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Abstract

We introduce and analyze the physics of “driving reversaPegiments. These are pro-
totype wavepacket dynamics scenarios probing quantuwensivility. Unlike the mostly
hypothetical “time reversal” concept, a “driving reveissdenario can be realized in a lab-
oratory experiment, and is relevant to the theory of quandissipation. We study both
the energy spreading and the survival probability in sugiegrments. We also introduce
and study the "compensation time” (time of maximum retumyuch a scenario. Exten-
sive effort is devoted to figuring out the capability of eithénear Response Theory (LRT)
or Random Matrix Theory (RMT) in order to describe specifiatéees of the time evolu-
tion. We explain that RMT modeling leads to a strong nontpbegtive response effect that
differs from the semiclassical behavior.
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1 Introduction

In recent years there has been an increasing interest irrsiadding the theory
of driven quantized chaotic systems [1,2,3,4,5,6,7,8,91)]. Driven systems are
described by a HamiltoniaH (Q, P, z(t)), wherex(t) is a time dependent param-
eter and (), P) are some generalized actions. Due to the time dependende)of
the energy of the system is not a constant of motion. Rathesyistem makes
"transitions” between energy levels, and therefore alsenergy. This irreversible
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loss of energy is known adissipation To have a clear understanding of quantum
dissipation we need a theory for the time evolution of thagyndistribution.

Unfortunately, our understanding on quantum dynamics abtib systems is still
quite limited. The majority of the existing quantum chaoésrkture concentrates on
understanding the properties of eigenfunctions and egjaas. One of the main
outcomes of these studies is the conjecture that RandomixVidieory (RMT)
modeling, initiated half a century ago by Wigner [12,13J) capture theiniversal
aspects of quantum chaotic systems [14,15]. Due to its langeess RMT has
become a major theoretical tool in quantum chaos studie&$).4and it has found
applications in both nuclear and mesoscopic physics (fecant review see [16]).
However, its applicability to quantum dynamics was leftxplered [17,18].

This paper extends our previous reports [10,17,18] on quadiynamics both in
detail and depth. Specifically, we analyze two dynamicaéswds: The first is the
so-called wavepacket dynamics associated with a rectangulse of strength-¢
which is turned on for a specified duration; The second ire®bn additional pulse
followed by the first one which has a strengthand is of equal duration. We define
this latter scheme afriving reversalscenario. We illuminate the direct relevance of
our study with the studies of quantum irreversibility of emespreading [10] and
consequently with quantum dissipation. We investigatetraitions under which
maximum compensation is succeeded and define the notiomygfermsation (echo)
time. To this end we rely both on numerical calculations gented for a chaotic
system and on analytical considerations based on LinegrdRes Theory (LRT).
The latter constitutes the leading theoretical frameworkilie analysis of driven
systems and our study aims to clarify the limitations of LRIedo chaos. Our re-
sults are always compared with the outcomes of RMT modeWefind that the
RMT approach fails in general, to give the correct picturevae-evolution. RMT
can be trusted only to the extend that it gives trivial restiiait are implied by per-
turbation theory. Non-perturbative effects are sensiivethe underlying classical
dynamics, and therefore ttie— 0 behavior for effective RMT models is strikingly
different from the correct semiclassical limit.

The structure of this paper is as follows: In the next secti@ndiscuss the no-
tion of irreversibility which is related to driving revelsschemes and distinguish
it from micro-reversibility which is associated with timeversal experiments. In
Section 3 we discuss the driving schemes that we are usingvandtroduce the
various observables that we will study in the rest of the papeSection 4, the
model systems are introduced and an analysis of the statigtioperties of the
eigenvalues and the Hamiltonian matrix is presented. Thel®a Matrix Theory
modeling is presented in Subsection 4.4. In Section 5 wednite the concept of
parametric regimes and exhibit its applicability in the lgsis of parametric evo-
lution of eigenstates [19]. Section 6 extends the notioregimes in dynamics and
presents the results of Linear Response Theory for thenagiand the survival
probability. The Linear Response Theory (LRT) for the vaceiis analyzed in de-



tails in the following Subsection 6.1. In this subsectionals® introduce the notion
of restricted quantum-classical correspondence (QCCxhaw that, as far as the
second moment of the evolving wavepacket is concerned,dbasisical and quan-
tum mechanical LRT coincides. In 6.5 we present in detailrédseilts of LRT for
the survival probability for the two driving schemes thatavelyze. The following
Sections 7 and 8 contain the results of our numerical arsatggether with a crit-
ical comparison with the theoretical predictions obtainedLRT. Specifically in
Sect.7, we present an analysis of wavepacket dynamics [itB¢gpose the weak-
ness of RMT strategy to describe wavepacket dynamics. Ih&See study the
evolution in the second half of the driving period and analyze Quantum Irre-
versibility in energy spreading, where strong non-petivie features are found
for RMT models [10]. Section 9 summarizes our findings.

2 Revershbility

The dynamics of either a classical or a quantum mechanicisyis generated
by a Hamiltoniart<(Q, P; z(t)) wherex = (X, X5, X3, ...) is a set of parameters
that can be controlled from the "outside”. In principtestands for the infinite set
of parameters that describe the electric and magnetic fagltisg on the system.
But in practice the experimentalist can control only fewgmaeters. A prototype
example is a gas of particles inside a container with a pisiben.X; may be the
position of the pistonX, may be some imposed electric field, akgmay be some
imposed magnetic field. Another example is electrons in agua dot where some
of the parameterX represent gate voltages.

What do we mean by reversibility? Let us assume that thesystelves for some
time. The evolution is described by

Ulz] _Exp(——/ H(z > , (1)

where Exp stands for time ordered exponentiation. In the o&athe archetype ex-
ample of a container with gas particles, we assume that ther@iston (position
X) that is translated outwardX(¢! (¢) increasing). Then we would "undo” the evo-
lution, by displacing the piston "inwards’X(®(¢) decreasing). In such a case the
complete evolution is described BYx] = U[zP]U[z4]. If we getU = 1 (up to a
phase factor), then it means that it is possible to bringyktesn back to its original
state. In this case we say that the prodégs is reversible.

In the strict adiabatic limit the above described processdsed reversible. What
about the non-adiabatic case? In order to have a well posestiqn we would like
to distinguish below between "time reversal” and "drivireyersal” schemes.



2.1 Time reversal scheme

Obviously we are allowed to invent very complicated schemesder to "undo”
the evolution. The ultimate scheme (in the case of the abraeple) involves
reversal of the velocities. Assume that this operationpsagented by/, then the
reverse evolution is described by

Uteverse= UTU[xB]UT ) (2)

where inz(t) we have the time reversed piston displacemeén(t{) together
with the sign of the magnetic field (if it exists) should beened. The question is
whetherlU; can be realized. If we postulate that any unitary or anttangitransfor-
mation can be realized, then it follows trivially that anyitany evolution is "micro-
reversible”. But when we talk about reversibility (ratheah micro-reversibility)
we allow control over a restricted set of parameters (fieldsgen the question is
whether we can find a driving scheme, namédsuch that

Up = Ulz"] ??7? (3)
With such restriction it is clear that in general the evauatis not reversible.

Recently it has been demonstrated in an actual experimaithig evolution of spin
system (cluster with many interacting spins) can be redefdamely, the complete
evolution was described ly[x] = U[2T]U[z*|U[2T]U 2], whereU[z*] is gener-
ated by some Hamiltonial 4, = H, +<W. The termH, represents the interaction
between the spins, while the ter represents some extra interactions. The uni-
tary operation/[z7] is realized using NMR techniques, and its effect is to invert
the signs of all the couplings. Namelj{z” |H,U[z"] = —H,. Hence the reversed
evolution is described by

7
Uteverse= €xp <_ﬁt(_H0 + 5W)> ) (4)

which is the so-called Loschmidt Echo scenario. In prireipe would like to have

¢ =0soastogel =1, butin practice we have some un-controlled residual fields
that influence the system, and thereferg 0. There is a huge amount of literature
that discusses what happens in such scenario [20,21,22]23,

2.2 Driving reversal scheme

The above described experiment is in fact exceptional. Istroases it is possible
to invert the sign of only one part of the Hamiltonian, whishassociated with the
driving field. Namely, if for instancé/[z*] is generated b§{, = H, + W, then



we can realize .
7
Ureverse= €XP (_ﬁt(HO - 5W)) ) (5)

whereas Eq.(4) cannot be realized in general. We call sughieal scenario “driv-
ing reversal” in order to distinguish it from “time reversédloschmidt Echo) sce-
nario.

The study of “driving reversal” is quite different from théudy of “Loschmidt
Echo”. A simple minded point of view is that the two problems tormally equiva-
lent because we simply permute the rolegfgfand)V. In fact there is no symmetry
here. The main part of the Hamiltonian has in general an umibeaispectrum with
well defined density of states, while the perturbafi¢ris assumed to be bounded.
This difference completely changes the “physics” of dyrami

To conclude the above discussion we would like to emphalsaenicro-reversibility
is related to “time reversal” experiment which in generalroat be realized, while

the issue of reversibility is related to “driving reversakhich in principle can be

realized. Our distinction reflects the simple observatiat hot any unitary or anti-

unitary operation can be realized.

3 Object of the Study

In this paper we consider the issue of irreversibility foaqtized chaotic systems.
We assume for simplicity one parameter driving. We furtrssuane that the varia-
tion of z(¢) is small in the corresponding classical system so that thé/sis can
be carried out with a linearized Hamiltonian. Namely,

H(Q, P;x(t)) = Ho + dx(t)W (6)

whereH, = H(Q, P; x(0)) andéz = z(t) — x(0). For latter purposes it is conve-
nient to write the perturbation as

ox(t) =& x f(t), (7)

wheree controls the "strength of the perturbation”, whifét) is the scaled time
dependence. Note that ff(¢) is a step function, thenis the "size” of the pertur-
bation, while if f(¢) oc ¢ thene is the "rate” of the driving. In the representation of
‘H, we can write

H=FE+dz(t)B, (8)

where by convention the diagonal termsi®fare absorbed into the diagonal matrix
E. From general considerations that we explain later it fedldhatB is a banded
matrix that looks random. This motivates the study of an &iffe Banded Ran-
dom Matrix (EBRM) model, as well as its simplified version wakiis the standard



Wigner Banded Random Matrix (WBRM) model. (See detailednikgdins in the
following).

In order to study the irreversibility for a given driving s@&io, we have to introduce
measures that quantify the departure from the initial siédefine a set of such
measures in the following subsections.

3.1 The evolving distributio®; (n|ng)

Given the Hamiltoniart (@, P; x), an initial preparation at state,), and a driving
scenariar(t), it is most natural to analyze the evolution of the probapdistribu-
tion

Py(nlno) = |{n|U(t)|no)|* - 9)
We always assume thaft) = x(0).

By convention we order the states by their energy. Hence weeagardP;(n|n)
as a function of- = n — ng, and average over the initial preparation, so as to get a
smooth distributiorP, (r).

The survival probability is defined as
P(t) = [{no|U(t)no)|* = Pi(no|no) , (10)

and the energy spreading is defined as

SE(1) = ¢z P(nlno) (Ey — Eny)? (12)

These are the major measures for the characterization afistdbution. In later
sections we would like to analyze their time evolution.

The physics 0b £(t) is very different from the physics @?(¢) because the former
is very sensitive to the tails of the distribution. Yet, tretual "width” of the dis-
tribution is not captured by any of these measures. A proasure for the width
can be defined as follows:

5Ecore(t) = [n75% - n25%]A ) (12)

where A is the mean level spacing ang, is determined through the equation
>n Pi(nlng) = ¢. Namely it is the width of the main body of the distribution.
Still another characteristic of the distribution is thetapation ratiodnpr(t). It

gives the number of levels that are occupied at tirbg the distribution. The ratio
dmipr/ (n759 —n2sy ) €an be used as a measure for sparsity. We assume in this paper
strongly chaotic systems, so sparsity is not an issueyapd ~ d Fcore/ A.



Fig. 1. Shape of the applied driving schenyds); wavepacket dynamics (left panel) and
driving reversal scenario (right panel)

3.2 The compensation tine

In this paper we consider two types of driving schemes. Bathrd) schemes are
presented schematically in Figure 1.

The first type of scheme is theavepacket dynamicsenario for which the driving
is turned-on at time = 0 and turned-off at a later time= T

The second type of scenario that we investigate is what Wweldaing reversal In
this scenario the initial rectangular pulse is followed bgaanpensating pulse of
equal duration. The total period of the cycl€lis

In Figure 9 we show representative results for the time eiaiuof dE(t) in a
wavepacket scenario, while in Figure 12 we show what hapipesese of a driving
reversal scenario. Corresponding plots/gt) are presented in Figure 13. We shall
define the models and we shall discuss the details of thesedigater on. At this
stage we would like to motivate by inspection of these figuhesdefinition of
"compensation time”.

We define the compensation time as the time after the driving reversal, when
maximum compensation (maximum return) is observed. If dggermined by the
maximum of the survival probability kern@(¢), then we denote it ag’. If it is
determined by the minimum of the energy spreadifigt) then we denote it as’.

It should be remembered that the theoryRgf) andd E(t) is not the same, hence
the distinction in the notation. The time of maximum comios is in general
nott¢, = T but rather

T/2<t,<T. (13)

We emphasize this point because the notion of "echo”, as umsé#tk literature,
seems to reflect a false assertion [24].

For the convenience of the reader we concentrate in thedwltptable on the ma-
jor notations in this paper:



Notation explanation reference
H(Q, P;xz(t)) | classical linearized Hamiltonian Eq.(6)
F(t) generalized force Eq.(17)
C(1) correlation function Eq.(18)
Tel correlation time -

C(w) fluctuation spectrum Eq.(19)
H = E + ézB | The Hamiltonian matrix Eq.(8)
2DW the physical model system Eq.(14)
EBRM the corresponding RMT model -

WBRM the Wigner RMT model -

A mean level spacing Eq.(23)
Ay energy bandwidth Eq.(24)

o RMS of near diagonal couplings -

Pepacingd s) energy spacing distribution Eq.(16)
Prouplingdq) distribution of couplings Eq.(25)
E,(x) eigen-energies of the Hamiltonian -
E,—FE,, ~rA | estimated energy difference for=n —m -

P(n|m) overlaps of eigenstates given a constant perturbatipiq.(27)
P(r) smoothed version aP(n|m) —

I'(0z) the number of levels that are mixed non-perturbatively

0Eg x dx the classical width of the LDoS Eq.(29)
dx =ef(t) driving scheme Eq.(7)

T The period of the driving cycle (if applicable) -
P,(n|m) the transition probability Eq.(9)
Py(r) smoothed version aP;(n|ng) —

P(t) the survival probability?; (ny|no) Eq.(10)
p(t) =1 —"P(t) | total transition probability Eq.(47)
SE(t) energy spreading Eq.(11)

0 Ecore(t) the "core” width of the distribution Eq.(12)
tr compensation time for the survival probability -

tk compensation time for the energy spreading -

Lort, tsdn, terg various time scales in the dynamics Eq.(59,62,70)
€, Eprt borders between regimes Eq.(31,33)
Propr, Port, Psc | various approximations t&'() Eq.(30,32,34,35
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Fig. 2. Equipotential contours (left) of the model Hamilmm?, for different energies and
the Poincaré section (right) of a selected trajectory at 3. Some tiny quasi-integrable
islands are avoided (mainly &1, 0)).

4 Modeding

We are interested in quantized chaotic systems that haveldgnees of freedom.
The dynamical system used in our studies is the Pullen-Edswotodel [25,26]. It
consists of two harmonic oscillators that are nonlineadypied. The correspond-
ing Hamiltonian is

M@ Pro) =5 (P + B+ @1+ Q3) + Qi3 (14)

The mass and the frequency of the harmonic oscillators ate see. Without loss
of generality we set(0) = =, = 1. Later we shall consider classically small defor-
mations §x < 1) of the potential. One can regard this model (14) as a ddgmmip
of a particle moving in a two dimensional well (2DW). The eqeF is the only di-
mensionless parameter of the classical motion. For higtgess# > 5 the motion

of the Pullen-Edmonds model is ergodic. Specifically it wasgid that the measure
of the chaotic component on the Poincaré section deviades finity by no more
than1073[25,26].

In Figure 2 we display the equipotential contours of the notimiltonian (14)
with x5 = 1. We observe that the equipotential surfaces are circleadtitie en-
ergy is increased they become more and more deformed letdamgotic motion.
Our analysis is focused on an energy window aroéhée 3 where the motion is
mainly chaotic. This is illustrated in the right panel of &ig 2 where we report the
Poincaré section (of the phase space) of a selected trajeobtained front, at
E = 3. The ergodicity of the motion is illustrated by the Poireagction, filling
the plane except from some tiny quasi- integrable islands.

The perturbation is described by = Q3Q3. In the classical analysis there is only
one significant regime for the strength of the perturbatiamely, the perturbation



is considered to be classically small if

wheres, = 1. This is the regime where (classical) linear analysis agpMNamely,
within this regime the deformation of the energy surfaie= E can be described
as a linear process (see Eq. (29)).

4.1 Energy levels

Let us now quantize the system. For obvious reasons we argdesimg a de-
symmetrized 1/8 well with Dirichlet boundary conditions the lines@; = 0,
Q> = 0 and(@; = @-. The matrix representation @f, in the basis of the un-
coupled system is very simple. The eigenstates of the Hamimlh 7, are then
obtained numerically.

As mentioned above, we consider the experiments to take jpta&n energy win-
dow 2.8 < E < 3.1 which is classically small and where the motion is predomi-
nantly chaotic. Nevertheless, quantum mechanically,ehergy window is large,
i.e., many levels are found therein. The local mean levetisga\(£) at this en-
ergy range is given approximately by ~ 4.3 h%. The smallest that we can
handle ish = 0.012 resulting in a matrix size of abodd00 x 4000. Unless stated
otherwise, all the numerical data presented below corresfmwa quantization with

h =0.012.

As it was previously mentioned in the introduction, the mimous of quantum
chaos studies has so far been on issues of spectral s&fistid5]. In this context
it turns out that the sulk-statistical features of the energy spectrum are "univérsal
and obey the predictions of RMT. In particular we expect that level spacing
distributionP(s) of the "unfolded” (with respect ta\) level spacings,, = (E, 11—
E,)/A will follow with high accuracy the so-calle@digner surmiseFor systems
with time reversal symmetry it takes the form [14,27]

2

T
Pspacing;{s) = 5 se 147 (16)

indicating that there is a linear repulsion between neasbgls. Non-universal (i.e.
system specific) features are reflected only in the large sraperties of the spec-
trum and constitute the fingerprints of the underlying dtadschaotic dynamics.

The de-symmetrized 2DW model shows time reversal symmestiy/therefore we
expect the distribution to follow Eqg.(16). The analysis @reed out only for the

levels contained in the chosen energy window arofine: 3. Instead of plotting

P(s) we show the integrated distributidits) = [; P(s")ds’, which is independent
of the bin size of the histogram. In Figure 3 we present oureical data for/ (s)

10
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Fig. 3. The integrated level spacing distributitf) of the unperturbed Hamiltoniak,
(h = 0.012). The dashed line is the theoretical prediction for the GDEet Difference
between the theoretical predictidp, (S) and the actual distributioh(.S).

while the inset shows the deviations from the theoreticadijmtion (16). The agree-
ment with the theory is fairly good and the level repulsionlesarly observed. The
observed deviations have to be related on the one hand tmyhguasi-integrable
islands that exist ab = 3 as well as to rather limited level statistics.

4.2 The band-profile

In this subsection we explain that the band-structur8as$ related to the fluctua-
tions of the classical motion. This is the major step tow&NSI modeling.

Consider a given ergodic trajectoryQ(t), P(t)) on the energy surface
H(Q(0), P(0); z0) = E. An example is shown in Fig. 2b. We can associate with it
a stochastic-like variable

OH
which for our linearized Hamiltonian is simply the pertutiba term
F = —-W = —Q3Q3. It can be interpreted as the generalized force that acts on

the boundary of the 2D well. It may have a non-zero averagaenServative” part)
but below we are interested only in its fluctuations.

In order to characterize the fluctuations®ft) we introduce the autocorrelation
functionC'(7)

C(r) = (FO)Ft+71)) — (F?). (18)
The angular brackets denote an averaging which is eitherorsanonical over
some initial conditiong@(0), P(0)) or temporal (due to the assumed ergodicity).
The power spectrum for the 2D well model is shown in Fig.4 @&l line).

11
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Fig. 4. The classical power-spectrum of the model (14). Tlhesical cut-off frequency
wel ~ 7 is indicated by perpendicular dashed lines.

For generic chaotic systems (described by smooth Hamalhm®)j the fluctuations
are characterized by a short correlation tirgeafter which the correlations are neg-
ligible. In generic circumstancesg, is essentially the ergodic time. For our model
systemrg ~ 1.

The power spectrum of the fluctuati06$w) is defined by a Fourier transform:

Clw) = /OO C(7) exp(iwT)dT . (19)
This power spectrum is characterized by a cut-off frequengyvhich is inverse
proportional to the classical correlation time

27
We = — . (20)
Tel
Indeed in the case of our model system wewggt- 7 which is in agreement with
Fig.4.

The implication of having a short but non-vanishing clagkoorrelation time, is
having large but finite bandwidth in the perturbation ma#xThis follows from
the identity

C(w) = 3 | Bunl?2m8 <w _En—Bn ;LEM> , 21)
which implies
A E _E
o _n m
(| Bunl?) = 5 —-C <w o ) . 22)

Hence the matrix elements of the perturbation maitiare extremely small outside
of a band of widthh = hwg/A.

In the inset of Figure 5 we show a snapshot of the perturbatiattix | B,,,,|?. It
clearly shows a band-structure. At the same figure we algbtegishe band-profiles

12
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Fig. 5. The band-profilg27h/A) - | B, |? versusw = (E,, — E,,)/h is compared with
the classical power spectru@(w). Inset: a snapshot of the perturbation mafix

for different values of.. A good agreement with the classical power spectﬁ(m)
is evident.

It is important to realize that upon quantization we end ughwio distinct energy
scales. One is obviously the mean level spacing (see presidusection)

A o B¢, (23)

where the dimensionality i¢ = 2 in case of our model system. The other energy

scale is the bandwidth

Ay = A (24)

Tel

This energy scale is also known in the corresponding litkeesds the "non-universal”
energy scale [28], or (in case of diffusive motion) as the dlass energy [29] .
One has to notice that deep in the semiclassical fimit 0 these two energy scales
differ enormously from one another (providéd> 2). We shall see in the follow-
ing sections that this scale separation has dramatic coasegs in the theory of

driven quantum systems.

4.3 Distribution of couplings

We investigate further the statistical properties of thérim&lementsB,,,,, of the
perturbation matrix, by studying their distribution. RM$saimes that upon appro-
priate unfolding they must be distributed in a Gaussian reanfhe 'unfolding’
aims to remove system specific properties and reveal therlyimdguniversality.

It is done by normalizing the matrix elements with the lodanslard deviation

o = 1/{|Bnm|?) related through Eq. (22) with the classical power spectfi(m).

1 The dimensionless parametescales likeb o %~ (4~ and in the frame of mesoscopic
systems is recognized as the dimensionless Thouless danda{29].

13
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Fig. 6. Distribution of matrix elementg around E = 3 rescaled with the averaged
band-profile . The solid black line corresponds to a Gausdistnibution with unit vari-
ance while the dashed-dotted line corresponds to a fit fronfZby with a fitting parameter
N = 7.8. The quantization corresponds/to= 0.03.

The existing literature is not conclusive about the disttitn of the normalized
matrix elements; = B,,,/o. Specifically, Berry [30] and more recently Prosen
[31,32], claimed thatP(q) should be Gaussian. On the other hand, Austin and
Wilkinson [33] have found that the Gaussian is approachdy ionthe limit of
high quantum numbers while for small numbers, i.e., low giesr a different dis-
tribution applies, namely

NG 2\ (V=3)/2
Pcouplings(Q) = ﬁ% <1 — qﬁ) . (25)

This is the distribution of the elements of andimensional vector, distributed
randomly over the surface of ai-dimensional sphere of radiudN. For N — oo
this distribution approaches a Gaussian.

The distributionP(q) for our model is reported in Figure 6. The solid line corre-
sponds to a Gaussian of unit variance while the dashededitte is obtained by
fitting Eq. (25) to the numerical data usingas a fitting parameter. We observe that
the Gaussian resembles better our numerical data althoaghtidns, especially
for matrix elements close to zero, can be clearly seen. \libut: these deviations
to the existence of the tiny stability islands in the phaseepTrajectories started
in those islands cannot reach the chaotic sea and vice @usatum mechanically
the consequence of this would be vanishing matrix elemBnts which represent
the classically forbidden transitions.

14



4.4 RMT modeling

It was the idea of Wigner [12,13] more than forty years agattmly a simplified
model, where the Hamiltonian is given by Eg. (8), and whBres a BandedRan-
domMatrix (BRM) [34,35,36]. The diagonal matrii has elements which are the
ordered energie§E,, }, with mean level spacing. The perturbation matriB has
arectangularband-profile of band-size Within the band) < |n —m| < b the
elements are independent random variables given by a Gaudisitribution with
zero mean and a variane@ = (| B,,,|%). Outside the band they vanish. We refer
to this model as thg&vigner BRMmodel (WBRM).

Given the band-profile, we can use Eq.(22) in reverse doedi calculate the
correlation functiorC'(7). For the WBRM model we get

C(1) = 20*bsinc (7/74) , (26)

wherery = h/A,. Thus, there are three parameteks b, o) that define the WBRM
model.

The WBRM model can be regarded asimplifiedlocal description of a true Hamil-
tonian matrix. This approach is attractive both analytycahd numerically. Ana-
lytical calculations are greatly simplified by the assumptihat the off-diagonal
terms can be treated as independent random numbers. Ala@frmmerical point
of view it is quite a tough task to calculate the true matremeénts of théB matrix.
It requires a preliminary step where the chadticis diagonalized. Due to memory
limitations one ends up with quite small matrices. For théedPeEdmonds model
we were able to handle matrices of final si¥e= 4000 maximum. This should
be contrasted with the WBRM simulations, where using seba@ding algorithm
[37,17] we were able to handle system sizes upyte- 100000 along with signifi-
cantly reduced CPU time.

We would like to stress again that the underlying assummfoWBRM, namely
that the off-diagonal elements anacorrelatedrcandom numbers, has to be treated
with extreme care.

The WBRM model involves an additional simplification. Nag@ne assumes that
B has arectangularband-profile. A simple inspection of the band-profile of our
model Eqg. (14) shows that this is not the case (see Fig. 5) IMieaate this simpli-
fication by introducing a RMT model that is even closer to theainical one. To
this end, we randomize the signs of the off-diagonal elemehfthe perturbation
matrix B keeping its band-structure intact. This procedure leadsamdom model
that exhibits only universal properties while it lack anynselassical limit. We will
refer to it as theeffectivebanded random matrix model (EBRM).
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5 TheParametric Evolution of the Eigenfunctions

As we change the parameterin the Hamiltonian Eq. (8), the instantaneous eigen-
states{|n(z))} evolve and undergo structural changes. In order to undetste
actual dynamics, it is important to understand these stracthanges. This leads
to the introduction of

P(nlm) = |{n(z)|m(z0o))|* , (27)

which is easier to analyze thad(n|ny). Up to some trivial scaling and shifting
P(n|m) is essentially the local density of states (LDoS):

P(E[m) = ZI ) [m(z0))|*0(E — E,) . (28)

The averaged distributioR(r) is defined in complete analogy with the definition of
P,(r). Namely, we use the notation= n — m, and average over several states
with roughly the same energy,, ~ E.

GenericallyP(r) undergoes the following structural changes as a functigna-
ing dx. We first summarize the generic picture, which involves di@metric scales
€. andep. and the approximationSopr, Py, andPse. Then we discuss how to de-
termine these scales, and what these approximations are.

e The first order perturbative theory (FOPT) regime is defireettha rangéx < <.
where we can use FOPT to get an approximation that we denét€ &s Propr-

e The (extended) perturbative regime is defined as the rangedz < ey Where
we can use perturbation theory (to an infinite order) to geeammgful approx-
imation that we denote aB() ~ Fy:. Obviously P, reduces talPropr in the
FOPT regime.

e The non-perturbative regime is defined as the range ¢, where perturbation
theory becomes non-applicable. In this regime we have tceitker RMT or
semiclassics in order to get an approximation that we desml¥ ) ~ Pk.

Irrespective of these structural changes, it can be prdwadthe variance oP(r)
is strictly linear and given by the expression

SE(6z) = /C(0) 6z = SEy . (29)

The only assumption that underlines this statemet i . It reflects the linear
departure of the energy surfaces.
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5.1 Approximations foP(n|m)

The simplest regime is obviously the FOPT regime wherePfot|m), we can use
the standard textbook approximati®ropr(n|m) ~ 1 for n = m, while

6z% | Bym|?

Propr(n|m) = (Bu—F,)

(30)

for n # m. If outside of the band we hawB,,,, = 0, as in the WBRM model, then
Propr(r) = 0 for || > b. To find the higher order tails (outside of the band) we
have to go to higher orders in perturbation theory. Obviptisis approximation
makes sense only as long@as< ¢. where

ce=AJo ~ BIHD/2 (31)
andd is the degrees of freedom of our systein 2 for the 2D well model).

If = > . but not too large then we still have tail regions which arecdesd by
FOPT. This is a non-trivial observation which can be judtifig using perturbation
theory to infinite order. Then we can argue that a reasongipl®gimation is

022 | Bum?
(E,—E;,)? + 17 ’

Bor(n|m) = (32)

wherel is evaluated by imposing normalization@f,.(n|m). In the case of WBRM
modell’ = (¢dz/A)? x A. The appearance ®fin the above expression cannot be
obtained from anyinite-orderperturbation theory: Formally it requires summation
to infinite order. Outside of the bandwidth the tails decatdathan exponentially.
Note thatP,(n|m) is a Lorentzian in the case of a flat bandwidth (WBRM model),
while in the general case it can be described as a "corediitture.

Obviously the above approximation makes sense only as ®hga) < A,. This
expression assumes that the bandwidthis sharply defined, as in the WBRM
model. By elimination this leads to the determinatioregf, which in case of the
WBRM model is simply

Tcl C(O)

In more general cases the bandwidth is not sharply definezh We have to define
the perturbative regime using a practical numerical pracedThe natural defini-
tion that we adopt is as follows. We calculate the spreadifi¢px), which is a
linear function. Then we calculatéZ,:(6x), using Eq.(32)). This quantity always
saturates for largéx because of having finite bandwidth. We compare it to the
exactd E(dx), and definep, for instance as th&0% departure point.
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Fig. 7. The parametric evolution of eigenstates of a WBRM etedth o = 1 andb = 50:
(a) Standard perturbative regime corresponding te 0.01, (b) Extended perturbative
regime withe = 2 (c) Non-perturbative (ergodic) regime with= 12 and (d) localized
regime withe = 1. In (a-c) the mean level spaciny = 1 while in (d) A = 1073. The
bandwidthA, = A x bis indicated in all cases. In (b) the blue dashed line comedp to
a Lorentzian withl' ~ 16 < A; while in (a) we havd” ~ 10~* < A which therefore
reduces to the standard FOPT result.
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Fig. 8. The quantal profilé>(r) for the 2DW model is compared with,(r) and with
the corresponding’rmt () of the EBRM model. The perturbation strength is in (a)
o0x = 0.00035, (b) 6z = 0.04945 and (c)éx = 0.29. We are using here thie = 0.012
output. In the lower plot the classical LDoS profify(r) is represented by a green heavy
dashed line.

What happens if perturbation theory completely fails? le WBRM model the
LDoS becomes semicircle:

1 E, — E,\?
Peo(nfm) = m¢ () (34)
while in systems that have a semiclassical limit we expegeto
dQdP
Plnlm) = [ (rision(@ P)on(@.P) (35)

where p,,,(Q, P) and p,(Q, P) are the Wigner functions that correspond to the
eigenstategn(x,)) and|n(z)) respectively.

19



5.2 TheP(n|m) in practice

There are some findings that go beyond the above generiagiatd, for com-
pleteness, we mention them. The first one is the "localipategime” which is
found in the case of the WBRM model for> ¢,.. where

Eloc = b/ %e, . (36)

In this regime it is important to distinguish between the faveraged(n|m) and
the averaged(r) because the eigenfunctions are non-ergodic but rathdidzeda
This localization is not reflected in the LDoS which is stilamicircle. A typi-
cal eigenstate is exponentially localized within an eneagygedE; = {A much
smaller thard E,. The localization length i§ ~ b%. In actual physical applications
it is not clear whether there is such a type of localizatiome &bove scenario for
the WBRM model is summarized in Fig. 7 where we plitz|m) in the various
regimes. The localized regime is not an issue in the preserk and therefore we
will no further be concerned with it.

The other deviation from the generic scenario, is the appearof a non-universal
"twilight regime” which can be found for some quantized gyss [38]. In this
regime a co-existence of a perturbative and a semiclassticaiture can be ob-
served. For the Pullen-Edmonds model (14) there is no sstimdi regime.

For the Hamiltonian model described by Eq. (14) the bordet&éen the regimes
can be estimated [19]. Namely ~ 3.8%%2 andepy ~ 5.3A. In Fig. 8 we report
the parametric evolution of the eigenstates for the Hamigio model of Egs. (14)
and we compare the outcomes with the results of the EBRM &8¢l Despite
the overall quantitative agreement, some differences eatetected:

¢ In the FOPT regime (see Fig. 8a), the RMT strategy fails inféneails regime
A x |r| > A, where system specific interference phenomena become iamport

¢ In the extended perturbative regime (see Fig. 8b) the livaws of the averaged
wavefunctionP(n|m) is different from Lorentzian. Still the general features of
P, (core-tail structure) can be detected. In a sense, Wigher&ntzian (32) is a
special case of core-tail structure. Finally, as in thedsiath perturbative regime
one observes that the far-tails are dominated by eitherwd#ste interference
(left tail), or by constructive interference (right tail).

e Deep in the non-perturbative regime (> ¢, ) the overlapsP(n|m) are well
approximated by the semiclassical expression. The exapesis determined by
simple classical considerations [19,39]. This is in costtta the WBRM model
which does not have a classical limit.
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6 Linear Response Theory

The definition of regimes for driven systems is more compéidahan the corre-
sponding definition in case of LDoS theory. It is clear thatgbort times we al-
ways can use time-dependent FOPT. The question is, of caunsé¢ happens next.
There we have to distinguish between two types of scendbdins.type of scenario
is wavepacket dynamidsr which the dynamics is a transient from a preparation
state to some new ergodic state. The second type of sceageosistent driving
either linear driving £ = ¢) or periodic driving {(¢) = £sin(Qt)). In the latter
case the strength of the perturbation depends on the rateealriving, not just
on the amplitude. The relevant questiormibether the long time dynamics can
be deduced from the short time analydie say that the dynamics is of perturba-
tive nature means that the short time dynamics can be deduarad=OPT, while
the long time dynamics can be deduced on the basis of a Mank@stochastic)
assumption. The best known example is the derivation of xperential Wigner
law for the decay of metastable state. The Fermi-GolderReGR) is used to
determine the initial rate for the escaping process, ana tie long-time result is
extrapolated by assuming that the decay proceeds in a stoztike manner. Simi-
lar reasoning is used in deriving the Pauli master equattluniwis used to describe
the stochastic-like transitions between the energy lemedsomic systems.

A related question to the issue of regimes is the validityioElar Response Theory
(LRT). In order to avoid ambiguities we adopt here a prattidinition. When-
ever the result of the calculation depends only on the twatpmrrelation func-
tion C'(7), or equivalently only on the band-profile of the perturbat{e/hich is
described byC'(w)), then we refer to it as "LRT". This implies that higher order
correlations are not expressed. There is a (wrong) tendenaysociate LRT with
FOPT. In fact the validity of LRT is not simply related to FORYe shall clarify
this issue in the next section.

For bothd E(t) andP(t) we have "LRT formulas” which we discuss in the next
sections. Writing the driving pulse @s(t) = ¢ f(t) for the spreading we get:

SEX(1) = &2 x / * A Fw) (37)

—00 27T

while for the survival probability we have

P(t) = exp (—52 X /_O:o g—:é(w)gggjg) : (38)

Two spectral functions are involved: One is the power speu:t’i‘(w) of the fluctu-
ations defined in Eq. (19), and the otléfw) is the spectral content of the driving
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pulse which is defined as

2

Fw) = | [ arf(t)e (39)

Here we summarize the main observations regarding theenatwavepacket dy-
namics in the various regimes:

e FOPT regimeln this regimeP(t) ~ 1 for all time, indicating that all probability
is all the time concentrated on the initial level. An altdiveway to identify this
regime is fromy Eqore(t) Which is trivially equal toA.

e Extended perturbative regim&he appearance of a core-tail structure which is
characterized by separation of scales« §Fcore(t) < JE(t) < A,. The core
is of non-perturbative nature, but the variamde®(¢) is still dominated by the
tails. The latter are described by perturbation theory.

e Non-perturbative regimerhe existence of this regime is associated with having
the finite energy scald,. It is characterized b\, < §FEcore(t) ~ 0E(t). As
implied by the terminology, perturbation theory (to anyemds not a valid tool
for the analysis of the energy spreading. Note that in thagme, the spreading
profile is characterized by a single energy scalgé &  Fqore)-

6.1 The energy spreadind®(t)

Of special importance for understanding quantum dissipas the theory for the
variance E2(t) of the energy spreading. Havidd () oc e meandinear response

If E(t)/e depends or, we call it “non-linear response”. In this paragraph we
explain that linear response theory (LRT) is based on thel*iddmula” Eq.(37)
for the spreading. This formula has a simple classical dgan (see Subsection
6.2 below).

From now on it goes without saying that we assumecthssicalconditions for the

validity of Eq.(37) are satisfied (nb involved in such conditions). The question

is what happens to the validity of LRT once we “quantize” theesysin previous

publications[8,10,11,19], we were able to argue the falhow

(A) The LRT formula can be trusted in the perturbative regimi¢h the exclusion
of the adiabatic regime.

(B) Inthe sudden limit the LRT formula can also be trustechmnon-perturbative
regime.

(C) In general the LRT formula cannot be trusted in the nomypleative regime.

(D) The LRT formula can be trusted deep in the non-pertwbatgime, provided
the system has a classical limit.

For a system that does not have a classical limit (Wigner medgewere able to
demonstrate [8,10,11] that LRT fails in the non-pertunzatiegime. Namely, for
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the WBRM model the responsé’(t) /e becomes dependent for large meaning
that the response is non-linear. Hence the statement in(i@nabove has been
established. We had argued that the observed non-lingaonss is the result of a
qguantal non-perturbative effect. Do we have a similar typeam-linear response

in the case ofjuantized chaotisystems? The statement in item (D) above seems to
suggest that the observation of such non-linearity is ketyfi Still, it was argued in
[11] that this does not exclude the possibility of obsenarigveak” non-linearity.

The immediate (naive) tendency is to regard LRT as the outocminguantum me-
chanical first order perturbation theory (FOPT). In fact tegimes of validity of
FOPT and of LRT do not coincide. On the one hand we have thdaititaregime
where FOPT is valid as a leading order description, but maefsponse calculation.
On the other hand, the validity of Eq.(37) goes well beyondPFQOThis leads to
the (correct) identification [7,8,11] of what we call the fpgbative regime”. The
border of this regime is determined by the energy séglevhile A is not involved.
Outside of the perturbative regime we cannot trust the LRmtda. However, as
we further explain below, the fact that Eq.(37) is not vatidhe non-perturbative
regime, does not imply that fails there.

We stress again that one should distinguish between “ndm#pative response”
and “non-linear response”. These are not synonyms. As whaiexjn the next
paragraph, the adiabatic regime is “perturbative” but “fiaear”, while the semi-
classical limit is “non-perturbative” but “linear”.

In the adiabatic regime FOPT implies zero probability to make a transitions to
other levels. Therefore, to the extent that we can trust thabatic approxima-
tion, all probability remains concentrated on the initealél. Thus, in the adiabatic
regime, Eq.(37) is not a valid formula: It is essential to bggher orders of per-
turbation theory, and possibly non-perturbative cormedi(Landau-Zener [1,2]),
in order to calculate the response. Still, FOPT provides ammgful leading order
description of the dynamics (i.e. having no transitiongy ¢herefore we do not
regard the adiabatic non-linear regime as “non-pertweati

In the non-perturbative regiméhe evolution ofP,(n|m) cannot be extracted from
perturbation theory: notin leading order, neither in argeor Still it does not neces-
sarily imply a non-linear response. On the contrary: Theiskssical limit is con-
tained in the deep non-perturbative regime [8,11]. Thére LRT formula Eq.(37)

is in fact valid. But its validity isnot a consequence of perturbation theory, but
rather the consequenceauiantal-classical corresponden@@CC).

In the next subsection we will present a classical derivatbthe general LRT
expression (37). In Subsection 6.3 we derive it using firdeoperturbation theory
(FOPT). In Subsection 6.5 we derive the corresponding FOffession for the
survival probability.
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6.2 Classical LRT derivation fofE ()

The classical evolution of/(t) = H(Q(t), P(t)) can be derived from Hamilton
equations. Namely,
dE(t)
dt

= [H, Hpo + 0 = (1) (1), (40)

where|-]pg indicates the Poisson Brackets. Integration of Eq. (4@)dea

E(t) — E(0) = —¢ /0 CFEf)dt (41)

Taking a micro-canonical average over initial conditiores @btain the following
expression for the variance

SE (1) =< | LW — ) fE f(ardr (42)

0

which can be re-written in the form of (37).

One extreme special case of Eq.(37) is the sudden limit fachwvfi(¢) is a step
function. Such evolution is equivalent to the LDoS studieSextion 5. In this case
F;(w) = 1, and accordingly

0Eq = € x4,/C(0) [“sudden” case} (43)

Another extreme special case is the response for persfstthr linear or periodic)
driving of a system with an extremely short correlation tirfresuch case;(w)
becomes a narrow function with a weight that grows lineamlyime. For linear
driving (f(t) = t) we getF;(w) =t x 2md(w). This implies diffusive behavior:

0E(l) = \/2Dpgt [“Kubo” case], (44)

where D « ¢ is the diffusion coefficient. The expression fbl; as an inte-
gral over the correlation function is known in the corresgiag literature either as
Kubo formula, or as Einstein relation, and is the corner estohthe Fluctuation-
Dissipation relation.

6.3 Quantum LRT derivation fatE (t)

The quantum mechanical derivation looks like an exercisieshorder perturbation
theory. In fact a proper derivation that extends and clarifiee regime where the
result is applicable requires infinite order. If we want t@je complete analogy
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with the classical derivation we should work in the adiabassis [7]. (For a brief
derivation see Appendix D of [9]).

In the following presentation we work in a "fixed basis” andamef(t) = f(0) =

0. We use the standard textbook FOPT expression for the ti@mgrobability
from an initial staten to any other state. This is followed by integration by parts.
Namely,

2
g2 )
Pt(n|m):ﬁ|3nm\

t
/ dt/f(t/>ei(EnfEm)t’/h
0

_ i 2 F (wWnm)
h2 nm (wnm)Q 9

(45)

wherew,,,, = (E, — E,,)/h. Now we calculate the variance and use Eg. (22) so as
to get

SE*(t) = Py(n|m)(E, — Ey,)?

_ 2 / © e Aw) (46)

—00 27‘{'

6.4 Restricted QCC

The FOPT result fod £(t) is exactlythe same as the classical expression Eq. (37).
It is important to realize that there is iedependence in the above formula. This
correspondence does not hold for the highemoments of the energy distribution.

If we use the above FOPT procedure we get that the latter aséafe.

We call the quantum-classical correspondence for the segmment "restricted
QCC". Itis a very robust correspondence [11]. This shoulddrgrasted with "de-
tailed QCC” that applies only in the semiclassical regimeeretP,(n|m) can be
approximated by a classical result (and not by a perturbagsult).

6.5 Quantum LRT derivation f@?(¢)

With the validity of FOPT assumed we can also calculate the-tilecay of the
survival probabilityP(t). From Eq. (45) we get:

pt)= > P(njm)=¢> /.OO dwé’ Fiw) :

n(#no) oo 21

(47)
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Assuming tha(t) = 1 —p(t) can be extrapolated in a "stochastic” fashion we get
Eqg. (38). Another way to write the final formula is as follows:

Plt) = exp [_% | t / tC(t’—t”)5:c(t’)5x(t")dt’dt”] | (48)

For constant perturbation (wavepacket dynamics) and daguong times we ob-
tain the Wigner decay,

P(t) = exp [_ (%)2 (w=0) x t] , (49)

which can be regarded as a special case of Fermi-Golden-Rule

6.6 Note orfP(t) for a time reversal scenario

The "LRT formula” for P(¢) in the case of "driving reversal scenario” is

Por(t) = exp l— <%>2 /O ' /O ' CH'—=t") f"f"dt'de" | | (50)

where we assumed the simplest scenario vfith) = 1 for 0 < ¢ < (7'/2) and
f(t) = —1for (T/2) <t < T.Itis interesting to make a comparison with the anal-
ogous result in case of "time reversal scenario”.

The well known Feynman-Vernon influence functional has tieiing approxi-
mation:

Flza,zp]= <‘1’|U[$B]_1U_[%]|‘1’> (51)
— exp {—2—;2 /0 /0 O —t") () —za(t"))dt dt"

This expression is in fact exact in the case of harmonic lzettth assuming thermal
averaging over the initial state. Otherwise it should berdgd as an extrapolated
version of leading order perturbation theory (as obtaindtié interaction picture).
What people call nowadays "fidelity” or “Loschmidt echo” isfact a special case
of the above expression which is defined by setting 7'/2 andz 4 = /2 while
xp = —/2. Thus

Prr(t) =|Flza, z5]|? (52)
eN? (T2 (T2 PN gl gl
=exp [— (ﬁ) /0 /0 C(t'—t")dt'dt
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Assuming a very short correlation time one obtains

Pra(T) = exp [—% (£ =0y x T] , (53)

which again can be regarded as a special variation of theiFf&ahen-Rule (but
note the pre-factot /2).

6.7 The survival probability and the LDoS
For constant perturbation it is useful to remember @) LDoS as follows:

P(t)

(n(o)le™ ™ (o)) |

=D e Fr R (m(w) n (o))

.00 2
= / P(E|m)e‘iEt/th‘ : (54)
This implies that a Wigner decay is associated with a Lorantapproximation
for the LDoS. In the non-perturbative regime the LDoS is natoaentzian, and
therefore one should not expect an exponential. In the sassical regime the
LDoS shows system specific features and therefore the ddc®&(tp becomes
non-universal.

7 Wavepacket Dynamicsfor Constant Perturbation

The first evolution scheme that we are investigating hefeeist-calledvavepacket
dynamics The classical picture is quite clear [17,18]: The initiaparation is
assumed to be a micro-canonical distribution that is suppdry the energy surface
Ho(Q, P) = E(0). Taking H to be a generator for the classical dynamics, the
phase-space distribution spreads away from the initidasarfort > 0. ‘Points’

of the evolving distribution move upon the energy surfade& @, P). Thus, the
energy E(t) = Ho(Q(t), P(t)) of the evolving distributions spreads with time.
Using the LRT formula Eq.(39) for rectangular pulgg’) = 1 for 0 < ¢’ < t we

get

Fy(w) = ‘1 — e’mtf = (wt)?sinc (%t) , (55)

and hence

Eq(t) = £ x /2(C(0) — C(t)) . (56)
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Fig. 9. Simulations of wavepacket dynamics for the 2DW mdtigt panel) and for the
corresponding EBRM model (right panel). The energy sprepdlE(¢) (normalized with
respect to the perturbation strengtis plotted as a function of time for various perturba-
tion strengths corresponding to different line-types (the same in botlefgnThe classical
spreading E(t) (thick dashed line) is plotted in both panels as a reference.

For short timeg < 7 we can expand the correlation function@§) ~ C(0) —
$C"(0)¢%, leading to a ballistic evolution. Then, for> 7, due to ergodicity, a
‘steady-state distribution’ appears, where the evolvpmgrits’ occupy an ‘energy
shell’ in phase-space. The thickness of this energy shaellle§E,. Thus, we have
a crossover from ballistic energy spreading to saturation:

5E({;) N \/5(5Ec|/7'c|)t for t < Tl (57)
V26 Ey fort >y

Figure 9 shows the classical energy spreading (heavy ddstedor the 2DW
model. In agreement with Eq. (57) we see thaf)(¢) is first ballistic and then sat-
urates. The classical dynamics is fully characterized byo classical parameters
7o andd Ey.

7.1 The quantum dynamics

Let us now look at the quantized 2DW model. The quantum mechbdata are

reported in Fig. 9 (left panel) where different curves cepe@nd to various pertur-
bation strengths. As in the classical case (heavy dashed-line) we observataal i

ballistic-like spreading [18] followed by saturation. §heould lead to the wrong
impression that the classical and the quantum spreadingfaree same nature.
However, this is definitely not the case.

In order to detect the different nature of quantum balliske spreading, one has
to inquire measures that are sensitive to the structureeptbfile, such as the
core-widthd Eqore(t). In Fig. 10 we present our numerical data for the 2DW model.
If the spreading were of a classical type, it would imply ttfs spreading pro-

28



T T T T T
;TR
—~ L P i x\lﬁ?fw
w 0 ! 3
= ~Z / -
= | 21 R
o -2 ///’l'/i | i
S Iy 1
51 - ;! |
LIJ _// 1! ! 7
o < il i
A e boferneeen. LR PPPPROY: ]
=4 B P i
| a4
=________‘I_"_____I —
H
_6; ________ +oa ]
"""" -~ | 1 | 1 |

Fig. 10. Simulations of wavepacket dynamics for the 2DW nhotllee evolution of the
(normalized) core width E. (t) is plotted as a function of time. The classical expectation
is represented by a thick dashed line for the sake of congrarsse becomes larger it is
approached more and more. We use the same set of paramdateFS@9.

file is characterized by a single energy scale. In such a casgould expect that
dEcore(t) ~ 0E(t). Indeed this is the case fer> e, with the exclusion of very
short times: The larger is the shorter the quantal transient becomes. In the per-
turbative regimes, in contrast to the semiclassical regimeehave a separation of
energy scale§Eqqe(t) < dE(t). In the perturbative regimes-(t) is determined

by the tails, and it is not sensitive to the size of the ‘coegjion.

Using the LRT formula forP(t) we get, for short timest( < 1) during the
ballistic-like stage

et

P(t) = exp (—C(T:O) x (E)Q) , (58)

while for long times { > 7)) we have the FGR decay of Eq.(49). Can we trust
these expressions? Obviously FOPT can be trusted as loRgtas- 1. This can
be converted into an inequality< ¢,: where

5prt v=1,2
tprt = (?) Tel - (59)

The powerr = 1 applies to the non-perturbative regime where the breakdmwn
P(t) happens to be beforg. The powern = 2 applies to the perturbative regime
where the breakdown @%(t) happens after, att,: = /I, i.e. after the ballistic-
like stage.

The long term behavior gP(¢) in the non-perturbative regime is not the Wigner
decay. It can be obtained by Fourier transform of the LDo$hémon-perturbative
regime the LDoS is characterized by the single energy sdalex dx. Hence the
decay in this regime is characterized by a semiclassica sicale2rh /6 Ey.
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7.2 The EBRM dynamics

Next we investigate the applicability of the RMT approachiéscribe wavepacket
dynamics [17,18] and specifically the energy spreadif¢t). At first glance, we
might be tempted to speculate that RMT should be able, at ésafar as) £(t) is
concerned, to describe the actual quantum picture. Aftewalhave seen in Sub-
section 6.1 that the quantum mechanical LRT formula (46j)iferenergy spreading
involves as its only input the classical power spectr@(w). Thus we would ex-
pect that an effective RMT model with the same band-profilelldidead to the
samey E(t).

However, things are not so trivial. In Figure 9 we show the atoal results for

the EBRM model®. In the standard and in the extended perturbative regimes we
observe a good agreement with Eq.(46). This is not surgriagthe theoretical
prediction was derived via FOPT, where correlations betwef-diagonal ele-
ments are not important. In this sense the equivalence oRBW& model and

the EBRM model is trivial in these regimes. But as soon as werehe non-
perturbative regime, the spreadifg(¢) shows a qualitatively different behavior
from the one predicted by LRT: After an initial ballistic gading, we observe a
premature crossover to a diffusive behavior

SE(t) = /2Dyt . (60)

The origin of the diffusive behavior can be understood inftilwing way. Up

to time ¢, the spreading £(¢) is described accurately by the FOPT result (46).
At t ~ tp: the evolving distribution becomes as wide as the bandwatid, we
havedEegre ~ 0F ~ Ay rather thanFee < 0F < A,. We recall that in the
non-perturbative regime FOPT is subjected to a breakdoforéesaching satura-
tion. The following simple heuristic picture turns out to t@rect. Namely, once
the mechanism for ballistic-like spreading disappeargoahsstic-like behavior
takes its place. The stochastic energy spreading is simoilarrandom-walk pro-
cess where the step size is of the ordgr with transient time,:. Therefore we
have a diffusive behaviotE(t)? = 2 Dgt with

De = C-Aftor =C-Aco/h o« h (61)

where C' is some numerical pre-factor. This diffusion is not of clesknature,
since in theh — 0 limit we get D — 0. The diffusion can go on until the en-
ergy spreading profile ergodically covers the whole enelg)l &nd saturates to a
classical-like steady state distribution. The titag for which we get ergodization
is characterized by the conditiggt)'/? < §Eg, leading to

teg = D2 hea/A? « 1/h. (62)

2 The same qualitative results were found also for the prpeoW/BRM model, see [17].
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Fig. 11. A diagram that illustrates the various time scafesvavepacket dynamics, de-
pending on the strength of the perturbatiomhe diagram on the left refers to the WBRM
model, while that on the right is for a quantized system tlzat & classical limit. The two
cases differ in the non-perturbative regime (latyeln the case of a quantized model we
have a genuine ballistic behavior which reflects detailedCQ@hile in the RMT case we
have a diffusive stage. In the latter case the times ggglenarks the crossover from re-
versible to non-reversible diffusion. This time scale candetected in a driving reversal
scenario as explained in the next section. For further dison of this diagram see the
text, and in particular the concluding section of this paper

For completeness we note that for> ¢, there is no ergodization but rather
dynamical ("Anderson” type) localization. Hence, in thttda case{e is replaced

by the break-time,. The various regimes and time scales are illustrated by the
diagram presented in Fig. 11.

8 Driving Reversal Scenario

A thorough understanding of the one-period driving reMessanario [10] is both
important within itself, and for constituting a bridge tawla a theory dealing with
the response to periodic driving [8]. In the following sutisen we present our
results for the prototype WBRM model, while in Subsectio2 &e consider the
2DW model and compare it to the corresponding EBRM model. EB&M is
better for the purpose of making comparisons with the 2DWiemne WBRM
is better for the sake of quantitative analysis (the "phg/saf the EBRM and the
WBRM models is, of course, the same).

The quantities that monopolize our interest are the engymgasing £(¢) and the
survival probabilityP(t). In Figs. 12 and 13 we present representative plots. From a
large collection of such data that collectively span a veidewange of parameters,
we extract results fo§ E(7"), for P(T), and for the corresponding compensation
times. These are presented in Figs. 12,13,14,15,16 and 17.
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Fig. 12. Simulations of driving reversal for the 2DW modeff(lpanels) and for the corre-
sponding EBRM model (right panels). In the upper row thefradized) energy spreading
JE(t) is plotted as a function of time for representative valaesghile 7' = 0.48. In the
lower row the (normalized) energy spreading(7) at the end of the cycle is plotted versus
T for representative values of

8.1 Driving Reversal Scenario: RMT Case

8.1.1 LRT for the energy spreading

Assuming that the driving reversal happens at 7'/2, the spectral conterf, (w)
forT/2<t<Tis

Fw) = ‘1 _ggwT/2 eiwt‘Q (63)
Inserting Eqg. (63) into Eq. (37) we get
T T
SE(t) =€ X \/60(0) +2C(t) — 40(5) - 4C(t—§) ) (64)

For the WBRM model we can substitute in Eq. (64) the exactesgion Eq. (26)
for the correlation function, and get

t T t—T
SE(t) = 2e0 x J?)b + bsinc(t—) — 2bsinc(=—) — 2bsinc(—2) . (65)
cl Tcl Tcl
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Fig. 13. Simulations of driving reversal for the 2DW modéf{lpanels) and for the cor-
responding EBRM model (right panels). In the upper row ttertralized) transition prob-
ability p(t) = 1 — P(t) is plotted as a function of time for representative valee$he
period of the driving is" = 0.48. In the lower row the survival probabilitf(7") at the end
of the cycle is plotted versus for representative values ef In all cases we are using the
same symbols as in the upper left panel of Fig. 12.

We can also find the compensation tinfeby minimizing Eq. (64) with respect to
t. For the WBRM model we have

QCOS[%TE} ZSin[%} cos[i} 1 [t]

@t @ T T B (66)
which can be solved numerically to gét.
The spreading width at the end of the period is
SE(T) = ¢ x \/60(0) +20(T) — 80(%)) | (67)

It is important to realize that the dimensional parameterthis LRT analysis are
determined by the time scatg and by the energy scabd”,. This means that we
have a scaling relation (using units suchthat A = A = 1)

SE(T)
Vbe

= hir (0T) . (68)
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Deviation from this scaling relation implies a non-pertaifitee effect that goes be-
yond LRT.

The LRT scaling is verified nicely by our numerical data (s@pear panels of
Fig. 14 ). The values of perturbation strength for which ti&Lresults are appli-
cable correspond to < ,. In the same Figure we also plot the whole analytical
expression (67) for the spreadiag (7). Similarly in Fig. 14 (lower panels) we
present our results for the compensation tifheAll the data fall one on top of the
other once we rescale them. It is important to realize thatLRT scaling relation
implies that the compensation time is independentf the perturbation strength

It is determined only by thelassicalcorrelation timer,. In the same figure we also
present the resulting analytical result (heavy-dasheg] vhich had been obtained
via EQ.(66). An excellent agreement with our data is evident

8.1.2 Energy spreading in the non-perturbative regime

We turn now to discuss the dynamics in the non-perturbaggene, which is our
main interest. In the absence of driving reversal (see Stibse7.2) we obtain
diffusion 0 E(t) o v/t) for t > tpe, where

ton = h/(Vboe) . (69)

If (7'/2) < ton, this non-perturbative diffusion does not have a chanceteldp,

and therefore we can still trust Eq. (64). So the interestiage iS(7/2) > tpn,
which means large enoughln the following analysis we distinguish between two
stages in the non-perturbative diffusion process. Thedtesle {,x < t < tsqn) IS
reversible, while the second stageX{ tsq,) is irreversible. For much longer time
scales we have recurrences or localization, which are ras#ue of this paper. The
new time scalet{q,) did not appear in our "wavepacket dynamics” study, because
it can be detected only by time driving reversal experiment.

The determination of the time scalg, is as follows. The diffusion coefficient is
De = A%¥25¢ /h up to a numerical pre-factor. The diffusion lawsiB?(t) = Dgt.
The diffusion process is reversible as longkadoes not affect the relative phases
of the participating energy levels. This means that the timmdfor reversibility is
(0E(t) x t)/h < 1. The latter inequality can be written as< ¢sg, Where

h2 1/3 h3 1/3
tsan(ﬁ) :(W) - 70)

It is extremely important to realize that without reversthg driving, the presence
or the absence df in the Hamiltonian cannot be detected. It is only by driving
reversal that we can easily determine (as in the upper pahElg.12) whether the
diffusion process is reversible or irreversible.
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Fig. 14. Simulations of driving reversal for the WBRM modelthe upper row the (scaled)
energy spreadingE(7") at the end of the cycle is plotted against the (scaled) péridd
the lower panels the compensation time is plotted agaiedisitaled) period’. The panels
on the left are for values within the perturbative regime, while the panelstenléft are
for the non-perturbative regime. For the sake of comparigerplot the LRT expectation
for b = 1 as a heavy dashed line.

The dimensional parameters in this analysis are natutalyiine scalésq, and the
resolved energy scale/T. Therefore we expect to have instead of the LRT scaling,
a different "non-perturbative” scaling relation. Namely;(7)/(k/T') should be
related by a scaling function td@’/ts4, Equivalently (using units such that
o = A = h = 1) it can be written as

po/6c1/3

nprt

(71)

(5557

Obviously the non-perturbative scaling with respeat'té goes beyond any impli-
cations of perturbation theory. It is well verified by our nemcal data (see upper
right panel of Fig. 14). The values of perturbation strerfigtrwhich this scaling
applies correspond to> ¢,:. The existence of thiy, scaling can also be verified
in the lower right panel of Fig. 14, where we show thafl" is by a scaling function
related tab®/®</3T,
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8.1.3 Decay of°(¢) in the FOPT regime

We can substitute Eq. (63) for the spectral contyit) of the driving into the
LRT formula Eq. (47), and come out with the following expiliessor the survival
probability at the end of the periagd= T

P(T) ~ exp(—*T*b?) . (72)

This is a super-Gaussian decay, which is quite differenhftbe standard Gaus-
sian decay Eq. (58) or any other results on reversibility #gpear in literature
[20,21,22,23,24]. We have verified that this expressiomlsivn the FOPT regime.
See Figure 15a.

For the WBRM model, we get the following expression fgt) after substituting
the spectral contertt,(w) given from Eq. (63)

o(t) = % y /_o:jll dw6 — 4fcos(4F) + cos(wu;(g —1))] + 2cos(wt) 73

The corresponding compensation titfecan be found after minimizing the above
expression (corresponding to the maximizatiofPof) = 1 — p(t¢)) with respect to
timet. This results in the following equation

Si (wt) = 2 i <wd (t _ %)) , (74)

which has to be solved numerically in order to evaluiteAbove s{z) = [ S22,

xT

Our numerical data are reported in Fig. 16 together with hleertetical prediction
(74).

8.1.4 Decay ofP(t) in the Wigner regime

We now turn to discus®(¢) in the "Wigner regime”. By this we meaf). < ¢ <
eprt- This distinction does not appear in the/(¢) analysis. The time evolution of
JE(t) is dominated by the tails of the distribution and does naafthe "core”
region. Thereforé E(t) also agreed with LRT outside of the FOPT regime in the
whole (extended) perturbative regime. But this is not treecaithP(¢), which is
mainly influenced by the "core” dynamics. As a result in theigiéer regime” we
get different behavior compared with the FOPT regime.

We look at the survival probabilitf(7") at the end of the driving period. In the
Wigner regime, instead of the LRT-implied super-Gaussesag, we find a Wigner-
like decay:

P(T) ~e T, (75)



wherel’ ~ ¢2/A. In Figure 15b we present our numerical results for varicers p
turbation strengths in this regime. A nice overlap is obsdronce we rescale the
time axis ag? x T'. We would like to emphasize once more that both in the stahdar
and in the extended perturbative regimes the scaling lavlveg the perturbation
strengthe. This should be contrasted with the LRT scaling éf(¢).

What about the compensation tintf&? A reasonable assumption is that it will ex-
hibit a different scaling in the FOPT regime and in the Wigregime (as is the
case ofP(t)). Namely, in the FOPT regime we would expect "LRT scalingtiwi
7o, While in the Wigner regime we would expect "Wigner scalingth ¢, = h/T.
The latter is of non-perturbative nature and reflects theg’tdynamics. To our
surprise we find that this is not the case. Our numerical dasepted in Fig. 16
show beyond any doubt that the "LRT scaling” applies witlia whole (extended)
perturbative regime, as in the case ®fthus not invoking the perturbation strength
. We see that the FOPT expression (74)#forshown as a heavy-dashed line de-
scribes the numerical findings.

We conclude that the compensation titnés mainly related to the dynamics of the
tails, and hence can be deduced from the LRT analysis.

8.1.5 Decay ofP(t) in the non-perturbative regime

Let us now turn to the non-perturbative regime (see Fig..1&€)n the case of the
spreading kernel E£(T), the decay ofP(T") is no longer captured by perturbation
theory. Instead, we observe the same non-universal scaithgespect ta'/? x T
as in the case ofE(T).

P(T) = hpgy (b°/°°T) (76)

The reason is that in the non-perturbative regime the twoggrecaled” and A,
which were responsible for the difference betwé{¥’) and ¢ E(T'), lose their
meaning. As a consequence, the spreading process invaie®me time scale
and the behavior of botf®(7") anddE(T") becomes similar, leading to the same
scaling behavior.

8.2 Driving Reversal Scenario: 2DW Case

In the representative simulations of the 2DW model in Fig(d@per left panel)
we see that the spreadiad’(¢) for 7' = 0.48 and various perturbation strengths
¢ follows the LRT predictions very well. Fig. 12 (lower left pal) shows that the
agreement with the LRT is observed for any value of the pefio@his stands in
clear contrast to the EBRM model shown in Fig. 12 (right pahel
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Fig. 15. Simulations of driving reversal for the WBRM mod€&he survival probability
P(T) at the end of the pulse is plotted agaifisnh the (a) FOPT regime, (b) Wigner regime
and (c) non-perturbative regime. In (a) the thick dasheel iimlicates the super-Gaussian
decay (72) while (b-c) indicates a Wigner exponential dg@&®y. Various symbols corre-
spond to differentd,b) values such that the< e, in (a); e, < € < eyt IN (D) ande > eyt

in (c).
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The agreement with LRT in the non-perturbative regime, #isarcase of wavepacket
dynamics, reflects detailed QCC. We recall that "to get il non-perturbative
regime” and "to makeé: small” means the same. All our simulations are done in
a regime where LRT can be trusted at the classiealop-perturbative) limit. It is
only for RMT models that we observe a breakdown of LRT in the-perturbative
regime.

What aboutP(7')? This quantity has no classical analogue. Therefore QCE con
siderations are not applicable. Also LDoS consideraticarot help here. The
one-to-one correspondence between the LDoS and the siupvolzability applies

to the simple wavepacket dynamics scenario (constantrpattan).

It is practically impossible to make a quantitative anaysf P(7") in the case
of a real model because the band-profile is very structureldtlagre are severe
numerical limitations. Rather, what we can easily do is tmpare the 2DW with
the corresponding EBRM. Any difference between the two titaries an indication
for a non-perturbative effect. Representative simulateme presented in Figure 13.

In Figure 17 we show the dependence of the compensationtfinoa T for the
EBRM model. We see very nice scaling behavior that indicdtesour numerics
(as far asP(T') is concerned!) is limited to the perturbative regime. We kagize
again that the physics @1(t) is very different from the physics 6fF(¢). Therefore,
this finding by itself should not be regarded as very sunpgisf sharp crossover to
a non-perturbative behavior can be expected for a “shanpd{paofile only (which
is the WBRM and not the EBRM- see Fig.16).

Now we switch from the EBRM model to the 2DW model. Do we seedewation
from LRT scaling? The answer from Fig. 17 is clearly yes, dected by thee
dependence of the curve. The effect is small, but "it is thdtendicates that the
“body” of the probability distribution, in the case of the WDdynamics, does not
evolve the same way as in the EBRM case. Indeed we know thanb e part of
the distribution evolves faster (in a ballistic fashionheat than diffusively), and
therefore we observe lower valuestpf

Assuming that the decay @%(7T') is given by the exponential law, we extract the
corresponding decay rates It should be clear that the fitting is done merely in
order to extract a numeric measure for the behavior of thayddte would not
like to suggest that the decay looks strictly exponenti@le Tesults are reported
in Figure 18. We find that for < epq, the decay rate(s) o« 2, as expected by
Wigner's theory, while foe > ¢, we find thaty o <. This linear dependence on
¢ is essentially the same as in the corresponding wavepagkeimdcs scenario.
There it is clearly associated with the width, o ¢ of the LDoS.

As far as~ is concerned the behavior of 2DW and the EBRM models are the
same, and there is an indication of the crossover from theibative to the non-
perturbative regime, as implied (in a non-rigorous fashlmnthe LDoS theory. It
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Fig. 18. The estimated decay ratdéor the same simulations as in the previous figure.

ist? rather thany that exhibits sensitivity to the nature of the dynamics sTikibe-
cause! is sensitive to the evolution of the main part of the distfidi. We already
had made this observation on the basis of the analysis of tBRMWmodel (see
previous Subsection 8.1). Here we see another consequktiig abservation.

9 Conclusions

There is a hierarchy of challenges in the study of quantunanyos. The simple
way to explain this hierarchy is as follows: Let us assumettiere are two Hamil-
tonians,H; andH,, that differ slightly from each other. Let us then quantifie t
difference by a parameter Let us distinguish between a FOPT regime, Wigner
regime, and non-perturbative (semicircle or semiclagsiegime according to the
line shape of the LDoDo we have enough information to say something about
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the dynamics?

In the conventional wavepacket dynamics, one Hamiltorsarsed for preparation
and for measurement, while the other for propagation. Itédl wnown that the
Fourier transform of the LDoS gives the survival amplitudel &aenceP (). But
what about other features of the dynamics. What about theygsereading £ ()
for example? It turns out that the answer requires more tstkkpowing the LDoS.
In particular we observe that in the non-perturbative regphysical models differ
from the corresponding RMT model. In the former case we hallesbic spreading
while in the latter we have diffusion.

Is there any new ingredient in the study of driving reversalaimics?Maybe it
is just a variation on conventional wavepacket dynamits& answer turns out to
be interesting. There is a new ingredient in the analysigs Bhacomes very clear
in the RMT analysis where we find a new time scale that disisitgs between
a stage of "reversible diffusion” and a stage of "irrevelsidiffusion”. This time
scale {sgn) can only be probed in a driving reversal experiment. It iseaih in the
study of conventional wavepacket dynamics.

Things become more interesting, and even surprising, oreget into details.
Let us summarize our main findings. We start with the coneeti wavepacket
dynamics, and then turn to the driving reversal scenario.

The main observations regarding wavepacket dynamics anenatized by the di-
agrams in Fig. 11. We always have an initial ballistic-likage which is implied
by FOPT. During this stage the first order (in-band) tailshe €nergy distribu-
tion grow liket2. We call this behavior "ballistic-like” because the secomoiment
dE(t) grows liket?. It is not a genuine ballistic behavior because tttemoment
does not grow like” but rather all the moments of this FOPT distribution grove lik
t2.

The bandwidth, is resolved at the time,. In the perturbative regime this happens
before the breakdown of perturbation theory, while in tha-perturbative regime
the breakdowrt,: happens beforey. As a result, in the non-perturbative regime
we can get a non-trivial spreading behavior which turns oube “ballistic” or
"diffusive”, depending on whether the system has a clakbrmd or is being RMT
modeled.

Once we consider a driving reversal scenario, it turns obetomportant to mark
the timetsq, When the energy distribution is resolved. The questionldeafined

in the perturbative regime because there the energy distibis characterized
by two energy scales (the "bandwidth” and the much smalleréavidth”). But
the question is well-defined in the non-perturbative regwhere the distribution
is characterized by one energy scale. It is not difficult talire that for ballistic
behaviortsg, ~ 7¢ Which is also the classical ergodic time. But for diffusioa get
separation of time scalég: < tssn < 7¢. Thus we conclude that the diffusion has
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two stages: One is reversible while the other is irreveesibl

But the second moment does not fully characterize the dyesrin the other ex-
treme we have the survival probability. Whereids(t) is dominated by the tails,
P(t) is dominated by the "core” of the distribution. Thereforeécomes essential
to distinguish between the FOPT regime where the "core’ssgue level, and the
rest of the perturbative regime (the "Wigner” regime) whtre core is large (but
still smaller compared with the bandwidth).

The main findings regarding the driving reversal scenamosaimmarized by the

following table:

Regime perturbation strengthl P(T") behavior | t, behavior 0E(T) behavior

1st order perturbative| e < g LRT LRT LRT
(super-Gaussian (ballistic-like)

extended perturbative ec <& <eprt Wigner LRT(!) LRT

("Wigner”) (Exponential) (ballistic-like)

non-perturbative € > eprt non-perturbative | non-perturbative| non-perturbativée
(non-universal) | (non-universal) | (diffusive/ballistic)

=

*for the WBRM we have diffusion while for the 2DW model we haadlistic behaviour as implied by classical LR

As expected we find th&®(7") obeys FOPT behavior in the FOPT regime, which
turns out to be super-Gaussian decay. In the Wigner regiii@’) still obeys LRT
because the tails obey FOPT, while the non-perturbative barely affects the
second moment. But in contrast to thfatT") is sensitive to the core, and therefore
we find Wigner (exponential) decay rather than FOPT (supsrsSian) behavior.
However, when we look more carefully at the wh@¢t) curve, we find that this
is not the whole story. We can characteri2€) by the compensation timg. It
turns out that, is sensitive to the nature of the dynamics. Consequentligeys
"LRT scaling” rather than "Wigner scaling”. This has furtheonsequences that
are related to quantal-classical correspondence. Jusblkinlg atP(7") we cannot
tell whether we look at the "real simulation” or on its RMT nedishg. But looking
ont, we can find a difference. It turns out that in the physical nhedexhibitse
dependence, while in the case of RMT modelipg independent of and exhibits
"Wigner scaling”.

Finally we come to the non-perturbative regime. Here we hiave sense a simpler
situation. We have only one energy scale, and hence onlyimeestale, and there-
fore SE(T) andP(t) essentially obeys the same scaling. Indeed we have verified
that the non-perturbative scaling witky,, in WBRM simulations is valid for both

the second moment and the survival probability.
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Finally we would like to emphasize that the notion of "nontpebative” behavior
should not be confused with "non-linear” response. In cdsguantized models,
linear response of the energy spreaddtg(7’) is in fact a consequence of non-
perturbative behavior. This should be contrasted with tH#RM model, where
QCC does not apply, and indeed deviations from the linegrorese appear once
we enter the non-perturbative regime.

The study of irreversibility in a simple driving reversaks@ario is an important step
towards the understanding of irreversibility and dissgrain general. The analysis

of dissipation reduces to the study of energy spreadingroe tependent Hamil-
toniansH(Q, P; z(t)). In generic circumstances the rate of energy absorption is
determined by a diffusion-dissipation relation: The loimget process of dissipation

is determined by the short time diffusion process. Thedadteslated to the fluctu-
ationsC'(w) via what we call "LRT formula”. Thus the understanding of gttone
dynamics is the crucial step in establishing the validittheffluctuation-dissipation
relation.
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