
BHH - dimer system

notes by Doron Cohen

Upgraded version of ”Lecture Notes in Quantum Mechanics” [quant-ph/060518] Sect.[38], with added appendix on
Wigner function, to be integrated in a long paper.

====== [1] A two site system with N Bosons

We discuss in what follows the Bose-Hubbard Hamiltonian for N Bose particles in a two site system. The dimension
of the Hilbert space is N = N + 1. Later we assume N � 1 so N ∼ N . For simplicity we might further assume N to
be even, and define j = N/2, so as to have N = 2j+1. The Hamiltonian is

H =
∑

i=1,2

[
Ein̂i +

U

2
n̂i(n̂i − 1)

]
− K

2
(â†2â1 + â†1â2) (1)

where we denote by K the hopping, by U the interaction, and by E = E2 − E1 the bias. Since n1 +n2 = N is constant
of motion, the Hamiltonian for a given N is formally equivalent to the Hamiltonian of a spin j particle. Defining

Jz ≡ 1
2
(n̂1 − n̂2) ≡ n̂ (2)

J+ ≡ â†1â2 (3)

we can re-write the Hamiltonian as

H = UĴ2
z − E Ĵz −KĴx + const (4)

In the absence of interaction this is like having a spin in magnetic field with precession frequency Ω = (K, 0, E). In
order to analyze the dynamics for finite U it is more convenient to re-write this Hamiltonian with canonically conjugate
variables. Formally we are dealing with two coupled oscillators. So for each we can define action-angle variables in
the following way (no approximations involved):

âi =


0
√

1 0 0
0 0

√
2 0

0 0 0
√

3
0 0 0 0

 =

 0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




0 0 0 0
0
√

1 0 0
0 0

√
2 0

0 0 0
√

3

 ≡ eiϕ
√
n̂i =

√
n̂i+1 eiϕ (5)

One should be aware that the ladder operator eiϕ is in fact non-unitary because it annihilates the ground state. We
shall denote its adjoint operator as e−iϕ, so we have â†i =

√
n̂ie−iϕi . Now it is possible to re-write the Hamiltonian

using the variable n̂ ≡ n̂1 and the associated ladder operator eϕ ≡ eϕ1e−ϕ2 as follows: corrected

H = Un2 − En − K

2

[√
[(N/2)− n̂][(N/2) + n̂+ 1] eiϕ + h.c.

]
(6)

So far no approximation are involved. But now we want to allow an approximation which is valid for the dynamics as
long as |n| is not close to its extreme value N/2. Consequently we can ignore the small corrections that are associated
with the proper ordering of the operators and write

H ≈ Un̂2 − En̂ − K
√

(N/2)2 − n̂2 cos(ϕ) (7)
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In the |n| � (N/2) region of phase space this resembles the so-called Josephson Hamiltonian, which is essentially the
Hamiltonian of a pendulum

HJosephson = EC(n̂− nε)2 − EJ cos(ϕ) (8)

with Ec = U and EJ = KN/2, while nε is linearly related to E . The Josephson Hamiltonian is an over-simplification
because it does not capture correctly the global topology of phase space. In order to shed better light on the actual
Hamiltonian it is convenient to define in addition to the ϕ operator also a θ operator such that Jz ≡ (N/2) cos(θ)
while Jx ≈ (N/2) sin(θ) cos(ϕ). It is important to realize that ϕ and θ do not commute. We get:

H ≈ NK

2

[
1
2
u(cos θ)2 − ε cos θ − sinθ cos ϕ

]
(9)

where the scaled parameters are

u ≡ NU

K
, ε ≡ E

K
(10)

We can describe phase space using the canonical coordinates (ϕ, n), so the total area of phase space is 2πN and
Planck cell is 2π~ with ~ = 1. Optionally we can use spherical coordinates (ϕ,θ), so the total area of phase space
is 4π and Planck cell 4π/N . Note that an area element in phase space can be written as dϕd cos θ.

Within the framework of the semiclassical picture a quantum state is described as a distribution in phase space, and
the eigenstates are associated with strips that are stretched along contour lines H(ϕ,θ) = E of the Hamiltonian. The
|n〉 states are the eigenstates of the K = 0 Hamiltonian. In particular the |n=N〉 state (all the particles are in the
first site) is a Gaussian-like wavepacket which is concentrated in the NorthPole. By rotation we get from it a family
of states |θ,ϕ〉 that are called coherent states. If U is large, E = 0, and K is very small, then the eigenstates are the
symmetric and the antisymmetric superpositions of the | ± n〉 states. In particular we have ”cat states” of the type:

|CatState〉 = |n1=N,n2=0〉 + eiphase|n1=0, n2=N〉 (11)

If a coherent state evolves, then the non-linearity (for non zero U) will stretch it. Sometimes the evolved state
might resemble a cat state. We can characterize the one-body coherence of a state by defining the one-body reduced
probability matrix as

ρ
(1)
ji =

1
N
〈â†i âj〉 =

1
2
(1 + 〈S〉 · σ) (12)

where Si = (2/N)Ji and the so called polarization vector is 〈S〉 = (〈Sx〉, 〈Sy〉, 〈Sz〉). Note that

AverageOccupation = (N/2) [1 + 〈Sz〉] (13)
OneBodyPurity = (1/2)

[
1 + 〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2

]
(14)

FringeVisibility =
[
〈Sx〉2 + 〈Sy〉2

]1/2
(15)

The coherent states have maximum OneBodyPurity. This purity can be diminished due to non-linear effects or due
to interaction with environmental degrees of freedom. [hidden text]
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====== [2] Digression: an M site system with N Bosons

A double well system with Bosons has formally the same Hilbert space as that of spin N/2 particle. The generalization
of this statement is straightforward. The following model systems have formally the same Hilbert space:

• The “N particle” states of a Bosonic system with M sites.
• The “N quanta” states of M Harmonic oscillators.
• The states of a dim(N) ”spin” of the SU(M) group.

We shall explain and formulate mathematically the above statements, and later we shall use the formal analogy with
”spin” in order to shed light on the dynamics of N Bosons in M = 2 site system.

To regard Bosonic site as an Harmonic ”mode” is just a matter of language: We can regard the ”creation” operator a†i
as a ”raising” operator, and we can regard the ”occupation” of the ith site n̂i = a†iai as the number of quanta stored
in ith mode. The one particle states of an M site system form an M dimensional Hilbert space. The set of unitary
transformations within this space is the SU(M) group. Let us call these transformation generalized ”rotations”. If we
have N particles in M sites then the dimensionality of Hilbert space is dim(N) = (N+1)!/[(M−1)!N−M+2)!]. For
example for M = 2 system we have dim(N) = N+1 basis states |n1, n2〉 with n1 + n2 = N . We can ”rotate” the whole
system using dim(N) matrices. Thus we obtain a dim(N) representation of the SU(M) group. By definition these
”rotations” can be expressed as a linear combination of the SU(M) generators Jµ, and they all commute with N̂ .
We shall see that the many body Hamiltonian H may contain “non linear” terms such as J2

µ that correspond to
interactions between the particles. Accordingly H of an interacting system is not merely a ”rotation”. Still we assume
that H commutes with N̂ , so we can work within dim(N) subspace.

There is a common mean field approximation which is used in order to analyze the dynamics of many Bosons system.
In the semiclassical framework the dynamics in phase space is generated by the Hamilton equations of motion for the
action-variables ṅi and ϕ̇i. These are the “polar coordinates” that describe each of the oscillators. Optionally one
can define a “macroscopic wavefunction”

ψi ≡
√
ni eiϕ representing a single point in phase space (16)

The equation for Ψ̇i is known as the discrete version of the non-linear Schrodinger (DNLS) equation:

i
dψi

dt
=

(
εi + U |ψi|2

)
Ψi −

K

2
(ψi+1 + ψi−1) (17)

In the continuum limit this equations is known as the Gross-Pitaevskii equation:

i
dψ(x)
dt

=
[
V (x) + gs|ψ(x)|2 − 1

2m
∇2

]
ψ(x) (18)

The potential V (x) corresponds to the εi of the DNLS equation, and the mass m is associated with the hopping am-
plitude K using the standard prescription. In addition to that we have the interaction parameter gs that corresponds
to U multiplied by the volume of a site. It also can be related to the scattering length using the relation gs = 4πas/m.

Within the framework of the proper semiclassical treatment the quantum state is described as a distribution of points
in phase space. The proper semiclassical treatment goes beyond the conventional mean field approximation. The
latter assumes that in any time the state of the system looks like a coherent state. Such a state corresponds to a
Gaussian-like distribution is phase space (“minimal wavepacket”) and accordingly it is characterized by ni = 〈ni〉 and
ϕi = 〈ϕi〉 or equivalently by the mean field

ψi = 〈ψi〉 representing the center of a wavepaket (19)

To the extend that the mean field assumption can be trusted the equation of motion for ψi is the DNLS. Indeed
if U = 0 there is no non-linear spreading and the mean field description becomes exact. Otherwise it is a crude
approximation.
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WKB

====== [3] Phase space and semiclassics

We can describe phase space using the canonical coordinates (ϕ, n), so the total area of phase space is 2πN and
Planck cell is 2π~ with ~ = 1. Optionally we can use normalized coordinates (ϕ, cos θ), such that an area element in
phase space is dϕd cos θ, and the total area of phase space is 4π. It is convenient to define a scaled Planck constant

h = Planck cell area in steradians =
4π
N

, [N = N+1 = 2j+1] (20)

Within the framework of the semiclassical picture a quantum state is described as a distribution in phase space,
and the eigenstates are associated with strips of area h that are stretched along contour lines H(ϕ,θ) = E of the
Hamiltonian. The associated WKB quantization condition is

A(En) =
(

1
2

+ n

)
h (21)

where A(E) is defined as the phase space area enclosed by an E contour in steradians:

A(E) ≡
∫ ∫

Θ(E −H(ϕ,θ)) dϕd cos θ (22)

while the area of phase space in Plank units is A(E)/h. The frequency of oscillations at energy E is

ω(E) ≡ dE

dn
=

[
1
h
A′(E)

]−1

(23)

If we have non-linear oscillators then the eigenenergies are not equally spaced, and within some small interval around
n ∼ n0 one can make the approximation

ω(En) ≈ (1 + α(n− n0)) ω0 (24)

En ≈ E0 +
(

(n− n0) +
1
2
α(n− n0)2

)
ω0 (25)

It is straightforward to find that the nonlinearity parameter at energy E is given by

α(E) ≡ 1
ω

dω

dn
= ω(E)2

[
1
h
A′′(E)

]
(26)

====== [4] Frequencies

For u = 0 there is only one frequency, which is the Rabi frequency

ωK = K (27)

For u < 1 the frequencies around the two stable fixed points are slightly modified:

ω± = ω(E±) =
√

(K ±NU)K (28)
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For u� 1 we have the Josephson oscillation frequency near the minimum point:

ωJ = ω(E−) ≈
√
NUK =

√
u ωK (29)

while at the top of the islands:

ω+ = ω(E+) ≈ NU = u ωK (30)

From now on our interest in this u� 1 regime. The approximations for the phase space area in the 3 energy regions
are corrected:

1
h
A(E) =

(
E − E−

ωJ

)
[low energies] (31)

1
h
A(E) =

1
h
A(Ex) +

(
E − Ex

ωJ

)
log

∣∣∣∣ NK

E − Ex

∣∣∣∣ [separatrix] (32)

1
h
A(E) =

4π
h
−

(
E+ − E

U

)1/2

[high energies, disregarding pairing] (33)

It follows that in the vicinity of the separatrix

ω(E) ≈
[
log

∣∣∣∣ NK

E − Ex

∣∣∣∣]−1

ωJ (34)

====== [5] WKB quantization

Away form the separatrix the WKB quantization recipe implies that the local level spacing at energy E is ω(E) given
by Eq.(??). In particular the law energy levels have spacing ωJ , while the high energy levels are doubly-degenerate
with spacing ω+.

On the separatrix ω(E) = 0. Consequently in the vicinity of the separatrix the level spacing becomes smaller but of
course not zero. Rather we have to go back to the WKB quantization condition, and we find that the level spacing
at the vicinity of the separatrix is finite and given by the expression

ωx =
[
1
2

log
(
N2

u

)]−1

ωJ (35)

In Fig. (??) we compare the WKB energies with exact eigenvalues and the analytical linear expressions with slopes
ωJ for low energies, ωx for near-separatrix energies, and ω+ for high energies.

For later discussion we need also the nonlinearity in the separatrix region. Substitution of A′′(E) = 1/(ω0E), and
evaluating for |E| ∼ ωx we get:

α(Ex) = ω(Ex)2
[

1
h
A′′(Ex)

]
≈ ωx

ωJ
≈

[
1
2

log
(
N2

u

)]−1

(36)

The importance of α is clarified later when we discuss the non-linear dynamics of wavepackets in phase space.



6

Wigner function

====== [6] The Wigner distribution on a sphere

The Hilbert space of a spin j entity has the dimension N = 2j+1, and the associated space of operators has the
dimensionality N 2. The inner product of two operators is defined as trace[A†B]. The non-Hermitian multipole
operators T̂ lm (see definition below) form a complete orthonormal set of operators. By orthogonal transformation we
can define another complete orthonormal set of Hermitian operators P̂ θϕ (see definition below). Respectively we can
represent any operator A either by Alm = trace[(T̂ lm)†A] or by

AW(θ, ϕ) = trace[P̂ θϕρ] (37)

Note that if the operator A is Hermitian, then its Wigner function AW(θ, ϕ) is real. Accordingly the inner product of
two operators becomes a simple phase space integral on the corresponding Wigner functions:

tr[ρ̂Â] =
∫
ρW(θ, ϕ)AW(θ, ϕ)dΩ (38)

We turn now to discuss the details. The defining expression for the multipole operators is

T̂ lm =
∑

m′,m′′

(−1)j−m′√
2l + 1

(
j l j

−m′ m m′′

)
|m′〉〈m′′| (39)

where we use the Wigner 3j symbols. The defining expression for the generalized phase space projectors is [? ? ]

P̂ θϕ =
2j∑

l=0

l∑
m=−l

Y lm(θ, ϕ)T̂ lm (40)

The Wigner representation of a projector or a pure state ρ = |Ψ〉〈Ψ| is

ρW(θ, ϕ) =
∑
l,m

 ∑
m′,m′′

(−1)j−m′√
2l + 1

(
j l j

−m′ m m′′

)
Ψ∗

m′Ψm′′

Y lm(θ, ϕ) (41)

The Wigner-Wyle representation of the identity operator is up to normalization the same as the Wigner function of
a uniform mixed state

1w(θ, ϕ) =
√

2j+1 Y 0,0(θ, ϕ) (42)

It follows that

tr[ρ̂] =

√
2j+1
4π

∫
ρW(θ, ϕ)dΩ (43)


