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Diffusion and Energy absorption

Driven chaotic system with Hamiltonian H (X (7))

X some control parameter

X rate of the (noisy) driving

~» diffusion in energy space:

_ 72
- Gdiffusion X

~» energy absorption:

. o . 5
E - Gabsorption X

[Ott, Brown, Grebogi, Wilkinson, Jarzynski, D.C.]

There is a dissipation-diffusion relation.
In the canonical case £ = D/T.

Below we use for (G scaled units.
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Some results

Cold atoms in vibrating traps:
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Metallic rings driven by EMF":
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Digression: size distribution

Given a matrix that looks random {V/,,, },
Consider the size distribution of the elements.

Histogram of log(z) where x = |V, |?
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Algebraic average: ({x))q
Harmonic average: {({x))y

Geometric average: ((z)),




Digression: random walk

W,m = probability to hop from m to n per step.

Var(n) = D [wunt] (n—m)* = 2Dt

n

For n.n. hopping with rate w we get D = w.

The diffusion equation:

Opn, 0 0?

o~ "o T Vot
Fick’s law:
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If we have a sample of length N then

D

J = _NX[pN_pO]

J, = —D

D/N = inverse resistance of the chain

If the w are not the same:

s

n=1 wn,n—l

for n.n. hopping




Digression: Fermi Golden rule

The Hamiltonian in the standard representation:

H={E,} — X(t){Vim }

The transtformed Hamiltonian:

= (B} - X(1){

1Vim }
E, — Ep,

The FGR transition rate for w ~ 0 driving:

Vi 2 —
nm = 2 = X% 0 En—Em
w || X (B )

Note that the spectral content of the driving is
= [X]? or(w — (En—En))




Semi Linear Response Theory (SLRT)

H = {En} = X(O)1Vim}




Example: cold atoms in vibrating trap

The Hamiltonian in the n = (n,,n,) basis:

H = diag{En} + u{Upm} + f(E){Vam}

The matrix elements for the wall displacement:
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The Hamiltonian in the £, basis:
H = diag{E,} + f(E{Vim}

Muv3

2 ~ E
(Vanla ~ 527

4M?2
([ Vaum]*))g =

~ 713 2
LxLywc

exp {—M%E(Jﬁ + 02)} X U

The SLRT result:

= q exp [2\/—lnq X Gigr




SLRT vs LRT

X some control parameter

X rate of the (noisy) driving
The definition of the “conductance”:

D = G X2

LRT implies

D = /G(w)\Xdew = /G(w)g(w)dw

Within the framework of LRT
S(w) — AS(w) — D~ \AD
Sw)—Y Silw) = D~)Y D,

But there are circumstance such that e.g.

D - [ [ R@)[S(w)]

—1




Simplest illustration




Example: energy absorption by metallic grains

Linear response theory:

D = o0*ho /Oodw w? Ry (hw)S(w)
0

Semi-linear response theory:
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Level spacing statistics:

Py(s) ~ ags” exp(—css?) with 6 =1,2,4

The LRT result of Gorkov and Eliashberg:

0502(hg)ﬁ+1 T +2

Our SLRT result (large s statistics!):
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The conductance of small mesoscopic

disordered rings
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The model

Non interacting “spinless” electrons in a ring.

H(r, p; (1))

electro motive force (RMS)

rate of energy absorption

) DOS? ({0 )

(0| narmonie < ({[vmn]”)) < ({mnl*))atgevraic

M mode ring of length L with disorder W/

A
pATA




Numerical Results

ballistic; diffusive; localizaion
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-4 results for the tight binding model

10 results for untextured matrices
results for log-normal RMT ensamble

results for log-box RMT ensamble
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Linear response theory (LRT)
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Z) DOS <<‘Umn‘ >>algebraic
applies if
EMF driven transitions < relaxation
otherwise
connected sequences of transitions are essential.

leading to
Semi Linear Response Theory (SLRT)




Semi Linear Response Theory (SLRT)

M= {E} — L 800}

= inverse resistivity of the network

) DOS? ({11,



Bandprofile, sparsity and texture

G = 7 (%) DOS* (o)

({Jvyn|?)) = inverse resistivity of the network

Bounds:

({0 |*D D narmonie < {{[vmn]*)) < ([ Vmn|*)) atsetraic

Analytical estimates:

e Mixed average scheme

e Variable range hopping scheme




Conductance versus disorder
Mr)i

e Ballistic Diffusive Anderson—Mott
regime regime regime

disorder strength (1/1)

Naive expectation (assuming I' > A):

e € A

= mean free path oc W?

G
L = perimeter of the ring
14
14

~ = localization length ~ M/

Ballistic regime: L </
Diffusive regime: (<< L </

Anderson regime: /(. < L




Strategy of analysis
Given W...

Characterization of the eigenstates:

e participation ratio (PR)

Characterization of v,,,, and RMT modeling

e bandwidth

e sparsity (p)

e texture

Approximation schemes for G

e Mixed average

e Variable range hopping estimate




Ergodicity of the eigenstates

e Weak disorder (ballistic rings):

Wavefunctions are localized in mode space.

e Strong disorder (Anderson localization):

Wavefunctions are localized in real space.

o—o Mode space
+—o pOSition space

s=—a Mode-pos. space
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The PR of eigenstates of a ring
with a single scatterer. The
horizontal axis is the reflection

of the scatterer.

The PR of eigenstates of a ring
with disorder. The horizontal
axis is W.

The sparsity (p) of the pertur-
bation matrix is related to the

ergodicity of the eigenstates.




{|vnm|?} as a random matrix {X}

The fraction of e

BiModal distribution

"large” elements:

log(<X>)

LogBox distribution

:

Histograms of X:

Ballistic:
X ~ LogNormal

Localization:
X ~ LogBox




RMT based prediction for Gsprr/GrLrr

RMT implied dependence on p

Log-normal distribution:

results for the analytical VRH calculation

results for the resistor network calculation
results for the analytical geometric average calculation

results for the analytical harmonic average calculation
results for the mixed average calculation

results for the analytical VRH calculation

results for the resistor network calculation
results for the analytical geometric average calculation

results for the analytical harmonic average calculation
results for the mixed average calculation




The VRH estimate
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n-LrT (W) = 2mop (X)

éqm-SLRT (W) = 27mop X

W

where by definition: ( A

) Prob(X>7) ~ 1

For strong disorder we get:




LRT, SLRT and beyond

electro motive force (RMS)

rate of energy absorption

Semi linear response theory
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Conclusions

(*) Wigner (~ 1955):
The perturbation is represented by
a random matrix whose elements are

taken from a Gaussian distribution.

Not always...

. Ballistic ring = log-normal distribution.

. otrong localization = log-box distribution.
. Resistors network calculation to get G xr.

. Generalization of the VRH estimate

. SLRT is essential whenever the distribution
of matrix elements is wide (“sparsity”)

or if the matrix has “texture”.

. Other applications of SLRT....




