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We study the coherence dynamics of a kicked two-mode Bose-Hubbard model starting with an
arbitrary coherent spin preparation. For preparations in the chaotic regions of phase-space we find
a generic behavior with Flouquet participation numbers that scale as the entire N -particle Hilbert
space, leading to a rapid loss of single particle coherence. However, the chaotic behavior is not
uniform throughout the chaotic sea, and unique statistics is found for preparations at the vicinity
of hyperbolic points that are embedded in it. This is contrasted with the low log(N) participation
that is responsible for the revivals at the vicinity of isolated hyperbolic instabilities.

I. INTRODUCTION

One-particle coherence is the most distinct hallmark of
Bose-Einstein condensation. The observation of matter-
wave interference fringes served as an unequivocal proof
for the generation of dilute gas Bose-Einstein condensates
(BEC) [1] and the loss of their visibility was used as a
sensitive probe for atom number squeezing [2] and the
superfluid to Mott-insulator quantum phase transition
[3] in BECs confined in periodic optical lattices. Coher-
ent mean-field Josephson dynamics was demonstrated in
double-well condensates [4] and serves as a starting point
for the construction of sub-shotnoise atom interferome-
ters with Gaussian squeezed states [5, 6].

Complete many-body treatment of dilute-gas BECs
with realistic particle numbers, is normally beyond the
scope of current theoretical methods. However, in cer-
tain instances it is possible to reduce computational com-
plexity due to an effectively small number of contribut-
ing modes. One particularly simple example is that of
two coupled tightly-bound BECs. Experimental exam-
ples are BECs in double-well potentials [4] and BECs of
atoms with two optically-coupled internal states (spinor
BECs) [5, 6]. Provided that the interaction strength is
sufficiently small with respect to the excitation energy
of either condensate, such systems can be described by
the tight-binding model of the two-mode Bose-Hubbard
Hamiltonian (BHH) [7, 8]. We note that deviations from
the BHH model are obtained due to the participation
of higher bands when the interaction strength becomes
comparable with the excitation gap [9].

Within the BHH model, it is particularly interesting
to study the fluctuations of two-mode single-particle co-
herence [10–12]. Such fluctuations correspond to the col-
lapses and revivals of multi-shot fringe-visibility when the
condensates are released and allowed to interfere. The
natural initial conditions for such studies are coherent
spin preparations [13], naturally obtained by manipula-
tion of the superfluid ground state in the strong coupling
regime. The observed coherence fluctuations are deter-
mined by the number M of participating eigenstates in
the initial coherent preparation.

In this work we study the one-particle coherence dy-
namics of two coupled BECs with initially coherent

preparations, using the two-mode BHH. We assume
the two-mode BHH model to be valid throughout the
manuscript. In contrast to previous studies with time-
independent parameters [10–12], we consider here the
case where the hopping term in the BHH is periodically
modulated in time so as to produce a chaotic classical
limit [14]. This can be attained via modulation of the
inter-well barrier height in a double-well BEC realiza-
tion, or via the modulation of the coupling fields in the
spinor BEC realization. Specifically, we consider the re-
alization of the kicked top model [14, 15] where the the
modulation is a sequence of kicks with period T . We
contrast the previously studied intergable case (T → 0)
[10–12, 16–18] with the chaotic case (finite T ), first in-
troduced in the BHH context in Ref. [14].

The dynamics of the integrable T → 0 model, like
that of the Jaynes-Cummings model [19], exhibits a series
of collapses and revivals [10–12, 17]. These recurrences
are manifest in the Rabi-Josephson population oscilla-
tions, as well as in the average fringe visibility, when
the two condensates are released and allowed to inter-
fere. As shown in Refs. [11, 12], they result from at

most M ∼
√
N (and for some preparations much fewer)

participating eigenstates of the integrable Hamiltonian,
constituting any coherent preparation.

For the non-integrable model we find here that coher-
ent states in the chaotic regions of phase-space have far
greater participation numbers of the order of the en-
tire Hilbert space dimension (M ∼ N). This leads to
rapid loss of one-particle coherence, and practically pre-
vents the collapse and revival near elliptical or hyper-
bolic points. Furthermore, we observe different types of
chaotic behavior: Coherent preparations located on hy-
perbolic points within the chaotic sea have a significantly
lower participation number compared with those that re-
side inside the sea for which M ≈ N/2. The latter agrees
with random matrix theory (RMT), while the former can
be regarded as arising from so-called scars [20–22].

II. THE MODEL

We consider a two-mode bosonic system that is de-
scribed by the BHH. The hopping term is periodically
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modulated as a sequence of kicks, hence the BHH is for-
mally identical to that of a kicked top [14, 15]:

H = UĴ2
z −

[ ∞∑
n=−∞

δ

(
t

T
− n

)]
KĴx, (1)

where Ĵx=(â†1â2+â†2â1)/2, and Ĵy=(â†1â2−â
†
2â1)/(2i),

and Ĵz=(n̂1−n̂2)/2 are defined in terms of annihilation
and creation operators for a particle in mode i = 1, 2.

Number conservation n̂1 + n̂2 = N , with n̂i ≡ â†i â, im-
plies angular momentum conservation with j = N/2. We
note that the same dynamics can be realized by modulat-
ing the interaction strength U via a Feshbach resonance,
keeping the hopping term constant [14]. Either way the
evolution can be obtained by subsequent applications of
the Floquet operator

F̂ (K,U, T ) = exp(iTKĴx) exp(−iTUĴ2
z ) (2)

Accordingly the evolution operator for an integer number
of cycles is

Û(t;K,U, T ) =
[
F̂ (K,U, T )

]t/T
(3)

The integrable T → 0 limit of this expression is ob-
tained by fixing t, and taking nsteps = t/T →∞ using
the Trotter product formula. This yields

Û(t;K,U, T → 0) = e−itH0 , H0 = UJz2 −KĴx (4)

The integrable Hamiltonian H0 features a single dimen-
sionless interaction parameter [7, 8]:

u =
NU

K
(5)

that characterizes the dynamics. For u>1 a separatrix
appears in its classical phase-space [12, 16, 18], and Eq.(1)
becomes a variation of a pendulum, with the character-
istic Josephson frequency

ωJ =
√

(K +NU)K ≈ (NUK)1/2 (6)

If the period T is finite, there is an additional dimen-
sionless chaoticity parameter

KChirikov = T 2NUK = (ωJT )2 (7)

This corresponds to the standard definition of the di-
mensionless kicking-strength parameter in the Chirikov
standard map [23]. It is the ratio of two frequencies: the
induced frequency ωJ and the driving frequency 1/T . If
the former is much slower than the latter, the effect of
the driving is “adiabatic” and hence the integrable limit
is reached. Conversely, as K is increased, the phase-
space dynamics follows the familiar route to chaos: res-
onances become wider and eventually overlap creating a
connected chaotic sea.

FIG. 1: (color online) Classical phase-space stroboscopic plots
(top), time-averaged one-particle coherence S̄ over 5000 kicks
(middle), and participation number M (bottom), for all spin
coherent preparations |θ, ϕ〉. The parameters here and later,
unless specified otherwise, are T = 1, and K = π/2. The
number of particles is N = 200, while u = 5/π (left), and
u = 8/π (right).

III. DYNAMICS

We study the quantum dynamics induced by the
Hamiltonian Eq.(1), starting from an arbitrary spin co-
herent state preparation,

|θ, ϕ〉 ≡ exp(−iϕĴz) exp(−iθĴy) |j, j〉. (8)

In these initial states all particles occupy a single super-
position of the two modes, with a population imbalance
N cos(θ), and a relative phase ϕ. Experimentally, such
states can be prepared via a two step process from the
coherent ground state when u � 1, in which θ is set by
a coupling pulse and ϕ by a bias pulse [18].

The reduced one-particle density matrix of an N -
particle quantum state is conveniently represented by the
Bloch vector:

S ≡ 2

N
(〈Jx〉, 〈Jy〉, 〈Jz〉) (9)

The Sz = cos(θ) component of the Bloch vector corre-
sponds to the normalized population imbalance, while its
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azimuthal angle ϕ = arctan(Sy/Sx) corresponds to the
relative phase between the modes. The expected fringe
visibility if interferometry is carried out without further
manipulation is

g
(1)
12 =

(
|Sx|2 + |Sy|2

)1/2
, (10)

whereas the length S = |S| corresponds to the single-
particle coherence: it is the best fringe visibility that one
may expect to measure after proper manipulation, i.e. if
it is allowed to perform any SU(2) rotation. Our coherent
preparations Eq.(8) all have initial one-particle coherence
value of S = 1.

To the extent that an initial spin coherent state evolves
only to other coherent states (without being deformed),
the dynamics can be described by the mean-field equa-
tions, where the spin operators are replaced by c-numbers
[16] with O(1/N) accuracy and S(t) = 1 for any time
identically. Thus, classicality in the N -body system is
synonymous to one-particle coherence. In the top row
of Fig. 1 we show stroboscopic plots of the kicked-top
classical dynamics for two representative values of the
interaction parameter u. The left panel depicts a mixed
phase-space with regular islands embedded in a chaotic
sea, whereas in the right panel the islands shrink and the
motion is chaotic almost throughout the entire phase-
space.

While mean-field dynamics assumes perfect one-
particle coherence, the nature of the classical motion is
interlinked to its loss. In order to study the dynamics
for the non-integrable kicked BHH, we iterate the quan-
tum state with the Floquet operator F̂ , and calculate
S(t) over a timescale t� ω−1J , where t is the number of
iterations (T = 1). We then evaluate the long time aver-
age S̄ over t = 5000 kicks, which is much larger than any
semi-classical time scale, but still negligibly small with
respect to the non-classical time scales that are related
to the tunnel-coupling of separated phase space regions.
We note parenthetically that these long tunneling times
scale as ∼ eN , and are therefore unphysical in current
experiments (e.g. 1013ω−1J for N ≈ 100) [17]. The value
of S̄ for any initial coherent preparation is plotted in the
middle row of Fig.1. From comparison with the classical
stroboscopic plots it is clear that one-particle coherence
is lost completely for preparations lying in the chaotic re-
gions of phase-space. By contrast the coherence is better
maintained in the regular island regions with near-unity
values around elliptic fixed points.

IV. FLUCTUATIONS OF AN INTEGRABLE
DIMER

We have previously studied the time evolution of S(t)
for the T → 0 integrable dimer model [11, 12, 17], start-
ing with various coherent spin preparations which lead
to different types of behavior. The key to the analysis

lies in expanding the coherent states Eq.(8) as,

|θ, ϕ〉 =
∑
ν

|ν〉〈ν|θ, ϕ〉 (11)

in the BHH eigenstates basis |ν〉 pertinent to the spec-
ified interaction parameter u. The effective number of
eigenstates that contribute to the wavepacket dynamics
of Eq.(11) is evaluated by the participation number

M =

[∑
ν

p2ν

]−1
(12)

where pν = |〈ν|θ, ϕ〉|2. For example, in the strong inter-
action regime u > N2, the eigenstates are merely Fock
number states, leading to M ∼

√
N , resulting in the col-

lapse of coherence on a timescale (U
√
N)−1, and its re-

vival at t = (UN)−1 [24]. The measurement of long time
recurrences in this case has been utilized to experimen-
tally detect effective higher-order interactions resulting
from the dependence of U on N , see [25].

The dynamics are far more complex in the Joseph-
son interaction regime 1 < u < N2, due to the co-
existence of nearly-linear and highly nonlinear phase-
space regions [11, 12, 17]. Consequently, semiclassically
evaluating the participation number, we have identified
a rich and non-universal dependence of M on the N
[12]. For example, the coherent preparations |π/2, 0〉 and
|π/2, π〉 are both characterized by equal-population, but
with very different participation numbers, M ≈

√
u and

M ≈
√
u log(N/u) respectively. Consequently one ob-

serves a substantial difference in their coherence dynam-
ics [11]. These differences reflect the elliptic versus hyper-
bolic nature of the classical mean-field dynamics at the
vicinity of the two points. Moreover, for other coherent
preparations, with the same energy as that of |π/2, π〉,
we find a much larger participation number M ∼

√
N

[12].
Summarizing these generic M(N) dependencies for the

integrable case, we have, depending on the characteristics
of the classical motion:

M ≈


√
u elliptic fixed point√
u log(N/u) hyperbolic fixed point√
N log(N/u) separatrix edge

(13)

We would like to re-emphasize that a purely semiclassi-
cal picture, going beyond mean-field by accounting for
the deformation of the initial Gaussian according to the
classical motion, does not provide a satisfactory descrip-
tion of the dynamics. In order to predict the fluctuations
it is essential to have a theory for M .

V. SCARS

In order to gain similar understanding of the dynamics
in the mixed phase-space of the kicked-top Hamiltonian
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FIG. 2: (color online) Husimi distributions after t = 1000
iterations, starting with the spin coherent state |π/2, π/2〉.
The interaction is u = 5/π and u = 8/π in the left and right
panels, with N = 20 (upper) and N = 2000 (lower).

Eq.(1), we expand each coherent preparation Eq.(8) in
the Floquet basis, meaning that |ν〉 are now re-defined as

the eigenstates of the Floquet propagator F̂ . The partic-
ipation number M is then evaluated using the expansion
coefficients. The results for all coherent preparations are
shown in the bottom row of Fig.1, for two representa-
tive parameter values. As expected the participation is
generally far greater for preparations corresponding to
classical points within the chaotic sea, compared with
preparations in regular regions. However, not all the
points within the chaotic sea have the same participa-
tion number. As seen in the bottom right panel of Fig.1,
there are evident ’scars’ in the vicinity of the hyperbolic
fixed points, though they are immersed in a chaotic sea.

VI. TRANSITION TO CHAOS

We turn our attention to the coherent preparation
|π/2, π/2〉. As shown in Fig.1 it resides on a fixed point of
the classical dynamics that undergoes a transition from
being elliptical to hyperbolic as u is increased. Lineariz-
ing the kicked top map around this fixed point (see Ap-
pendix), we obtain the Lyapunov instability exponent,

λ =
1

T0
log
(
b+

√
b2 − 1

)
, (14)

b ≡
(πu

4

)2
[1− cos(πu)] +

(πu
2

)
sin(πu) + cos(πu)

where T0 = 4 is the fixed point period, i.e. the number
of kicks required to cycle it to its initial position. From
Eq.(14) it is clear that the fixed point becomes hyperbolic
at u ≈ 2.1. Note that for larger values of u there are
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FIG. 3: (color online) The participation number M and the
time evolution of the coherence S(t) for the initial preparation
|π/2, π/2〉. Panel (a): from top to bottom, S(t) for u =
6.4/π, 6.64/π, 6.66/π, 6.8/π, with N = 1200. Panel (b): The
time averaged coherence S̄ as a function of u and N . Panel
(c): from top to bottom, the participation M as a function
of N for u = 4.8/π, 6.6/π, 6.8/π, 8.8/π. Panel (d): The
participation M as a function of u and N .

narrow windows around u = 4, 6, 8, ..., corresponding to
2πn kicks, within which elliptic behavior is restored.

The classical transition from elliptic to hyperbolic dy-
namics is reflected in the quantum simulations. In Fig.2,
we start with the spin coherent state |π/2, π/2〉 and plot
the Husimi distribution 〈θ, ϕ|ρ̂(t)|θ, ϕ〉, where ρ̂(t) is the
N -particle density matrix, after t = 1000 cycles. We con-
trast the interaction parameter values u = 5/π (elliptic,
left) and u = 8/π (hyperbolic, right) for two represen-
tative values of N . Remembering that 1/N serves as an
effective Planck constant for the many-body system, one
expects quantum-to-classical correspondence at large N
when the “size” of the preparation is small compared
with the Planck cell.

Thus, as shown in the lower panels of Fig.2, for suffi-
ciently large N there is a transition from conservation of
coherence over long times [when u is such that the fixed
point is elliptic (panel c)], to a rapid loss of coherence
due to the smearing of the distribution throughout the
chaotic sea [when u is such that the fixed point is hyper-
bolic (panel d)]. The difference between the two cases is
blurred for small particle numbers when the Planck cell
becomes larger than the initial preparation (panels a,b)
and quantum-classical correspondence is lost.

The resulting one-particle coherence dynamics is
shown in Fig.3a. In agreement with the above discussion
coherence is maintained for values of u below the elliptic-
to-hyperbolic transition, and it is abruptly lost above
it. The time-averaged coherence S̄ is plotted through-
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FIG. 4: (color online) (a) The dependence of M on N for
three preparations in the case of the integrable model: at el-
liptic point |π/2, 0〉 (bottom 4), at hyperbolic point |π/2, π〉
(middle �), and on the seperatrix edge |0, 0.9π〉 (top O). In
(b) we contrast the results that are obtained in the case of
the kicked system, for preparations that reside on the hyper-
bolic point |π/2, π/2〉 (blue ◦) and on a nearby chaotic point
|π/3, π/3〉 (black �). For both (a,b) u = 9/π. Panel (c)
displays the dependence of M on u in the two cases of (b)
with N = 1000. The dashed and dotted red lines depict the
RMT estimation M ≈ N/2 and the semiclassical prediction
of Eq.(16), repectively.

out the (u,N) parameter space in Fig.3b, highlighting
the sharp change at the classical transition, and the loss
of quantum-classical correspondence at low N .

A similar sharp transition is observed for the partici-
pation number M of this preparation, as seen in Fig.3c,d.
For small u the fixed point is elliptic, and hence M has no
dependence on N , as implied by Eq.(13). However with
the onset of chaos, when u is increased, we obtain a differ-
ent linear dependence of M on N . Recall that N+1 with
N = 2j is the dimension of the many-body Hilbert space,
hence we have here an agreement with the semiclassical
quantum-ergodic picture: a minimal-Gaussian represent-
ing the initial coherent state, has a non-zero overlap with
all the eigenstates that reside in the chaotic sea.

VII. WAVEFUNCTION STATISTICS

Fig. 4 summarizes the entire range of participation
number behavior studied so far, for the various initial co-
herent preparations. Fig.4a includes the previously stud-
ied cases for the integrable BHH model, whereas Fig.4b
shows the linear scaling that we observe in the chaotic
case. The large M that characterizes chaotic sea prepa-
rations is responsible for the observed rapid loss of the

−1 0 1
0

0.02

0.04

W
(E

v
)

Ev

−1 0 1
0

0.005

0.01

Ev

0 2 4 6 8 10
10

−2

10
−1

10
0

F
(w

)

Nw

(a) (b)

(c)

FIG. 5: (color online) Wavefunction statistics for the two
representative chaotic sea preparations: The local density of
states is plotted for |π/2, π/2〉 and for |π/3, π/3〉 in panels (a)
and (b) respectively. Note the different vertical scale. The
intensity statistics is compared in (c): blue (◦) and black
(�), respectively. The dashed and solid lines are based on
the RMT and on the Semiclassical theories (see text). The
parameters are N = 1000 and u = 9/π.

one-particle coherence in Fig.3a.
The observed scars in Fig.1 are characterized by a sig-

nificantly smaller M/N ratio. In Fig.4b,c we contrast
the M/N dependence for a preparation at the hyperbolic
point, with that associated with preparation at a nearby
fully chaotic point. The former is scar affected, while the
latter exhibits the expected RMT dependence M ≈ N/2
[26]. In the vicinity of the hyperbolic point we expect
this result to be semi-classically suppressed [21, 22] by a
factor

FSC =

∞∑
s=−∞

1

cosh(λs)
(15)

Together with the RMT statistical factor FRMT = 2, that
is implied by the Gaussian Unitary Ensemble, it gives the
overall suppression, hence

M =
N

FRMT FSC
≈

[ ∞∑
s=−∞

1

cosh(λs)

]−1
N

2
(16)

Substituting the Lyapunov instability exponent λ from
Eq.(14) with no adjustable parameters, we obtain very
good agreement between this estimate and the hyperbolic
point participation ratio (see Fig.4c). The plot reflects
that the fixed-point undergoes a transition from being
elliptical to being hyperbolic at u ≈ 2.1. For larger val-
ues of u there are narrow windows around u = 4, 6, 8, ...,
corresponding to 2πn kicks, within which the fixed-point
is elliptic.
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The local density of states W (Eν) ≡ |〈ν|θ, ϕ〉|2 pro-
vides a more detailed statistical information on the par-
ticipation of the eignstates in a given coherent prepara-
tion. Here exp[−i2πEν ] are the eigenvalues of the Flo-

quet operator F̂ . Fig. 5 compares W (Eν) for the two
coherent preparations: hyperbolic versus generic chaotic
point. One observes that the state |π/2, π/2〉 projects
preferably onto a subset of eigenstates, reflecting that
the latter have a significantly larger weight at the fixed
point (“scarring”).

To better quantify the eigenvector statistics of the two
representative preparations, we plot the inverse cumula-
tive histogram: F (w) is the fraction of eigenstates with
intensity W (Eν) > w. As expected the RMT statistics
follows the Porter Thomas law

F (x) = exp(−x) (17)

where x = Nw. In contrast the statistics in the vicin-
ity of the hyperbolic point follow a significantly different
functional dependence [21, 22], namely

F (x) ∝ x−1/2 exp(−γx) (18)

where γ is a fitting parameter that is proportional to the
instability exponent λ.

VIII. SUMMARY

Considering the coherence dynamics of a non-
integrable kicked-top BHH, one observes that an initial

spin coherent preparation that reside in the chaotic re-
gions of the mixed phase-space, contains O(1) fraction
of the quantum eigenstates. This leads to an abrupt ir-
recoverable loss of single particle coherence, as opposed
to the collapse and revival dynamics that is obtained for
the integrable model. Within the chaotic sea we find two
distinct types of linear dependence, reflecting different
wavefunction statistics. Namely, the lower participation
number in the case of a wavepacket that is launched at a
hyperbolic point reflects the wide distribution of overlaps
due to scarring.

The experimental consequence for coupled BECs is
a rich variety of fringe-visibility dynamics, depending
on the population imbalance and relative-phase of the
initial coherent preparation. In fact, using different
preparations as in Ref. [18] and monitoring the visibility
of interference fringes over time, it is possible to obtain
a ’tomographic scan’ of the mixed phase-space with
chaotic regions leading to rapid loss of fringe-visibility,
as opposed to long-time coherence in regular island
regions. Moreover, the loss of fringe visibility can be
used for the detection of scars within the chaotic sea.
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Appendix A: Details of calculations

Consider the Kicked top map with T = 1, and K = π/2, and U = w/2 such that u = (2/π)w. Using the notation
S = (X,Y, Z), the classical map is

X ′ = X cos(wZ)− Y sin(wZ) (A1)

Y ′ = Z (A2)

Z ′ = −X sin(wZ)− Y cos(wZ) (A3)

The fixed point |π/2, π〉 is cycled from S = (0, 1, 0), to (0, 0,−1), to (0,−1, 0), to (0, 0, 1), repeatedly, and hence has
period T0 = 4. The linearized transformation of (X,Z) involves the matrix

M =

(
cos(2w) + w cos(w) sin(w) −2w cos(w)2 − w2 cos(w) sin(w) + w sin(w)2 + sin(2w)
− sin(w)(2 cos(w) + w sin(w) cos(w)2 + 3w cos(w) sin(w) + (w2 − 1) sin(w)2

)
(A4)

The Lyapunov instability exponents ±λ equal the log of eigenvalues of this matrix divided by T0.
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