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We introduce a theory for the stability of a condensate in an optical lattice. We show that the
understanding of the stability-to-ergodicity transition involves the fusion of monodromy and chaos
theory. Specifically, the condensate can decay if a connected chaotic pathway to depletion is formed,
which requires swap of seperatrices in phase-space.

Ergodicity, as opposed to Stability, is the threat that
looms over the condensation of bosons in optical lattices.
A major question of interest is whether an initial conden-
sate is likely to be depleted. The simplest setup is the
dimer, aka Bosonic Josephson Junction [1–3], where con-
densation in the upper orbital can become unstable if the
interaction exceeds a critical value. A more challenging
setup is a ring lattice [4–8], where the particles are con-
densed into an excited momentum orbital. If such flow-
state is metastable, it can be regarded as a mesoscopic
version of supefluidity. It has been realized that the the-
ory for this superfluidity requires analysis that goes be-
yond the tradition framework of Landau and Bogoliubov,
because the underlying dynamics is largely chaotic [9, 10].

The structure of the classical phase-space is reflected
in the quantum spectrum, and provides the key for
quantum-chaos theory of mesoscopic superfluity. In the
present work we highlight the essential ingredient for the
crossover from stability to ergodicity. We consider the
minimal setup: a 3 site ring. We show that the un-
derstanding of this transition involves the fusion of two
major research themes: monodromy and chaos.

Monodromy.– The dynamics of an integrable (non-
chaotic) system, for a given value of the conserved
constants-of-motion, can be described by a set of action-
angle variables, that parametrize a torus in phase space.
In systems with monodromy, they cannot be defined glob-
ally: due to the non trivial topology of phase space, the
action-angle variables cannot be identified in a contin-
uous way in the parameter-space that is formed by the
conserved quantities [11, 12]. Accordingly, it is impossi-
ble to describe the quantum spectrum by a global set of
good quantum numbers [13, 14]. Rather, the good quan-
tum numbers (quantized “actions”) that are implied by
the EBK quantization scheme form a lattice that features
a topological defect [15]. Such Hamiltonian monodromy
is found in many physical systems, such as the spheri-
cal [13, 16] and the swing-spring [17, 18] pendula, Spin-1
condensed bosons [19], the Dicke model [20], and even the
hydrogen atom [21]. A dynamical manifestation of mon-
odromy in a classical system has been recently demon-
strated [22].

Chaos.– The condensation of particles in a single or-
bital is a many-body coherent state. It can be repre-
sented in phase-space as a Gaussian-like distribution that

is supported by a stationary point (SP). If this SP is the
minimum of the energy landscape, it is known as Landau
energetic stability, and leads, for a clean ring, to the Lan-
dau criterion for superfluidity. More generally one has to
find the Bogoliubov excitations ωr of condensate. If some
of the frequencies become complex, the SP is considered
to be unstable. What we have demonstrated in previous
work [5, 10] was that this type of local stability anal-
ysis does not provide the required criteria for stability.
Rather, in order to determine whether the system will
ergodize, it is essential to study the global structure of
phase-space, and to take into account the role of chaos.

Connectivity.– The major insight can be described
schematically as follows. Let us regard the SP that sup-
ports the condensate as the origin of phase-space. And
let us regard the region that supports the completely de-
pleted states as the perimeter of phase-space. The cru-
cial question is whether there is a dynamical pathway
that leads from the origin to the perimeter. We have
observed numerically in [10] that the formation of such
pathway requires a swap of phase-space separatrices. But
a theory for this swap transition has not been provided.

Outline.– In what follows we present the Hamiltonian
of the system, and write it as the sum of integrable part
H(0), and additional terms H(±) that induce the chaos.
An example for the classical and quantum spectra is pre-
sented in Fig.1. The spectra exhibit monodromy that we
analyze in detail: the quantum monodromy is a reflection
of the classical one. Then we explain how the spectrum is
affected by changing a control parameter (detuning). In
an hysteresis experiment [23] the detuning is determined
by the rotation frequency of the device and the interac-
tion strength between the bosons. We provide a geomet-
rical explanation for the swap transition, and clarify the
role of chaos in the de-stabilization of the condensate.

Model.– The Bose-Hubbard Hamiltonian (BHH) is a
prototype model for cold atoms in optical lattices that
has inspired state-of-the-art experiments [24, 25]. Here
we consider a 3-site ring with N bosons. Such ring
has 3 momentum orbitals labeled by their wavenum-
ber k = 0, 1, 2. Later we assume, without loss of gen-
erality, that the particles are initially condensed in the
k = 0 orbital. This is not necessarily the ground-state
orbital, because we allow the possibility that the ring is
in a rotating frame. After some time the condensate

ar
X

iv
:1

81
0.

06
01

9v
1 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 1

4 
O

ct
 2

01
8



2

can be partially depleted such that the occupation is
(N−n1−n2, n1, n2). We have here a 2 freedom system
whose Hamiltonian can be written in terms of canonical
coordinates as [a]:

H(ϕ, n;φ,M) = H(0)(ϕ, n;M) +
[
H(+) +H(−)

]
(1)

Here n = (n1 + n2)/2 and M = (n1 − n2)/2, and (ϕ, φ)
are conjugate angle variables. The first term H(0) is an
integrable piece of the Hamiltonian that has M as an
additional constant of motion:

H(0)(ϕ, n;M) = En+ E⊥M −
U

3
M2 (2)

+
2U

3
(N − 2n)

[
3

4
n+

√
n2 −M2 cos(ϕ)

]
where U is the interaction between the bosons, while the
detuning E determines the energy difference between the
condensate (n = 0) and the depleted states (n = N/2).
If we linearized H with respect to the (n1, n2) occu-
pations, we would get the Bogoliubov approximation,
which is Eq.(2) without the third term (M2), and with
(N−2n) ≈ N . The additional terms H(±) induce reso-
nances that spoil the integrability, and give rise to chaos.

H(±) =
2U

3

√
(N−2n)(n±M)(n∓M) cos

(
3φ∓ϕ

2

)
(3)

Stability.– The first impression is that H(0) is very
similar to the well-studied Hdimer [a], that describes the
dynamics of the bosonic Josephson junction. All we have
to do is to rescale the occupation coordinate ñ = 2n.
Without loss of generality we assume E > 0. Then ñ = 0
corresponds to condensation in the lower mode, while
ñ = N corresponds to condensation in the upper mode.
Both states are stationary points (SPs) of the Hamilto-
nian. In the dimer case the lower mode condensation
is always stable, while the upper mode condensation be-
comes unstable if E < NU [b]. But for our 3 site ring
Eq. (2) the stability analysis is more interesting: both
SPs become unstable in the range |E| < (1/6)NU [b].
Geometry.– The stability analysis reflect the alge-

braic side of the dynamics, but ignores the geometrical
aspect. The phase space of the dimer is the Bloch sphere.
All the (ϕ̃, ñ=0) points are in fact the same point, which
can be regarded as the North pole of the sphere. Same
applies to (ϕ̃, ñ=N) which can be regarded as the South
pole of the sphere. But for our 3 site ring Eq.(2) the
geometry of phase-space is different. One difference is
that the angle is folded (ϕ = 2ϕ̃). Accordingly the North
pole, if unstable, is the cusp on a folded separatrix of
half-saddle topography. As for the South pole, it is no
longer a single point, because different ϕ values indicate
different points in phase space. So in fact we no longer
have a Bloch-sphere, but rather we have a Bloch-disc.
The perimeter of the disc is a spread SP. If the spread
SP becomes unstable, there is a seperatrix that comes

(a)

(b)

FIG. 1. Monodromy. The classical and quantum spectra
of the Hamiltonian H(0). This Hamiltonian has a constant
of motion M , that describes the occupation imbalance of the
k 6= 0 orbitals. In (a) each point represents an (M,E) torus
in phase space, and the points are color coded by the value
of a classical phase (β) that characterizes the torus. In (b)
each point represent an |M,E〉 eigenstate of N = 42 parti-
cles, and the points are color coded by the expectation value
of the variable n, which is the total occupation of the k 6= 0
orbitals. Yellow color (n < N/8) indicates a nearly coherent
condensate, while blue implies a depleted eigenstate. In both
panels E/NU ≈ −1/4 and E⊥/NU ≈ 1/2. The inset provides
a zoom that demonstrates the monodromy: a topological de-
fect in the lattice arrangement of the spectrum.

out from the perimeter in an angle ϕout, and comes back
to it in an angle ϕin. Both the approach and the depar-
ture from the perimeter along the separatrix require an
extremely long time. We emphasize again that from an
algebraic point of view the dynamics is the same as if
the perimeter were a single point on a Bloch-sphere. The
(ϕ, n) phase space structure is illustrated in Fig.2.

Topology.– So far we have discussed the one-freedom
projected dynamics of (ϕ, n). But now we have to re-
member that there is an additional degree of freedom
(φ,M). We consider the dynamics that is generated by
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(a) (b) (c)

(d) (e) (f)

FIG. 2. The geometry of the projected phase space.
Top panels: the (ϕ, n) disk. Bottom panels: the (ϕ̃, ñ)
Bloch-sphere. The detuning is E/NU = −0.05, 0.00, 0.05
(from left to right). The color stands for the energy. Black
lines indicate the separatrices that go through the SPs.
Here we focus in the parametric range where both SPs are
unstable [b, c].

(a) (b)

(c)

FIG. 3. Phase space topology. The blue cone is an
M = 0 surface, that intersects with a surface of constant E.
The existence of an additional coordinate (φ) at each point is
implicit. The intersection is a torus. Panel (a) is the typical
case, while (b) corresponds to a pinched torus (see text). The
latter is fully illustrated (with φ) in panel (c).

H(0), where M is a constant of motion, and the conju-
gate angle is doing circles with φ̇ = ∂H/∂M . A trajec-
tory that is generated by H(0) covers a torus in phase
space. A useful way for visualizing the tori is based on
the SU(1, 1) symmetry [19, 26] of H(0). The (ϕ, n) dy-
namics is the intersection of constant E and constant M
surfaces, see Fig.3 [c]. In particular the M = 0 surface is
a cone, whose tip corresponds to n = 0, while its outer
boundary to n = N/2. If the intersection forms a closed
loop, as in Fig.3a, the trajectory covers a torus in phase
space. But if the trajectory goes through n = 0, as in
Fig.3b, we get a pinched torus, see Fig.3c. This is be-
cause the φ-circle at n = 0 has zero radius. This “zero
radius” is explained as follows: if n = 0 then necessar-
ily n1 = n2 = 0, hence all the (ϕ, φ) angles degenerate,
representing a single phase-space point.

Swap transition.– Recall that E is controlled exper-
imentally by the rotation frequency of the device. Fig.2
shows how the two SPs of the projected dynamics are
re-arranged as the detuning E changes sign. At the tran-

sition the two separatirces coalesce, thus forming connec-
tion between the origin (which supports the condensate)
and the perimeter (where the k=0 orbital is completely
depleted). Once the H(±) terms are added, a connecting
quasi-stochastic strip is formed, through which the initial
state can decay. This is shown in Fig.4, where we plot
a Poincare section of the full Hamiltonian Eq.(1). One
should note the subtle relation between the perspective
of Fig.4 and that of Fig.2. A panel of the latter dis-
plays sections of M = 0 tori that form a vertical subset
in a Fig.1-type (M,E) diagram, while a panel of Fig.4
displays sections of same E trajectories that form a hor-
izontal subset of such diagram. The pinched torus is
contained in both subsets.

Away from the swap transition, the chaotic region
around n = 0 is bounded by the surviving Kolmogorov-
Arnold-Moser (KAM) tori, forming a chaotic pond which
is isolate from the perimeter region. Hence the depletion
of the condensate is arrested. It is only in the vicinity
of the swap transition that a connected chaotic pathway
to depletion is formed. Thus, a local stability analysis of
the SP using the standard Bogoliubov procedure does not
provide the proper criterion for superflow metastability.

Quantization.– The classical structure of phase-
space is reflected in the many-body spectrum. If chaos is
ignored the eigenstates can be labeled by the good quan-
tum numbers that are determined by the commuting op-
erators M and H(0), as in Fig.1b. If we add the H(±)

terms we can still order the energies according to the ex-
pectation value 〈M〉. Several examples are provided in
Fig.5 [d]. For presentation purposes, the perimeter en-
ergy Ex(M), which corresponds to maximum depleted
state (n = N/2), is taken as the reference.

From a semiclassical perspective, if we ignore the
chaos, each point can be associated with an EBK torus
[e]. Namely, the “good quantum numbers” are quantized
values of the action variables. The lattice arrangement
of the energies in Fig.1b reflects the way that the tori are
embedded in phase-space, while the chaos, once added,
blurs it locally, see Fig.5. This lattice arrangement is sup-
ported by a classical skeleton that is formed by a pinched
torus (marked by a red dot), and an E = Ex(M) sepa-
ratrix. At the vicinity of the separatrix the spectrum is
dense, reflecting that the frequency of the motion goes to
zero. Irrespective of that, the quantum spectrum has a
topological defect that is described by a monodromy (to
be further discussed below). This monodromy reflects
the presence of the pinched torus. The sequence of pan-
els in Fig.5 shows how the swap transition is reflected in
the quantum spectrum. This transition happens as the
red dot, which corresponds to the pinched torus, crosses
the E = Ex separatrix line. We see how the yellow con-
densation region is diminished at the transition.

Monodromy calculation.– The concept of mon-
odromy is pedagogically summarized in [e]. For our
model system, in the absence of chaos, we have in in-
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Poincare sections. The dynamics of the full
Hamiltonian Eq.(1) projected to the (ϕ, n) disk. All the tra-
jectories are launched with the same energy as that of the
condensate. The left to right arrangement of the panels is by
detuning (E/NU), in one-to-one correspondence with Fig.2.
In the upper panels the interaction strength is NU ∼ 1, in
units of the BHH hopping frequency, while in the lower pan-
els it is doubled, keeping E/NU fixed. The color-code (from
yellow to blue) corresponds to the trajectory-averaged occu-
pation n (from N/8 to N/2).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. The spectrum. The left to right arrangement of
the panels is as in Fig.4. In the upper row we plot the spec-
trum of H(0), while the two other rows provided the spectrum
of H in one-to-one correspondence with Fig.4. All the spec-
tra refer to ring with N=42 particles. The points are colored
by the expectation value of n, with the same colorcode as in
Fig.1 and Fig.4.

volution the generators H1 = H(0) and H2 = M . The
trajectories that are generated for a given E and M form
a torus. Any point on the torus is accessible by gener-
ating a walk of duration (t1, t2). Consider the projected
dynamics in (ϕ, n). A given trajectory has a period T ,
but in the full phase-space it is, in general, not periodic,
because φ has advanced some distance β. It follows that

in order to get a periodic walk on the torus, the t1 = T
evolution that is generated by H1, should be followed by
a t2 = −β evolution that is generated by H2. The so
called rotation angle, β, characterizes the torus, and is
imaged in Fig.1a [f]. Note that a t2 = 4π evolution that
is generated by H2 = M is a periodic trajectory in phase
space, because it does not affect the (ϕ, n) degree of free-
dom. We conclude that the set of periodic walks form a
so called Arnold-Liouvile lattice, that can be spanned by
the units vectors

~τa = (T,−β) (4)

~τb = (0, 4π) (5)

Let us now go back to Fig. 1a, where we plot β as a
function of M and E. One can immediately spot the
location of the pinched torus (M,E) = 0, around which
β has 4π variation. Hence, after a parametric loop, we
get the mapping ~τa 7→ ~τa − ~τb while ~τb remains the same.
Such non-trivial mapping is the hallmark of monodromy
[11, 12]. Upon EBK quantization monodromy in the
spectrum is implied [e]. This is demonstrated in the in-
set of Fig.1b. Namely, transporting an elementary unit
cell (spanned by two basis vectors) around the pinched
torus in the (M,E) spectrum, we end up with a different
unit cell. Our spectrum is divided into two regions by
the separatrix line, and therefore only the region with
the pinched torus exhibits the non-trivial monodromy.
At the swap transition the pinched torus and hence the
non-trivial monodromy is relocated to the other region.
In the special case of E = 0, the pinched torus merges
with the separatrix line, leaving both regions with a triv-
ial monodromy.

Summary.– Several themes combine is the study of
superflow metastability. There is a monodromy that
is associated with the existence of the condensate; and
another separatrix that is associated with the depleted
states. They provide a classical skeleton for the many-
body quantum spectrum. Chaos blurs the ordered spec-
trum, but the topological aspect remains robust. If the
rotation frequency of the device is adjusted (detuning),
a stochastic pathway is formed at the swap transition,
leading to the depletion of the condensate, and the de-
cay of the superflow. The analysis is relevant for future
hysteresis-type experiments [23] with ring lattice circuits
[27, 28].
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and Bruno Juliá-Dı́az, “Fragmented condensation in
bose–hubbard trimers with tunable tunnelling,” New
Journal of Physics 17, 073014 (2015).

[9] Andrey R. Kolovsky, “Bosehubbard hamiltonian: Quan-
tum chaos approach,” International Journal of Modern
Physics B 30, 1630009 (2016).

[10] Geva Arwas, Amichay Vardi, and Doron Cohen, “Super-
fluidity and chaos in low dimensional circuits,” Sci. Rep.
5, 13433 (2015).

[11] J. J. Duistermaat, “On global action-angle coordinates,”
Communications on Pure and Applied Mathematics 33,
687–706 (1980).

[12] Richard H Cushman and Larry M Bates, Global aspects
of classical integrable systems, Vol. 94 (Springer, 1997).

[13] Richard Cushman and JJ Duistermaat, “The quantum
mechanical spherical pendulum,” Bulletin of the Ameri-
can Mathematical Society 19, 475–479 (1988).
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SUPPLEMENTARY MATERIAL

A - The Hamiltonian

For L sites, in a ring geometry:

H =

L∑
j=1

[
U

2
a†ja

†
jajaj −

K

2

(
ei(Φ/L)a†j+1aj + h.c.

)]
(6)

where K is the hopping frequency, U is the on-site inter-
action, and j mod(L) labels the sites of the ring. The

aj and a†j are the Bosonic annihilation and creation op-

erators. The total number of particles N =
∑

j a
†
jaj is

a constant of motion. The so-called Sagnac phase Φ is
proportional to the rotation frequency of the device: it
can be regarded as the Aharonov-Bohm flux that is as-
sociated with Coriolis field in the rotating frame [23, 29].
Optionally it can be realized as a geometric phase using
artificial gauge fields [30, 31].

For a clean L-site ring lattice we define momentum
orbitals whose wavenumbers are k = (2π/L) × integer.
Consequently the BHH takes the form

H =
∑
k

εkb
†
kbk +

U

2L

′∑
b†k4
b†k3
bk2
bk1

(7)

where the prime implies the constraint
k1 + k2 + k3 + k4 = 0. Here εk = −K cos(k − Φ/L)
are the single particle energies. Later we assume,
without loss of generality, that the particles are initially
condensed in the k = 0 orbital. This is not necessarily
the ground-state orbital, because we keep Φ as a free
parameter.

For the purpose of semiclassical treatment we define
action-angle variables via bk =

√
nke

iϕk . Taking into ac-
count that N is constant of motion, this Hamiltonian de-
scribes an f = L−1 freedoms system. If we had just two
sites (L = 2) the one-freedom Hamiltonian for the canon-
ical variables ñ = (n1 − n0)/2 and ϕ̃ = ϕ1 − ϕ0 would be

Hdimer(ϕ̃, ñ) = Eñ+
U

2

(
N2

4
−ñ2

)
[1 + cos(2ϕ̃)] (8)

where E = ε1 − ε0, and an N dependent constant has
been dropped. For L = 3 site ring we have

H =
∑

k=0,1,2

εknk +
U

6

∑
k

n2
k +

U

3

∑
k′ 6=k

nk′nk (9)

+
U

3

∑
k′′ 6=k′ 6=k

[nk′nk′′ ]
1/2

nk cos (ϕk′′ + ϕk′ − 2ϕk)

Also here we can define relative coordinates q1 = ϕ1 − ϕ0

and q2 = ϕ2 − ϕ0 where the subscripts refers to

k1,2 = ±(2π/3). Defining Ek = (εk − ε0) + (1/3)NU we
get Eq.(1) with

H(0) = E1n1 + E2n2 −
U

3

[
n2

1 + n2
2 + n1n2

]
+

2U

3
(N−n1−n2)

√
n1n2 cos (q1 + q2) (10)

and

H(+) =
2U

3

√
(N−n1−n2)n1 n2 cos (q1 − 2q2) (11)

while H(−) is obtained by swapping the indices (1↔ 2).
In fact it is more convenient to use the coordinates

φ[mod(4π)] = q1 − q2 = ϕ1 − ϕ2

ϕ[mod(2π)] = q1 + q2 = ϕ1 + ϕ2 − 2ϕ0 (12)

and the conjugate coordinates

M =
1

2
(n1 − n2) ∈

[
−N

2
,
N

2

]
(13)

n =
1

2
(n1 + n2) ∈

[
|M |, N

2

]
(14)

Then the Hamiltonian takes the form of Eq. (1)
with Eq. (2) and Eq. (3), where the detuning is
E = E1 + E2 − (1/2)NU , and E⊥ = E1 − E2.

B - SPs and seperatrices

Consider a phase-space that is described by ϕ, n. We
shall distinguish between rotor geometry for which the
n = 0 points are distinct, and oscillator geometry for
which all the n = 0 points are identified as one point.
The algebraic treatment is the same, but the physical
interpretation is different.
Regular point.– As an appetizer consider the Hamil-

tonian

H =
√

2n sin(ϕ) (15)

It looks singular at n = 0, but in fact it is completely
smooth there. Regarded as an oscillator it is canon-
ically equivalent to H = p that generates translations.
Similar observation applies to the non-interacting dimer
Hamiltonian H = (1/2)(a†2a1 + h.c.), which in action an-
gle variables takes the form

H =

√(
N

2
− n

)(
N

2
+ n

)
cos(ϕ) (16)

Here both the North and the South poles of the Bloch
sphere (n = ±N/2) are regular phase-space points, nei-
ther SP nor singular.



Stationary point.– Consider the standard quadratic
Hamiltonian H = (1/2)[ap2 + bx2]. In polar canonical
coordinates it is

H = [A+B cos(2ϕ)] n (17)

with A = (a+ b) and B = (a− b). If ab > 0, equivalently
|A| > |B|, the origin (n = 0) is an elliptic SP that is cir-
cled by trajectories that have the frequency

ω =
√
ab =

√
A2 −B2 (18)

Otherwise the origin becomes an unstable hyperbolic SP.
In the latter case there is an 8-like separatrix that goes
through the origin: there are two ingoing directions and
two outgoing directions. The approach to the SP along
the separatrix, and its departure, is an infinitely slow
motion.

Folded SP.– Consider the dimer Hamiltonian Eq.(8)
with 2ϕ̃ replaced by ϕ. Here the dynamics is the same
from algebraic perspective, but the global geometry is
different. It is a folded version of the dimer Hamiltonian.
In the hyperbolic case the vicinity of the SP can be de-
scribed as “half saddle”. From local dynamics point of
view the equations of motion are identical, but here the
separatrix has only one outgoing direction and only one
ingoing direction.

Spread SP.– Consider Eq.(17), but assume that we
are dealing with rotor geometry. From local dynamics
point of view the equations of motion are still identical,
but now the arrival point (say ϕin) and the departure
point (say ϕout) are not the same point.
Stability analysis.– Consider the Hamiltonian of

Eq.(2) with M = 0. The origin (n = 0) is a folded SP. It
is elliptic or hyperfolic depending on the detuning. Lo-
cally the Hamiltonian looks like Eq.(17) with

A = E +
NU

2
, B =

2NU

3
(19)

SP unstable for − 7NU

6
< E < NU

6
(20)

In the regime where the SP is stable the ω of Eq.(18)
reflects the frequency of the Bogoliubov excitations [10].
In the hyperbolic case we have a separatrix that goes
through the origin.

For the same Hamiltonian, the perimeter (n = N/2) is
a spread SP. For the purpose of stability analysis we can
identify the points along the perimeter as a single point
of a Bloch sphere. Setting ñ = N − 2n the Hamiltonian
looks like Eq.(17) with

A = −E
2

+
NU

4
, B =

NU

3
(21)

SP unstable for − NU

6
< E < 7NU

6
(22)

In the hyperbolic case we have a separatrix that meets the
perimeter at one point and departs in a different point.

(a) (b) (c)

FIG. S1. Unfolded version of Fig.S3a that clarifies the notion
of swap using polar coordinates (ϕ̃, ñ). If we identify all the
points of the perimeter as a single point, we get the Bloch
sphere of Fig.2b.

Combining with Eq.(20) we see that both SPs are un-
stable if |E| < (1/6)NU . In the latter case we have two
seperatrices. The separatrices swap as we go through
E = 0, see Fig.1.

Bloch sphere representation.– An unfolded version
of Fig.2a is presented in Fig.S1. It should be emphasized
that in the unfolded version each phase-space point is du-
plicated. Thanks to this duplication the separatrix that
is associated with the central SP takes the familiar figure-
8 saddle shape, which is more illuminating for illustration
purpose. The Bloch spheres in Fig.2b is obtained if all
the points along the perimeter are identified as a single
point. Now also the perimeter separatrix takes the famil-
iar figure-8 saddle shape. Using this physically unfaithful
presentation it is easier to explain what do we mean by
“swap of the separatrices”. We note that the Poincare
section in [10], that has been presented before we had
proper understanding of the swap-transition, were phys-
ically unfaithful is the same sense.

The case of nonzero M .– For the same Hamiltonian
Eq.(2) with M 6= 0, the points along the inner bound-
ary n = M are distinct. So we cannot regard them as
a single point. Close to this inner boundary we have
H ∼

√
ñ cos(ϕ), with ñ = n−M . This is a non-singular

Hamiltonian, essentially the same as Eq.(15), that gen-
erates regular flow. It follows that the inner boundary is
not special from a dynamical point of view: it can be re-
garded as spread regular point, it is not an SP, and there
is no separatrix there.

The stability of the perimeter is determined as in
Eq.(22), but with B multiplied by

√
1− (2M/N). There-

fore, for sufficiently largeM we always have |A| > |B| and
the perimeter is stable.

C - Conical intersection perspective

A useful way for visualizing the phase space tori is
based on the SU(1, 1) symmetry [19, 26] of H(0). For
that we express the two conserved quantities, namely the
energy E and the constant of motion M , in terms of the



(a) (b) (c)

(d) (e) (f)

FIG. S2. Several examples of the reduced phase-space in the
(Kx,Ky,Kz) coordinates (the symmetry axis is Kz). The
blue cone (a,c-f) is the surface of constant M = 0 while the
blue hyperbole (b) is the surface of constant M = 0.15N . The
remaining surfaces correspond to a constant E. The intersec-
tion of constant M and E surfaces (highlighted in black) is a
trajectory in the reduced (ϕ, n) space, and provides a useful
way of visualizing the phase space tori (see text).

group generators. We start by introducing:

Kz = n+
1

2
, K+ = a†1a

†
2 , K− = a1a2 (23)

which is a realization of the SU(1, 1) group, satisfying
the algebra:

[Kz,K±] = ±K± , [K+,K−] = −2Kz (24)

The Casimir operator of the group, which commutes with
all the generators, is:

C = K2
z −K2

x −K2
y (25)

where Kx and Ky are given by K± = Kx ± iKy. In the
semiclassical treatment we have:

Kx ∼
√
n1n2 cosϕ ∈ [−∆,∆] (26)

Ky ∼
√
n1n2 sinϕ ∈ [−∆,∆] (27)

Kz ∼ n ∈
[
|M |, N

2

]
(28)

where ∆ =
√

(N/2)2 −M2. The Hamiltonian can be
written in terms of the generators as:

H(0) = EKz + E⊥M −
U

3
M2 (29)

+
2U

3
(N − 2Kz)

[
3

4
Kz +Kx

]
As for the constant of motion M , we have M2 = C. In
Fig.S2 we plot several examples for the M2 and H(0) = E
surfaces in the (Kx,Ky,Kz) space. For M = 0 Eq.(25)
defines a cone whose tip corresponds to n = 0, while its
outer boundary to n = N/2. For for a constant M 6= 0

Eq.(25) defines an hyperboloid whose base corresponds
to n = |M |, while its outer boundary to n = N/2.

The intersection between the E and M2 surfaces is a
trajectory in the reduced (ϕ, n) phase space. In the full
phase space, we also have the phase φ, which dynami-
cally changes as φ̇ = ∂H/∂M . If the intersection between
the surfaces forms a closed loop, as in Fig.S2(a,b), the
dynamics in the full (ϕ, φ, n,M) phase-space covers a 2-
torus (which is, of course, the typical case in an integrable
2 DOF system). When the two surfaces tangent, as in
Fig.S2(b), the trajectory is a fixed point in the (ϕ, n)
space, and a circle in the full phase space.

Trajectories that pass through n = 0 should be ad-
dressed with more caution. As explained in the main
text, the tip of the cone does not correspond to a φ cir-
cle, but to a single point. This is because n = 0 means
n1 = n2 = 0 so that φ is degenerate. When the n = 0 SP
is stable, the energy surface is tangent to the tip of the
cone, as in Fig.S2(c), hence the trajectory is a single point
in phase space. When unstable, the intersection forms a
cusped circle, see Fig.S2(d), representing a pinched torus,
i.e. a torus with one of its φ circles shrinks to a point.

Trajectories that pass through n = N/2 are special
too. When the n = N/2 SP is stable, as in Fig.S2(c), the
intersection is the entire outer circle of the cone, reflect-
ing the fact that it is a spread SP. When unstable, see
Fig.S2(e), a separatrix trajectory is formed, which meets
the n = N/2 circle at two points, corresponding to ϕin

and ϕout. At the swap transition, the two SPs are con-
nected, i.e. the cusped circle of n = 0 merged with the
separatrix trajectory of n = N/2, as shown in Fig.S2(f).

D - Gallery

In the main text of the Ms we have focused on the
regime where both SPs are unstable. Here we provide
phase space plots and spectra for the whole range of the
detuning parameter. Fig.S3 is an extended version of
Fig.2, and Fig.S4 is an extended version of Fig.5.

E - Hamiltonian Monondromy

Consider generators (H1, H2) in involution, i.e. that
commute with each other. The generated trajectories
are moving on an energy surface labeled (E1, E2). A
walk consists of t1 evolution using H1, and t2 evolution
using H2. The involution implies that the walks are com-
mutative. Accordingly the parameterization of a walk is
~t = (t1, t2). Periodic walk is a walk that brings you back
to the same point. The set of periodic walks forms a lat-
tice in ~t space. This lattice is spanned by basis vectors
~τk, where k = a, b. We can formally write any point in ~t



FIG. S3. The geometry of the projected phase space. Top panels: the (ϕ, n) disk. Bottom panels: the (ϕ̃, ñ) Bloch-
sphere. The detuning from left to right is E/NU = −4/3,−1/3,−0.05, 0, 0.05, 1/3, 4/3. The contours are color-coded by the
energy of the trajectories. The black curves are seperatrices that pass through the SPs.

FIG. S4. The spectrum. The top row panels are the spectrum of H(0) with the same E/NU values as in Fig.S3. In the
bottom row the same spectra is plotted, but without subtracting the separatrix energy. The interaction strength from left to
right is NU ≈ 0.2, 0.6, 1.4, 1.9, 2.7, 1.9, 0.3 in units of the BHH hopping frequency K. Note that for the top row panels, different
NU values will produce the same plot and only scale the E − Ex axis. Note that the energy here differs by a constant from
Fig.1(b).

space as

~t =
∑
k

θk
2π
~τk =

θa
2π
~τa +

θb
2π
~τb (30)

We define a reciprocal basis such that

~ωk · ~τk′ = 2πδk,k′ (31)

The reciprocal relation is

θk = ~ωk · ~t (32)

Once action variables are defined we have

~ωk =

(
∂H1

∂Jk
,
∂H2

∂Jk

)
(33)

The spacings between two energies is

∆E =
∑
k

~ωk ·
−→
∆nk (34)

Thus the spectrum forms a reciprocal lattice.
Considering a closed loop in (E1, E2) space, the mon-

odromy matrix is defined as the mapping

~τk(final) =
∑
l

Mkl~τl (35)

If the loop encircles a pinched torus we have [12]

M =

(
1 −1
0 1

)
(36)

so we get the mapping ~τa 7→ ~τa − ~τb, as discussed in the
main text after Eq.(4). For the reciprocal basis we have:

~ωk(final) =
∑
l

M̃kl ~ωl (37)

where M̃ = [M−1]t. This can be seen by writing:

2πδk,k′ = [~ωk(final)] · [~τk′(final)] (38)

=
∑
lm

M̃klMk′m ~ωi · ~τj = 2π
∑
l

M̃klMk′l

hence M̃Mt = 1 and M̃ = [M−1]t. For a loop which
encircles the pinched torus we then have

M̃ =

(
1 0
1 1

)
(39)

which reflects the way ~ωk are mapped, and therefore how
a unit cell in the quantum spectrum is transformed, as
seen in Fig.1(b).



F - The calculation of the phase β

Some technical remarks are in order regarding the T
and the β determination in Eq.(4). For nonzero winding
number the phase-space torus loops around ϕ. This is
like rotation-motion of a pendulum. For a zero winding
number the phase-space torus does not see the topology
of ϕ. This is like libration-motion of a pendulum. For
rotation, T is defined as the time at which ϕ(t) comes
back to the initial value ϕ(0). For libration, that has
the same period, the phase ϕ(t) crosses twice ϕ(0), but
with different momentum n. If we gradually change the
energy, we go from libration to rotation. The numerical
definition of β should take into account the change of
topology. At the point of the crossover T →∞, while β
is ill-defined.

Additional remark is in order regarding the determi-
nation of the 4π in Eq. (5). It should be clear that
the original phases (ϕ0, ϕ1, ϕ2) are defined mod (2π).
Next we define the coordinates q1 = ϕ1 − ϕ0 and
q2 = ϕ2 − ϕ0, and the alternate coordinates φ = q1 − q2

and ϕ = q1 + q2. If the alternate coordinates are re-
garded as mod (2π) angles, it follows that each (ϕ, φ)
represent two points in q space, and each (ϕ, n) in our
sections is the projection of a 4π circle. Consider a tra-
jectory that is generated using H2 = M . In the (ϕ1, ϕ2)
torus it will have a constant ϕ. You will have to run t a
4π interval in order to get back to the starting point.
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