multiple path geometries, the results are not as
naively expected.

In a double path geometry the particle has two paths of
transport. The splitting ratio l would be in the range ½0;1� if the
particle were classical. But in the case of coherent transport l can
be any number (either negative or positive). We have explained
what is the correct way to incorporate the splitting ratio l in the
calculation of the counting statistics.

During a double path crossing the probability amplitude of the
particle is transported simultaneously via the two available paths.
The coherent splitting is ‘‘exact’’, and consequently Q has zero
variance. If the particle had finite probabilities to go either via the
first path or via the second path, it would imply a non-zero
variance (which is not the case).
Possibly the most interesting result is the analysis of a full
stirring cycle where the counting statistics becomes unrelated to
the changes in the occupation statistics. In particular we showed
that the interference of sequential Landau–Zener crossings is
reflected differently in the respective expressions for Var Q and
for p.

The RMS of the fluctuations of Q in a coherent stirring process
grows like pt and not like p

ffiffi
t
p

. This linear increase can be
avoided, or at least minimized, if there is control over the
preparation of the system. Then we are left with a constant
residual dispersion. For a driven system the counting statistics is
related to the study of spreading and dissipation in energy space,
and hence the growth of the variance constitutes a reflection of
linear response characteristics.
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