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We show that a quantum dynamical localization effect can be observed in a generic thermalization
process of two weakly-coupled chaotic subsystems. Specifically, our model consists of the minimal
experimentally relevant subsystems that exhibit chaos, which are 3-site Bose-Hubbard units. Due to
the high dimensionality of the composite 6-site system, the quantum localization effect is weak and
can not be resolved merely by the breakdown of quantum-to-classical correspondence. Instead, we
adopt an intrinsic definition of localization as the memory of initial conditions, that is not related to
the underlying classical dynamics. We discuss the dynamics in the chaotic sea, and in the vicinity
of the mobility edge, beyond which ergodization is suppressed.

I. INTRODUCTION

The study of dynamical localization in low-dimensional
chaotic system was pioneered in the publication “Chaos,
Quantum Recurrences, and Anderson Localization” by
Shmuel Fishman, D.R. Grempel and R.E. Prange [1],
which had been motivated by the puzzling numerical
observation of quantum-suppressed chaotic diffusion, by
Casati, Chirikov, Izrailev and Ford [2]. For an extended
period, most research efforts focused on the quantum
kicked rotor system, regarded as the quantized version
of the Chirikov standard map (see [3] and references
within). This system has one degree of freedom, and the
driving (kicking) effectively adds an extra half freedom.

Dynamical localization.– In an Anderson tight
binding disordered chain all the eigenstates are exponen-
tially localized, and therefore the spreading of a wave-
packet in space (x) is always suppressed after some break-
time (t∗). The breaktime is related to the localization
length of the eigenstates. Similarly, in the kicked ro-
tor problem, the variable “x” is the angular momen-
tum. While there is no disorder in this one+half degree-
of-freedom dynamical system, the chaotic classical dy-
namics of “x” is stochastic-like, provided the kicks are
strong enough. Thus, in analogy to Anderson localiza-
tion, the diffusive spreading is suppressed in quantum
simulations after some breaktime t∗, indicating that the
Floquet eigenstates are localized. The relation between
the breaktime and the localization length can be formal-
ized [4–7], and both are related to the disorder strength
(in the Anderson model) or to the kicking strength (in
the kicked rotor system).

Localization in higher dimensions.– Strong An-
derson localization is not necessarily present in higher di-
mensions. This is explained by scaling theory and Renor-
malization Group methods. In general, there is a mo-
bility edge that separates regions where strong localiza-
tion prevails from those where spreading is unaffected by
quantization. Nevertheless, in the latter case it may be
possible to obtain a weak localization effect, meaning that
the probability of return to the initial region is affected.
Weak localization is thus a memory effect, expressed as
a dependence of the outcome on initial conditions.

Localization in finite systems.– Most condensed
matter physics literature concerns disordered infinite-
volume systems, and the weak localization effect is asso-
ciated with time-reversal symmetry. The paradigmatic
kicked rotor is also formally identical to an infinite-
volume chain, because the range of angular momentum
is unbounded, and the energy is not a constant of mo-
tion. Still, the notion of quantum localization has been
extended also to the realm of undriven finite systems
that have a finite-volume energy surface. In this con-
text we can define localization as the absence of ergodic-
ity. If the system is ergodic, an initial cloud of evolving
points (“classical wave-packet”) is expected to eventually
be smeared uniformly over the entire energy surface, ap-
proaching a microcanonical-like distribution. Quantum
localization can therefore be defined as the lack of ergod-
icity in quantum systems for which the corresponding
classical dynamics is ergodic. This means that even after
a very long time the quantum probability distribution
is not microcanonically uniform. Heller [8] has realized
that (weak) dynamical localization due to interference is
generically implied by short-time classical recurrences.

Classical localization.– Idealized hard chaos is an
exception; a generic finite undriven system features a
structured mixed phase space that supports both chaotic
and quasi-regular motion. Ergodization over the entire
energy surface is not guaranteed, or it might be extremely
slow, involving exponentially long time scales. Conse-
quently, the practical definition of localization becomes
more subtle. If we define localization as a lack of ergod-
icity, then it should be clear that it may arise also in
a purely classical context, due to fragmentation of the
energy surface. This fragmentation can happen either
due to energetic barriers between different regions (e.g.,
self-trapping [9]), or due to dynamical obstacles of the
Kolmogorov-Arnold-Moser (KAM) type [10].

Quantum localization.– Coming back to the defini-
tion of quantum localization, Heller [8] has suggested to
define a measure for it by comparing the quantum and
the classical exploration volumes. Quantum ergodicity,
in this perspective, means that the ratio of volumes is
identical to the value predicted by Random Matrix The-
ory (RMT): somewhat less than unity due to quantum
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fluctuations. Quantum localization then means that this
ratio is significantly smaller than the RMT expectation.

Intrinsic localization measure.– In the realm of
high-dimensional finite systems, the standard localiza-
tion measures, that are based on contrasting quantum
versus classical behavior, typically provide inconclusive
results. Due to the mixed, complicated structure of the
phase space, quantum-to-classical correspondence is a
priori poor, and is not in accordance with the predictions
of RMT. Hence, simply comparing quantum to classi-
cal spreading volumes would lead to the conclusion that
quantum localization always shows up. Correspondence-
based measures thus trivialize the concept of quantum
dynamical localization and furthermore, can not be ex-
tended to systems such as spin chains, where the classi-
cal limit is meaningless. It is therefore highly desirable
to find an intrinsic measure for localization that is not
prejudiced by the existence of a classical limit. Below, we
adopt such a correspondence-free definition of dynamical
localization.

Additional subtleties.– Additional subtleties are in-
volved in the calculation of the standard measure of lo-
calization. It is impossible in practice to verify that a
classical system is not ergodic. Very long simulations can
be carried out, but their results cannot be trusted: on the
one hand, the exploration process might involve exponen-
tially long time scales, e.g., due to Arnold diffusion [11];
on the other hand, long simulations might be infected
by numerical inaccuracies. These complications do not
arise in the quantum context, as the t = ∞ saturation
profile of the evolving wave-packet can be anticipated via
diagonalization of the Hamiltonian (see Sect. III below).
Consequently, a time-dependent quantum simulation is
not even required in order to determine whether the sys-
tem is quantum-ergodic. The entire analysis of quantum
localization can be formulated based on the dependence
of known asymptotic quantum distributions on the initial
preparation, without any need for dynamical simulations.

Thermalization.– The typical thermalization setup
consists of two weakly coupled subsystems. In introduc-
tory Statistical Mechanics textbooks, one of the subsys-
tems is assumed to be a large chaotic environment. It is
then argued that the ergodization of the combined sys-
tem implies equilibration of the smaller subsystem (which
does not have to be chaotic). In point of fact, since
chaotic ergodization necessitates at least two degrees of
freedom, either one or both subsystems can be chaotic,
but neither have to be large. It is then possible to define
a reaction coordinate x that quantifies the exchange of
energy or particles between such two moderately sized
subsystems, and to show that the associated dynamics
obeys a Fokker-Planck equation [12]. The question arises
whether upon quantization the implied thermalization
process is arrested due to dynamical localization.

Minimal setup.– In a recent manuscript [13] we
looked for a dynamical localization effect in the many-
body thermalization of a minimal Bose-Hubbard model.
Namely, we have considered an isolated 4-site system

with interacting bosons, where three sites are strongly
coupled (the trimer) and an additional site (monomer) is
weakly coupled to them. The combined model has 3 de-
grees of freedom (corresponding to occupation differences
and relative phases between the sites). The x coordi-
nate was the occupation of the trimer. If the dynamics is
treated classically, the x variable thermalizes within a re-
gion that is determined by the boundaries of the chaotic
sea; i.e., the x-distribution obeys, as expected, a Fokker-
Plank equation. By contrast, the quantum dynamics ex-
hibits dynamical localization if x starts at the peripheral
regions (i.e., if the simulation is initiated with a large
occupation imbalance). We have developed a theory for
finding the mobility edge that separates the x-region of
quantum ergodicity from the regions where localization
manifests itself. For that purpose we have combined the
breaktime phenomenology of Chrikov and followers [4–
7] with the phase space exploration phenomenology of
Heller [8].

Generic setup.– In this work we explore dynami-
cal localization in the more generic case of trimer-trimer
thermalization. The main conceptual difference from the
trimer-monomer model is that in the present case both
subsystems are chaotic. The motivation for this study
is related to the possible implication of such an obser-
vation: namely, manifestation of dynamical localization
in the trimer-trimer system implies that it is relevant for
the analysis of thermalization in larger disordered arrays,
since such arrays can be viewed as chains of weakly in-
teracting subsystems, some (or all) of which are chaotic.
It should be re-emphasized that, unlike the disorder-
induced many-body localization [14, 15], the cause of dy-
namical localization in this work is interaction-induced
chaos on the microscopic scale, and the thermodynamic
limit is not an issue.

The localization question.– By now the manifesta-
tion of dynamical localization in low-dimensional chaos,
such as the kicked rotor, is hardly surprising. But as we
go up in dimensionality the observation of a quantum
localization effect becomes questionable. The breaktime
phenomenology suggests quantum localization whenever
the classical exploration becomes slow in some sense (see
[13]); but the argument is rather speculative and has
never been tested for high-dimensional chaos, except for
the trimer-monomer system. It has to be realized that
the trimer-trimer system is much more challenging for dy-
namical localization because the peripheral regions of the
chaotic sea are vast, unlike those of the trimer-monomer
system. Indeed, as shown below, dynamical localization
in a trimer-trimer system is a rather weak effect that re-
quires a refined numerical procedure for its detection. A
major challenge is to distinguish a “novel type” of dy-
namical localization that should not be confused with
energetic metastability (self-trapping), with perturbative
localization, or with classical localization due to KAM
structures. This novel type of dynamical localization ap-
pears within the chaotic sea and cannot be explained in
a simple-minded way.
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Outline.– In Section II we introduce the model Hamil-
tonian, characterize the trimer as a subsystem, and define
the required representation for the discussion of the ther-
malization process. Numerical demonstration of dynam-
ical localization is provided in Section III. The ergodicity
measure whose objective is to identify the mobility edges
of the chaotic sea, is defined in Section IV; it is used
for the analysis of classical localization in Section V and
of quantum localization in Section VI. Finally, in sec-
tion VII we emphasize the non-triviality of the observed
dynamical localization, as opposed to perturbative local-
ization on the one hand, and semiclassical non-ergodicity
on the other.

II. THE MODEL

Our building blocks are a pair of Bose-Hubbard
trimers, labeled by α = L,R. Each trimer is described
by the Hamiltonian

Hα =
U

2

3∑
j=1

n̂2
αj −

K

2

∑
j=1,3

(
â†αj âα2 + H.c.

)
. (1)

The operators â†αj and âαj , respectively, create or anni-

hilate a particle on site αj, while n̂αj = â†αj âαj counts
particles in this site. The parameter K is the tunneling
strength between neighboring sites, while U describes in-
teraction between two particles. In the absence of inter-
trimer coupling (as well as for our particular choice of
coupling, see below), the populations Nα =

∑
j n̂αj are

separately conserved. The total number of particles is
N = NL + NR. In our simulations we assume for sim-
plicity that NL = NR = N/2.

In order to simulate a thermalization process, the two
trimer subsystems are weakly coupled. For this purpose
we employ a nearest-neighbour interaction of particles
that occupy the same j-location,

H = HL +HR +Hc , (2)

Hc =
V

2

3∑
j=1

n̂Lj n̂Rj , (3)

with V denoting the nearest-neighbour interaction
strength. This extended Bose-Hubbard model [16, 17]
can be realized using the long-range dipole-dipole inter-
action between lattice-BECs of particles with electric or
magnetic dipole moments [18, 19].

The dimensionless parameters of the model are

u ≡ NU

K
= (intra-trimer nonlinearity) (4)

v ≡ NV

K
= (inter-trimer coupling) (5)

Without loss of generality we set the units of time such
that the hopping frequency is K = 1. This holds for all
the numerical results that will be presented.

In what follows, we refer to the exact many-body evo-
lution under the Hamiltonian of Eq. (2) as the quan-
tum dynamics. Its large-N classical limit is obtained
[20] by replacing the field operators âαj by c-numbers

aαj =
√
NαIαje

iϕαj , where the normalized occupations
Iαj ∈ [0, 1] and the phases ϕαj ∈ [0, 2π) are canonical
action-angle variables. Since the bosonic Hamiltonian
is formally equivalent to that of a coupled oscillators
system, one may use the traditional distinction between
classical and quantum descriptions of the same system
[20]. The commutation relations imply that the di-
mensionless Planck constant is ~eff = 1/Nα = 2/N . The
classical form of the Hamiltonian is obtained formally
in a straight-forward manner from the second-quantized
Hamiltonian using the above defined substitutions, and
the prescription Hcl = ~effH. This leads to

Hcl = HclL +HclR +
v

4

3∑
j=1

ILj IRj , (6)

with

Hclα =
u

4

3∑
j=1

I2
αj −

∑
j=1,3

√
IαjIα2 cos(ϕαj − ϕα2) . (7)

Thus we have only two dimensionless parameters u and v
that determine the (scaled) classical dynamics, while in
the quantum version we have the additional dimension-
less parameter ~eff.

A. The trimer

The chaotic dynamics of at least one subsystem is a
necessary ingredient in thermalization. The characteri-
zation of chaos for a single trimer is therefore essential
before considering the coupling between two such sub-
systems. The detailed description of the trimer and the
methodology of chaos determination are differed to Ap-
pendices A and B, respectively. Our main objective is
to set the range of energies in which the trimer is classi-
cally chaotic. The straightforward way to identify chaos
is to run classical simulations throughout phase space
for each value of the energy. This procedure is inefficient
and time-consuming. However, it is well established that
classical chaos can be determined from the level spacing
statistics of the quantum spectrum [21]. Thus, via one
diagonalization of the quantum Hamiltonian we obtain
the complete information on the chaotic energy range
for any value of the characteristic parameters. From the
same digonalization we can extract additional informa-
tion on the underlying chaos by considering the quantum
eigenstates. According to the eigenstates thermalization
hypothesis (ETH), a somewhat misleading term in the
present context, the eigenstates that dwell within the
classically chaotic phase space regions are expected to
be ergodically spread throughout them [22]. This ergod-
icity is reflected in the expectation value of observables,
which attain their thermal values.
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FIG. 1. (Color online) The spectrum of an isolated
trimer. Panel (a): Each point represents an eigenstate |ε〉
for Nα = 350 particles and u = 6, positioned according to its
energy ε, and the normalized expectation value of the middle
site occupation I2. The points are color-coded by inverse pu-
rity γ−1. Inset: the isolated trimer. Panel (b): the locally-
averaged level spacing correlation function 〈r〉 for Nα = 450.
The chaotic range is defined as the energies for which 〈r〉 lies
above the value (〈r〉Poisson + 〈r〉GOE)/2 = 0.458 that distin-
guishes between GOE and Poisson statistics. Vertical lines
indicate the lower and upper chaos borders (dashed) and the
self-trapping threshold (dotted). Panel (c): power spectra of
the trimer occupation I2(t), color-coded using a log10 scale.
Each column is the average spectrum for a different value of
ε. Dotted white boundaries enclose 97% of the total power.

Moderate-strength interactions in the trimer give rise
to chaos. However, stronger interaction may also cause
self-trapping, which is localization within an isolated part
of the energy surface that is surrounded by a (higher
or lower energy) forbidden region. The splitting of the
energy surface into separate, disconnected regions can
be reflected in a splitting in the distribution of the site
occupation.

When all the particles are condensed within a single
one-particle state (either site-state or some orbital that
constitutes a superposition of site states), the resulting
many-body state is known as “coherent state”; it is repre-
sented by a Gaussian like-distribution in phase space.The
spread of the eigenstate in phase space can be measured
by its purity (see definition in Appendix A). The in-
verse purity γ−1 estimates the number of one-particle
states that participate in the formation of the many-body
state. High purity of order unity implies that only a sin-
gle state is occupied. Low purity implies that the occu-
pation is fragmented; for a trimer eigenstate the lowest
purity is 1/3 (as there are three independent one-particle
states).

The spectrum of an isolated trimer (say, α = R) is il-
lustrated in Fig. 1a for u = 6. Each point represents an
eigenstate |εR〉 of the Hamiltonian HR, positioned hori-

zontally according to its eigenenergy ε ≡ 〈HR〉 /NR, and
vertically according to the normalized expectation value
of the middle site occupation, I2 ≡ 〈n̂2〉 /NR. The split
of the distribution of occupations in Fig. 1a provides a
clear numerical identification of the self-trapping border,
indicated by a vertical dotted line.

The points in Fig. 1a are color-coded by the inverse
one-particle purity of the eigenstates γ−1. Detailed
analysis of its implications is provided in Appendix A.
In the chaotic energy region one expects low purity,
because eigenstates are spread over large chaotic re-
gions of the energy surface. But the precise deter-
mination of the chaotic region requires further effort.
Fig. 1b displays the r-measure of level spacing statis-
tics (see Appendix B for definition and a detailed anal-
ysis). The value r ≈ 0.530 indicates RMT statistics,
the Gaussian orthogonal ensemble (GOE) in particu-
lar, that is expected for a chaotic repulsion of levels in
time-reversal invariant systems. This is opposed to the
value r ≈ 0.386 that indicates Poissonian statistics, in-
nate to quasi-integrable regions. Consequently, we iden-
tify the chaotic range 0.26 < ε < 1.23, based on the half-
way mark 〈r〉 > (0.386 + 0.530)/2.

The chaotic range has been further verified by direct
classical phase space analysis as in [12], inspecting the
Poincaré sections generated by trajectories at different
energies. Here we provide another piece of proof that
will become useful in later analysis. In the classical limit,
the Hamiltonian Eq. (7) describes the dynamics of cou-
pled non-linear oscillators. From it we can derive the
classical equations of motion for the occupations, and
then propagate them. For motion on an energy surface
Hclα (I1,2,3, ϕ1,2,3) = ε we can obtain classical power spec-
tra of the site occupations (see Appendix C). IT is shown
in Fig. 1c for the the central trimer site I2; the picture
for I1,3 is qualitatively similar. Within the central energy
region the classical motion has a wide frequency content,
which is the hallmark of chaos (see Appendix B).

B. Two uncoupled trimers

Considering the two trimers together, yet without in-
teraction, we obtain the energy landscape illustrated in
Fig. 2. Each point represents an eigenstate |E, x〉 of
HR +HL, positioned according to

E =
1

2
(εR + εL) , (8)

x = (εR − εL) . (9)

Note again that scaled units are used for these variables,
i.e. the hopping frequency is set to K = 1, and the trimer
eigenenergies are normalized per-particle. Note also that
in our previous work on the thermalization of a trimer-
monomer system [13], particle exchange was allowed and
x was the occupation difference. The physics of dynami-
cal localization does not depend on the nature of x.
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FIG. 2. Illustration of the spectrum for the non-interacting
(v = 0) double-trimer with u = 6. Each direct product eigen-
state ofHL +HR is represented by a point in the (E, x) plane.
For a large N these points form a dense lattice within the clas-
sically allowed range (marked by the black solid boundary).
The diagonal dashed lines indicate the lower and upper chaos
borders; the dotted lines indicate the self-trapping threshold.
Within the grey regions both trimers are quazi-regular. Mark-
ers show the initial locations of the semiclassical simulations
of Fig.5; filled markers further refer to the selected simulations
in Fig. 3. The color in the left half of the figure indicates the
value of the joint density of states. Inset: the configuration
of the double-trimer system. Adjacent sites within a trimer
are strongly coupled (solid lines), while sites that belong to
different trimers are weakly coupled (dashed lines).

Let us label the single trimer density of states by
g(ε). Considering two uncoupled trimers, their joint
density of states g̃(E0;x) with respect to x, within an
energy shell (E0, E0 + dE), is given by the product
g(E0 + x/2) g(E0 − x/2)dE, indicated by color in Fig. 2.
An ergodic distribution is defined as the microcanoni-
cal uniform occupation of all states. Therefore, up to a
normalization constant, this distribution is

Perg(x) ∝ g(E0 + x/2) g(E0 − x/2) . (10)

III. SPREADING AND ERGODIZATION

Below we describe the dynamics in terms of a proba-
bility distribution Pt(x). For an idealized thermalization
process of coupled chaotic subsystems one expects this
function to obey a Fokker-Plank equation [12], leading
to thermalization such that P∞(x) ∼ Perg(x). Here we
are dealing with a complicated non-homogeneous mixed
chaotic dynamics, therefore we cannot expect a simple
diffusive behavior. Still we do expect that the spreading
will look quasi-stochastic, meaning that the spreading
has the same rate if we plot it against the scaled time
t̃ = v2t. This should be contrasted with ballistic trans-
port, for which var(x) ∼ vt. The quasi-stochastic time
dependence is valid classically whenever the “diffusion”
along x is slow compared to the ergodization within the

subsystems (this is the weak coupling assumption). In
the quantum case it can be regarded as a Fermi-Golden-
Rule picture (FGR). We shall explain below that for very
small v the FGR breaks down, leading to trivial pertur-
bative localization, which is not of much interest for us.
Our focus is on couplings v that can be regraded as clas-
sically weak, but quantum mechanically large. This is
the regime where semiclassical perspective is most ap-
propriate, and this is also the regime where dynamical
localization effects are not trivial.

A. Quantum dynamics of coupled trimers

Preparing the double-trimer system in one of the
coupling-free eigenstates |E0, x0〉 described above, its
exact quantum dynamics is analysed via the time-
dependent probability distribution

Pt(E, x|E0, x0) = |
〈
E, x

∣∣e−iHt∣∣E0, x0

〉
|2 . (11)

The x range is divided into bins of arbitrary, but small
width δx. For a given initial state |E0, x0〉 we define the
coarse-grained distribution

Pt(x) =
∑

x<x′<x+δx

Pt(E, x
′|E0, x0) . (12)

Finally, we can average over a sufficiently long time to
obtain a relatively smooth saturation profile. Formally
we write:

P∞(x) = lim
t→∞

1

t

∫ t

0

Pt(x)dt . (13)

In fact, the exact saturation profile can be obtained
directly from the eigenstates of the Hamiltonian. Us-
ing the short notation |X〉 ≡ |E, x〉, and expanding each
state in the basis |En〉 of the full Hamiltonian H, the time
dependent distribution takes the form

Pt(X) =
∑
n,m

〈X|En〉〈En|X0〉〈X0|Em〉〈Em|X〉 ei(Em−En)t .

For a nondegenerate spectrum, upon time averaging, the
oscillating terms cancel out and one obtains the result
P∞(X) = Psat(X), where

Psat(X) =
∑
n

| 〈X|En〉 |2 | 〈En|X0〉 |2 . (14)

In the following, the term quantum saturation profile
shall always refer to the exact result of Eq. (14).

B. Semiclassical dynamics of coupled trimers

In the semiclassical picture, a quantum wavepacket is
represented by a “cloud” of phase space points initially
residing on the energy surface (E0, x) (see Appendix C).
This approach is similar to the truncated Wigner approx-
imation. Coupling the two trimers causes the cloud to
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spread within the accessible energy shell. For weak inter-
trimer coupling, if the dynamics is strictly ergodic within
the energy shell, the distribution Perg(x) of Eq. (10) is
obtained after a sufficiently long time, regardless of the
details of the initial preparation.

The semiclassical picture requires a large number of
time-dependent simulations. We assume an initial prepa-
ration that is represented by a microcanonical cloud of
1000 points, spread uniformly over Iαj and ϕαj values
corresponding to (E0, x0) as determined by the unper-
turbed Hamiltonians Hclα of uncoupled trimers. The full
numerical procedure is described in Appendix C. Individ-
ual points of the cloud are propagated under the canon-
ical equations of motion dbαj/dt = −i∂Hcl/∂b∗αj , where

bαj ≡ aαj/
√
Nα =

√
Iαje

iϕαj . The final distribution of
points Pt(x) is obtained by counting the number of points
falling within each bin (x, x+ δx) at a time t.

C. Quantum versus semiclassical simulations

Fig. 3 displays the results of representative quantum
and semiclassical simulations. The initial energy, E0,
is the same for all simulations, while the initial trimer
energy difference, x0, is different for each row of pan-
els (these initial conditions are marked in Fig. 2). The
value of v is different for each column. The probabil-
ity distribution P∞(x) in the long time limit (based on
time evolution for semiclassical simulations, or on the
saturation profile of Eq. (14) for quantum simulations)
can be compared with the ergodic distribution Perg(x)
that is indicated by the black line. We see that semiclas-
sical simulations come close to the ergodic distribution
for x0 = 0.01, 0.54, 0.91 but not for x0 = 1.19, irrespec-
tive of v. By contrast, quantum simulations are sensitive
to v, and either approach the ergodic distribution for a
more limited range of x than their semiclassical counter-
parts, or are completely non-ergodic. In the next section
our objective is to quantify this observation.

IV. ERGODICITY MEASURES

A. Microcanonical ergodicity measure

Attempting to quantify ergodicity, the first inclination
is to define a measure that would compare P∞(x) to
Perg(x). For that purpose we choose the overlap func-
tion

∆t(x) = Pt(x)− Perg(x)

ft =
∑
∆>0

∆t(x) ∈ [0, 1] (15)

A limiting value of f∞ → 0 indicates an ergodic simu-
lation, whereas f∞ → 1 is attained when the two dis-
tributions have almost no overlap, implying localization.
Though very simple, the above ergodicity measure gives

FIG. 3. (Color online) Semiclassical long-time probability
distributions P∞(x) evaluated at t̃ = 450 (black ◦), and quan-
tum saturation profiles Psat(x) (blue �), compared with the
ergodic distribution Perg(x) (solid black line). The initial en-
ergy is E0 = 0.74; the value of x0 varies with each row, while
the value of v varies with each column. The initial conditions
are marked by filled symbols in Fig. 2. The boxed number in
each panel indicates the value of f∞ evaluated from Eq. (15)
for the quantum saturation profiles. In all figures semiclassical
simulations are for a cloud of 1000 randomly selected phase
space points, initially uniformly covering the energy surface
(E0, x0). Quantum simulations correspond to direct product
states with NL = NR = 24, locally averaged over several
states lying in the range E = E0 ± 0.02 and x = x0 ± 0.025.

a reasonably good estimate that reflects the observed lo-
calization in Fig. 3. For a smooth distribution, as is the
case for semiclassical simulations with large clouds, or
quantum simulations with a large N , this measure be-
comes independent of the bin size δx.

Results for semiclassical simulations are presented in
Fig. 4. In panel (a) we plot ft against the scaled time
t̃ = v2t for E0 = 0.74 and for different initial conditions
x0. The dynamics display an initial transient followed
by a rapid decay. A steady state is reached by some
of the simulations already for t̃ ∼ 100. At t̃ ∼ 450
all simulations with x0 < 1 have reached the same value
ft ≈ 0.1. The transient time becomes exponentially large
for x0 > 1. In panel (b) we show ft at selected time in-
stances for the full range of x0 values. This plot demon-
strates clearly that there is some kind of “mobility edge”
at x0 ∼ 1, beyond which the system does not ergodize
within a physically reasonable time scale. The differ-
ent symbols establish the quasi-stochastic scaling with
respect to the strength of the coupling.

Evaluation of the ergodicity measure f∞ for semiclassi-
cal simulations with different initial energies is presented
in the top row of Fig. 5. These results are also incor-
porated into Fig. 7. We see that almost all simulations,
other than those lying initially within (or close to) the
self-trapped region, reach f∞ ≈ 0.1, indicating a near-
complete ergodization.
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FIG. 4. (color online) Classical ergodicity dynamics. For all
simulations E0 = 0.74. Panel (a): the ergodicity measure
of Eq. (15) as a function of time, evaluated for semiclassical
simulations with selected initial x0, see legend. Panel (b):
the ergodicity measure as a function of x0 at selected moments
of time, see legend. The selected values of t̃ and of x0 are
indicated by filled circles and stars on the horizontal axis of
panels (a) and (b) respectively. In panel (b) the different
symbols correspond to v = 0.2 (◦), v = 0.1 (4), and v = 0.05
(�). The simulations in panel (a) are for v = 0.1, but look
the same for other values of v provided the horizontal axis is
the scaled time t̃ = v2t.

B. An intrinsic ergodicity measure

It should be kept in mind that in a mixed phase space
system, containing both chaotic and quasi-integrable re-
gions, the energy surface as a whole is not ergodic. It
is only the connected “chaotic sea” region that can be
regarded as ergodic. Furthermore, in the quantum case
some peripheral regions of the sea may not be accessi-
ble, if the wavepacket has to percolate via sub-Planck
corridors. The naive comparison of P∞(x) and Perg(x)
is hence insufficient. Instead, we would like to adopt an
intrinsic definition of ergodicity that does not depend on
our prejudice regarding the phase space structure, and
does not involve Perg(x). Accordingly, below we use the
term ergodic region for the region in which there is no
memory of the initial conditions. It is the region where
P∞(x) becomes independent of x0. By contrast, in non-
ergodic regions the obtained P∞(x) depends on x0, with
the particular extreme case of localization, where P∞(x)
is peaked around the initial value x = x0.

In principle, a full comparison of the distributions
P∞(x) for different x0 is required for our memory-based
intrinsic ergodicity measure. In practice, for the purpose
of quantitative analysis it is more effective to consider
just a single moment of the long-time distribution, and
examine its sensitivity to x0. Due to the system’s mirror
symmetry, and since we set NR = NL, we choose for this

purpose the function

〈|x|〉∞ ≡
∑
x

|x|P∞(x) (16)

For plottting purpose this measure is normalized by xmax,
which is the highest classically-allowed value of x for the
given energy E0. The results for semiclassical simulations
are presented in the bottom row of Fig.5, and we see that
they are well correlate with the microcanonical f mea-
sure. Before considering the quantum results, that are
also displayed in Fig. 5, we discuss the issue of classical
localization.

V. CLASSICAL LOCALIZATION

The ergodic phase space region in Fig. 7 consists of
the (E, x) domains where f∞ is low. Outside of this re-
gion we distinguish between several classical localization
mechanisms (see Appendix A).

The first possibility is quasi-integrability due to quasi-
linearity. A single trimer is not chaotic in the linear, low
energy region of its spectrum. When two such trimers are
coupled (the lower corner of Fig. 7), if v is small enough
the dynamics is likely to remain quasi-inetegrable, and
therefore thermalization would be avoided. In fact, we
have to restrict all such statements, and point out that
due to Arnold diffusion we can always have thermaliza-
tion after an exponentially long time.

The second possibility is self-trapping which is local-
ization within an isolated part of the energy surface that
is surrounded by a (higher or lower energy) forbidden
region. A single trimer becomes self-trapped when its
energy is above a well-defined border and is therefore
dominated by interaction. When two self-trapped trimers
are coupled (the upper corner of Fig. 7), or when a self-
trapped trimer is coupled to a quasi-linear one (the left
and right corners of Fig.7), energy exchange is suppressed
due to the regular motion in each trimer.

By contrast, if a self-trapped trimer is coupled to a
chaotic one, energy exchange should occur. This is for-
mally like coupling an integrable oscillator to a chaotic
environment for which thermalization is expected (the
situation is similar to that of harmonic oscillator under
stochastic driving, or, in reverse, a system of chaotic os-
cillators under harmonic driving). However, in our cou-
pled trimer system it looks like we still have classical lo-
calization (the upper right strip of Fig.7). We claim that
in this region the ergodic time is finite, yet has become
exponentially large; an indication for that was already
given in Fig. 4. below we give an expanded explanation.

A quantitative way to estimate the rate of thermaliza-
tion is to use the the Fokker-Plank picture of [12]. The
diffusion coefficient D for spreading in x (within a nar-
row energy shell centered at E) is given by the classical
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FIG. 5. (Color online) Ergodicity and localization measures for representative simulations. Each column of panels corresponds
to simulations with energy E0 that is indicated at the top. Quantum results (empty markers) for system with NL = NR = 24
particles are based on saturation profiles that were locally averaged over states within E = E0 ± 0.02 and x = x0 ± 0.025.
Semiclassical results (filled markers) are evaluated for t̃ = 450, and are connected by a line. The initial conditions of the
simulations are indicated by markers in Fig. 2. Wherever applicable, the vertical lines mark the self-trapping energy, while
the gray areas indicate that both trimers are quasi-integrable. Top panels: the microcanonical ergodicity measure f∞ for
different values of v (see legend). The thick solid line at f ≈ 1 indicates the value ft=0. Bottom panels: the intrinsic
ergodicity measure, namely, the normalized mean value of |x|, for the same simulations. See text for details. The diagonal
thick line |x|∞ = x0 is expected to be followed if ergodicity is prevented by a strong localization effect.

version of the Fermi-Golden-Rule (see Appendix C):

DE(x) =
v2

8

3∑
j,k=1

∫ ∞
−∞

ω2Sjk(ω, εL)Skj(ω, εR)
dω

2π
, (17)

where εL,R = E ± x/2. This expression assumes that
the two subsystems are independent and weakly cou-
pled, and at least one of them has to be chaotic. The
spectral density Sjk(ω; ε) is the Fourier transform of
the cross-correlation function Cjk(τ) = 〈Ij(t+ τ)Ik(t)〉.
This linear-response expression implies that the dynam-
ics for different v values should be quasi-stochastic, mean-
ing that the spreading is the same irrespective of v when
plotted against the scaled time t̃ = v2t.

The results for D(x) are provided in Fig.6. A probabil-
ity distribution of D values (generated by using different
phase space trajectories with v = 0; see Appendix C) is
presented as a function of εR, while εL belongs to the
chaotic range. Whenever the ”R” trimer is self-trapped
(εR > 1.31), the range of frequencies associated with the
motion becomes narrow, as in Fig. 1c. This leads to ex-
ponentially small result. Also for small εR the diffusion
coefficient becomes small, but not exponentially small.

Summarizing, thermalization in classical context is
generally expected whenever either one or both subsys-
tems are chaotic. In our previous work on the trimer-
monomer system, ergodization is obtained whenever the
trimer is chaotic despite the integrability of the monomer.
However, here we have encountered a situation where the

expected thermalization process is suppressed due to a
vanishingly small value of D. We note that having quasi-
stochastic spreading is a weaker claim than having diffu-
sion: in regions of mixed phase space the quasi-stochastic
spreading is likely to be anomalous. Therefore we prefer
to regard D in the present context as a measure for the

FIG. 6. The diffusion coefficient D(x). Each column is
a color-coded probability distribution (histogram) of D val-
ues, calculated using Eq. (17). The left trimer is chaotic
(εL = 0.48) while the energy of the right trimer (εR) is a
free variable. The distribution becomes wide for a mixed-
phase space. Exponentially small values are observed if the
”R” trimer is self-trapped (εR > 1.31). Vertical lines mark
the edge of the chaotic region (dashed) and the self-trapping
boundary (dotted).
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FIG. 7. (Color online) Overview of the double-trimer spec-
trum based on simulations as in Fig. 5. The color reflects
the ergodicity measure f∞. Low values correspond to er-
godicity, while high values imply localization. On the right
side semiclassical results are presented (they are independent
of v). On the left side quantum results are presented for
v = 0.1. The v dependence of the quantum results has been
demonstrated in Fig. 5 and has merely a quantitative effect.
Semiclassical simulations in regions of low chaoticity (top and
bottom corners) are missing, because they require intolerable
integration accuracy.

coupling between the subsystems and not as a transport
coefficient.

VI. QUANTUM LOCALIZATION

We apply the same analysis as in the classical case for
the quantum saturation distributions Psat(x), that are
obtained from Eq. (14) with different initial values x0.
The results are presented in Fig.5, and incorporated into
Fig. 7. In the later figure, each pixel is color-coded ac-
cording to the value of its ergodicity measure f∞. On
the basis of these results we make several observations:
(i) Unlike in the classical case, there is no x region where
the quantum spreading is strictly ergodic. The f mea-
sure is everywhere significantly larger than zero. (ii) In
the quantum case there is a strong v dependence. The
classical limit is approached as v is increased, but even
for a large v ergodicity is not attained. (iii) Even in the
central, low x0 region we observe some memory of initial
conditions. For example, focusing on E0 = 0.74, only for
the largest v do we observe a tiny region (|x0| < 0.25)
where the saturation is x0-independent. (iv) Contrary
to the classical case, ergodization is strongly suppressed
for large |x0| even in the low energy regime (small E0).

There is a subtle point that should be emphasized. In
the classical case, there is a vast x0 region where the nu-
merical simulations yield ergodic distributions, as indi-
cated by the low f measure and by the x0-independence

of 〈|x|〉∞. However, we can not rule out the possibility
of a slow classical ergodization over exponentially long
timescales. Thus, it is possible that the observed picture
of classical localization is only a transient. The same
reservation does not apply in the quantum case, since
the saturation profile after an infinitely long time can be
obtained via direct diagonalization using Eq. (14).

A. Perturbative localization

When the hopping between two unperturbed states
of the decoupled system is small compared with their
energy difference, elementary perturbation theory stip-
ulates that the true eigenstates of the coupled system
remain localized (no mixing). For time dependent dy-
namics, this means that the system cannot make a tran-
sition between the unperturbed eigenstates. This type of
perturbative localization is trivial, and we would like to
verify that the localization we observe is more profound.
For this purpose, we calculate and display in Fig. 8a the
x-basis participation number:

M ≡
[∑

x

P (x)2
]−1

. (18)

Whenever the localization is due to perturbative local-
ization we expect to observe M ∼ 2, with M = 2 being
the minimal value for x0 6= 0 due to the mirror symme-
try. This perturbative localization takes place whenever
the v-related couplings are small compared to the mean
level spacing. In our system the density of states becomes
smaller at peripheral (large |x|) regions, hence localiza-
tion there might be of this trivial type.

B. Localization due to breaktime

The saturation values of M , displayed in Fig. 8, are
calculated for the same simulations as in the central,
E0 = 0.741 column of Fig. 5. In regions where Msat

is significantly larger than unity, simple minded semi-
classical reasoning suggests ergodization. Thus, naively,
localization is not expected there. A more sophisticated
semiclassical reasoning does suggest the possibility of a
dynamical localization effect due to a breaktime in the
quantum-to-classical correspondence. We have refined
and tested this approach for the trimer-monomer sys-
tem [13], where we have demonstrated that the quan-
tum breaktime (and hence the regions where localization
shows up) can be deduced from careful semiclassical anal-
ysis. In the present study, we do not aim to repeat the
same type of analysis for the double trimer configuration,
but rather to determine whether non-trivial dynamical
localization shows up.

A general argument that supports our expectation to
observe non-trivial dynamical localization suggests the
existence of a mobility edge based on a semiclassical pic-
ture. According to the breaktime phenomenology, the
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quantum dynamics fails in following the classical spread-
ing if the classical exploration of phase space becomes
sub-ballistic. This is always the case for diffusion in
one dimension, and also (marginally) always the case
in two dimensions, but not in higher dimensions. Still,
in higher dimensions, we can expect the formation of a
mobility edge if the ballistic exploration becomes slow
enough (note that the term “exploration” is not syn-
onym for “spreading”. Standard diffusive spreading of
cloud in high dimension involves ballistic exploration of
phase space cells). We argue that slow rate of exploration
is typical for systems with mixed phase space. At the pe-
ripheral regions of the chaotic sea the time scales for mi-
gration between different regions become very slow. This
is indeed verified in the present example, where we wit-
ness, as |x0| approaches the phase space boundary, a very
small D, or even exponentially small D. Respectively, at
low energies the small D arises due to quasi-integrability,
while for large energies the exponentially small D is due
to self trapping. Indeed in the quantum simulations, see
Fig. 7, we witness a mobility edge in both cases.

Looking again on Fig. 8b we clearly see that in the
quantum case there is a residual memory of x0, which
is a signature of a non-trivial dynamical localization ef-
fect. This lack of quantum ergodicity persists also in
regions where M is significant larger than 2. The region
where we can identify a small quantum-ergodic region,
that features x0 independent saturation, appears only
for relatively large coupling (v = 0.2), and it is rather
small (|x0| < 0.25) as opposed to the classically observed
ergodicity.

C. The approach to saturation

Remember that the whole discussion of quantum local-
ization does not require any simulations, since the formal
saturation profile P∞(x) can be obtained via Eq. (14).
Optionally, we could have used Eq. (11) with some large
t. However, as explained below, the two procedures are
not practically equivalent.

Besides the quasi-stochastic time scale of the semiclas-
sical dynamics, we have another (much longer) time scale
that has to do with the quasi-degeneracies of the spec-
trum (see Appendix D). Due to the mirror symmetry of
the double-trimer system, it is clear that all eigenstates
have a definite parity and therefore the x-projected sat-
uration profile satisfies Psat(−x) = Psat(x). Contrary
to this expectation, some long-time-averaged simulations
give P∞(−x) 6= P∞(x). This happens due to quasi-
degeneracies in the perturbed spectrum that are present
for small v and can be barely resolved in a finite time
simulation. These quasi-degeneracies are remnants of the
exact v = 0 degeneracy of the |E,±x〉 states.

The time evolution of M∞/Msat is provided in Fig.8b.
This ratio can be regarded as a measure for the rela-
tive contribution of quasi-degeneracies. Whenever the
the initial state significantly overlaps quasi-degenerate

(a)

(b)

FIG. 8. (Color online) Saturation of the quantum spreading.
The parameters are the same as in the E0 = 0.741 column of
Fig. 5. Panel (a) The participation number for the quantum
saturation profile, locally averaged over states within E =
E0 ± 0.02 and x = x0 ± 0.025. The vertical line marks the
self-trapping energy. In the grey area both trimers are quasi-
integrable. Panel (b) The approach to saturation. The ratio
Mt/Msat is imaged as a function of time (here v = 0.2). In
the quasi-ergodic regime long times are required in order to
resolve the quasi-degeneracies, and to get unit ratio.

pairs, we get for long time Pt(x) = 2Psat(x) and therefore
Mt/Msat = 1/2. Much larger time scale is required in or-
der to recover P∞(x) = Psat(x). This discussion clarifies
our choice of 〈|x|〉∞ rather than 〈x〉∞ as a measure for
the characterization of the spreading profile. Strictly, the
latter will be always get to zero in the infinite time limit
irrespective of localization, merely due to the mirror sym-
metry of the system.

VII. SUMMARY

Localization is commonly viewed as an interference
phenomenon that leads to a breakdown of quantum-
classical correspondence. Such definition is not intrin-
sic: it requires an a priory definition of some reference
space and a measure that compares the actual quantum
spreading to a different (classical) dynamics. This point
of view is quite frustrating when dealing with small quan-
tized systems, because in practice the correspondence is
quite bad to begin with. We therefore prefer to view lo-
calization as lack-of-ergodicity, and to provide a measure
for intrinsic ergodicity. We have defined ergodicity as
the case of having some space within which the satura-
tion profile becomes independent of the initial conditions.
Accordingly, we could analyze separately the ergodicity
in the classical case and in the quantum case, and then
independently compare the two.

One should remember that several mechanisms can
lead to localization. The most trivial one, as in the case
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of a single trimer with large u, is self-trapping. This
is classical localization due to energetic stability within
an isolated region of the energy surface. A more com-
plex type of classical localization arises due to dynamical
stability of quasi-linear motion. The latter case is en-
dangered by Arnold diffusion, which, in practice, can be
ignored due to unrealistic time scales.

In realistic models of the the type we study, where
we have mixed phase space, the microcanonical ETH as-
sumption [22] is typically violated, because vast regions
of the energy shell are not accessible. Even if the classical
dynamics is ergodic on very long time scales, the quan-
tum will fail to penetrate peripheral regions due to dy-
namical or perturbative localization effect, and therefore
the expectation value of observable will not approach the
microcanonical as expected from ETH. Our definition of
quantum ergodicity does not make any assumption about
the ergodic distribution (microcanonical or not).

Our aim in this work was to highlight the emergence
of quantum dynamical localization effect in the thermal-
ization process of weakly coupled subsystems. The term
weak coupling is used in a classical sense; quantum me-
chanically, the coupling might lead to mixing of many
levels. In fact, the extreme case of weak coupling in the
quantum sense is not very interesting at all, because it
leads to a perturbative localization, indicated by M ∼ 2
participation numbers (i.e., no spreading happens). How-
ever, we do observe clear signs of quantum localization
even when the coupling is not trivially small, so that M
is large. We were thus able to demonstrate a quantum
mechanical loss of intrinsic ergodicity despite having non-
perturbative quantum mixing. This is the novel type of
quantum dynamical localization.

Acknowledgment.– The present line of study has
been inspired by discussions with Shmuel Fishman who
passed away recently (2-April-2019). This research
was supported by the Israel Science Foundation (Grant
No. 283/18).

Appendix A: The eigenstates of a single trimer

The Hamiltonian of a one-particle linear trimer
(Nα = 1 and u = 0) is diagonal in the basis

|sym〉 =
1

2
(|1〉+

√
2 |2〉+ |3〉) ,

|anti〉 =
1

2
(|1〉 −

√
2 |2〉+ |3〉) ,

|dark〉 =
1√
2

(|1〉 − |3〉) .

(A1)

with the corresponding energies

ωsym = −ω0 , ωanti = +ω0 , ωdark = 0 , (A2)

where ω0 = K/
√

2. We can define operators which anni-
hilate a particle in one of these orbitals,

âsym =
1

2
(â1 +

√
2â2 + â3) ,

âanti =
1

2
(â1 −

√
2â2 + â3) ,

âdark =
1√
2

(â1 − â3) ,

(A3)

Using the corresponding occupation operators n = a†a
the many-body Hamiltonian can be rewritten as

Htrimer = ω0(n̂anti − n̂sym) . (A4)

The classical values nj/Nα, or the quantum expectation
values 〈nj〉 /Nα, are denoted by Ij .

If the spectrum of the trimer Hamiltonian was pre-
sented on a 2D grid (ε, Idark) it would form a triangu-
lar lattice of points representing all possible occupations,
with corners at (−ω0, 0), (0, 1), and (ω0, 0). These cor-
ners correspond to coherent states, meaning that all par-
ticles occupy a single orbital. More generally, each eigen-
state can be characterized by its one-particle purity. For
this purpose we defines the one-particle probability ma-
trix

ρ
(1)
jk =

1

N

〈
â†j âk

〉
. (A5)

The purity is then defined as

γ = purity = trace
{

[ρ(1)]2
}
∈ [1/3, 1] . (A6)

The inverse purity tells us what is the number of one-
particle states (whether orbitals or site states) that “par-
ticipate” in the formation of the many-body state, rang-
ing from one (e.g., for coherent states) to three (maxi-
mally mixed states).

Once the interaction is turned on (u > 0), the situation
changes. The energy landscape is illustrated in Fig. 9.
At the low energy range one has remnants of (almost)
unperturbed eigenstates (purity ≈ 1). In the upper en-
ergy range one should distinguish between two borders
whose determination is discussed in Appendix B. The
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first one is the edge of the chaotic sea: up to this en-
ergy each eigensate resembles a random wave that dwells
on the classically-chaotic part of the energy surface (pu-
rity ≈ 1/3). The second border is the threshold for self-
trapping: above this value the energy surface is composed
of 3 disjoint regions around Ij ∼ 1 with j = 1, 2, 3, with
classical clouds being unable to migrate between these
regions. Quantum mechanically, we see the formation of
states belonging to two distinct types: states that pre-
dominantly occupy the middle site (purity ≈ 1), or cat
superpositions of states that are self-trapped in either
site 1 or site 3 (purity ≈ 1/2).

Appendix B: Chaotic range determination

Chaotic classical motion can be identified by directly
observing the dynamics of individual trajectories on var-
ious energy surfaces, for example, via plotting Poincaré
sections. Another possibility is to inspect the power spec-
trum for a variable of interest: a defining property of a
chaotic motion is that the Fourier transform of a fluctu-
ating variable exhibits a continuous frequency spectrum.
By contrast, the Fourier spectrum of a regular trajectory
is made of zero-width delta peaks.

Alternatively, the underlying classical chaos is indicted
in the spectral statistics of the many-body system. Let
εn be an ordered set of energy levels, and sn ≡ εn+1 − εn
the nearest-neighbor level spacings. Following Ref. [23]
we consider the ratios

rn =
min {sn, sn+1}
max {sn, sn+1}

∈ [0, 1] (B1)

For classically integrable systems with two or more de-
grees of freedom, the quantum levels typically tend to
cluster. If a parameter in the Hamiltonian is varied, level
crossing may be observed. The levels appear to arise from
uncorrelated events in a Poissonian random process, re-
sulting in the probability distribution P (r) = 2/(1 + r2)
[23]. Its average value 〈r〉Poisson ≈ 0.386 is therefore con-
sidered representative for integrable classical motion.

In the opposite case, for classically nonintegrable sys-
tems whose phase space is dominated by chaos, the lev-
els are correlated and a strong repulsion is observed. For
such systems the spectral statistics are typically modeled
by random matrix theory methods [21]. In particular,
the Gaussian orthogonal ensemble (GOE) is employed
for time-reversal invariant systems. A numerical estimat-
tion of the distribution of r yields 〈r〉GOE ≈ 0.530 [23];
this value is indicative of fully chaotic classical motion.

A practical determination of the chaotic energy range
is achieved by locating the energies at which the distribu-
tion of r values agrees to an equal degree with both lim-
iting cases. In Fig.1b we plot the local average 〈r〉, taken
over many levels within a small energy window, based on
the spectrum of the trimer Hamiltonian, Eq. (1). Chaos
is predominant for 0.26 < ε < 1.23, since in this region of
the spectrum we have 〈r〉 > (〈r〉Poisson + 〈r〉GOE)/2.

Remarks.– One should be careful when considering
energies lying in the parts of the spectrum where the
density of states is low. The number of levels should
be sufficient for meaningful statistics, otherwise the local
average 〈r〉 becomes strongly dependent on the size of
the averaging window. In Fig. 1b those bad regions were
removed.

Additionally, when evaluating the distribution of r val-
ues one must take into account only levels with the same
values for all conserved observables except the Hamilto-
nian. For the trimer this implies using only states of same
parity (see Appendix D).

The trimer spectrum.– A detailed examination of
Fig. 1b shows that fully chaotic classical dynamics is ex-
pected in the range 0.45 < ε < 1, where 〈r〉 ≈ 〈r〉GOE.
Indeed, as verified by Poincaré sections, a typical phase
space trajectory explores the entire energy surface. For
other energies, where 〈r〉 is lower, the phase space is
mixed; here regular “islands” exist within a chaotic “sea”.
In both the low- and high-energy edges of the spectrum
we have 〈r〉 ≈ 〈r〉Poisson, indicating quazi-integrability, as
explained below.

The trimer landscape.– The trimer energy land-
scape is presented in Fig. 9. Close to the ground state,
I1 ≈ I2 ≈ I3 everywhere on the energy surface. The clas-
sical Hamiltonian, Eq. (7), is predominated by its lin-
ear term; without a sufficiently strong nonlinearity chaos
cannot develop. At high energies the situation is oppo-
site: here the nonlinearity is too strong, causing the phase
space to fragment into isolated regions above ε = 1.31
(self-trapping). A phase space trajectory remains for-
ever trapped in its initial region, and hence can never
explore the entire energy surface. This reduced explo-
ration means that chaos cannot develop, and hence quazi-
integrability is restored. (In fact, a weaker form of self-
trapping appears already for ε > 1, when some trajecto-
ries become bounded to one side of the line I1 = I3 for
very long times. This is the cause of the sudden increase
in the dispersion of D(x) in Fig. 6).

Appendix C: Classical simulations

Constructing a semiclassical cloud.– The initial
condition for any semiclassical simulation is a cloud of
1000 points in the phase space of the double-trimer,
uniformly distributed over the entire energy surface
(εL0, εR0), or equivalently, (E0, x0). Below we outline
the procedure used to generate this distribution.

Consider a single trimer and let the set
P = {I1,2,3, ϕ1,2,3} represent a phase space point
belonging to an energy surface ε0. First, a large number
of points is generated by making random draws from
a uniform distribution, taking ϕ1,2,3 ∈ [0, 2π) and
I1,2 ∈ [0, 1]. The third occupation is calculated from
I3 = 1− I1 − I2; all points for which I3 < 0 are nonphys-
ical and thus discarded. Next, we use Eq. (7) to evaluate
the energies εP associated with each point. Whenever
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FIG. 9. (Color online) Energy surfaces of the trimer projected onto I-space. Each surface is numerically represented by a
uniform microcanonical cloud of classical points. The color reflects the projected (normalized) density of the points, and hence
provides the (normalized) local density of states. The interaction parameter is u = 3. The entire spectrum lies within the range
(−0.18, 1.66). Self-trapping is observed above ε = 1.31.

the result is too far from the required value (in practice,
when |εP − ε0| > 10−4), that point is discarded. Finally,
after collecting 1000 good points for each trimer, we
pair them at random (taking one from each trimer)
and evaluate the complex amplitudes bαj =

√
Iαje

iϕαj .
Dynamics of the entire semiclassical cloud are generated
by independently propagating each point under the
equations of motion dbαj/dt = −i∂Hcl/∂b∗αj , where Hcl
is given by Eq. (6).

Trimer power spectrum.– Consider a trimer phase
space trajectory moving on an energy surface ε. The tra-
jectory generates a fluctuating variable Ij(t), for which
we define a scaled Fourier transform

Yj(ω) ≡ lim
T→∞

1√
T

∫ T

0

Ij(t)e
−iωtdt . (C1)

The fluctuations of Ij(t) is quantified by its power spec-
trum,

Sjj(ω; ε) = |Yj(ω)|2 . (C2)

When the phase space is fully chaotic, each trajectory
eventually explores the entire energy surface, and there-
fore has the same frequency content. However, a numer-
ical estimate of Yj(ω) is always limited by total simula-
tion time T and the resolution dt; to reduce inaccura-
cies in Sjj(ω; ε), one can average over the spectra gener-
ated by several trajectories. Furthermore, in the case of
a mixed phase space each trajectory may have a differ-
ent frequency content, depending on the explored phase
space regions. A microcanonical averaging (i.e., over a
cloud of trajectories initially uniformly spread over the

energy surface) gives a smoothed power spectrum rep-
resentative of the typical motion on the energy surface.
The power spectrum of I2(t), generated by such a cloud
containing 1000 trajectories for each value of ε, is pre-
sented in Fig. 1c.

More generally we define also cross-correlation func-
tions,

Cjk(τ) ≡ 〈Ij(t+ τ)Ik(t)〉 . (C3)

Their Fourier transforms are

Sjk(ω; ε) = Y ∗j (ω)Yk(ω) , (C4)

Diffusion coefficient.– The classical equations of
motion for the double trimer system yield

ẋ = −v
4

3∑
j=1

[İRj(t)ILj(t)− İLj(t)IRj(t)] . (C5)

The spreading in x can be estimated from

〈[x(t)− x(0)]2〉 =
(v

4

)2 3∑
j,k=1

∫ t

0

∫ t

0

dt′dt′′

× 〈 [İRj(t
′)ILj(t

′)− İLj(t′)IRj(t′)]
× [İRk(t′′)ILk(t′′)− İLk(t′′)IRk(t′′)] 〉 (C6)

where 〈· · · 〉 implies a microcanonical average. Assum-
ing that the motion is chaotic, it makes sense to re-
gard the I(t)-s as stationary noisy functions. For small
enough v we can write the right-hand-side in terms of
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FIG. 10. Testing the validity of Eq. (17). The line shows
the mean value of the D distribution in Fig. 6. Symbols cor-
respond to a linear fit ∂var(x)/∂t = 2D, using semiclassical
simulations for a double trimer with v = 0.01. In all cases
εL = 0.48.

cross-correlation functions of the ”L” and ”R” uncoupled
trimers:

t×
(v

4

)2 3∑
j,k=1

∫ t

−t

[
2
d

dτ
C

[L]
jk (τ)

d

dτ
C

[R]
jk (τ)

−C [R]
jk (τ)

d2

dτ2
C

[L]
jk (τ)− C [L]

jk (τ)
d2

dτ2
C

[R]
jk (τ)

]
dτ . (C7)

Assuming a short correlation time, and disregarding drift
(that can be always neglected for short times) we deduce
that

var(x) =
v2t

4

3∑
j,k=1

∫ ∞
−∞

ω2Sjk(ω; εL)Skj(ω; εR)
dω

2π
.

(C8)

From the definition var(x) = 2Dt we arrive to Eq.(17). In
practice, D is evaluated from finite trajectories. Since the
trimer phase space is mixed, some of those trajectories
are quasi-integrable and some are chaotic. Thus, from
an ensemble of trajectories we get some distribution of
D values, as shown in Fig. 6.

The theoretical estimate of Eq. (17), where formally
v → 0, can be tested by using semiclassical simulations
with a small v. We evaluate ∂ var(x)/∂t = 2D for the
time range 0.01 < v2t < 0.1, where to a good approxima-
tion the variance grows linearly with time. The results
are shown in Fig. 10 (symbols) as a function of εR, with
εL being kept constant. The theoretical D value is given
by the mean of the D distribution for the same values
of εL,R (line). The agreement is excellent across a wide
range of energies, even when the “R” trimer is within the
self-trapping region (εR > 1.31).

Appendix D: Symmetry properties of eigenstates

A single trimer, shown in the inset of Fig. 1a, has one
nontrivial symmetry operation – the exchange of its edge
sites. Hence, the eigenstates of the trimer Hamiltonian

Hα of Eq. (1) are either symmetric or antisymmetric un-
der this operation. The Hilbert space in which they reside
is split into two subspaces, each containing only states of
the same parity, with the symmetry imposing I1 = I3 for
all eigenstates.

The double-trimer, shown in the inset of Fig. 2, con-
tains three nontrivial symmetry operations: P1 that ex-
changes edge sites in both trimers, (α1↔ α3, α = L,R);
P2 that exchanges all corresponding sites between the two
trimers, (Lj ↔ Rj, j = 1, 2, 3); and their product P1P2.
We label the states symmetric/antisymmetric under P1

(P2) by S,A (s, a), respectively. The resulting four irre-
ducible representations (correspondingly labeled by Ss,
Sa, As, and Aa) are associated with four Hilbert sub-
spaces. A new basis composed of superpositions of Fock
states, each one symmetric or antisymmetric under P1
and P2, takes the Hamiltonian of Eq. (2) into a block-
diagonal form, with approximately equal-sized blocks.
This transformation significantly reduces the computa-
tional difficulty of exact diagonalization, making it pos-
sible to reach higher particle numbers.

When discussing energy exchange between weakly cou-
pled trimers, the most intuitive energy basis is the set of
direct products of the singe-trimer eigenstates, |E, x〉 =
|εn〉 |εm〉, with the mean energy E = εn/2 + εm/2 and
the imbalance x = εn−εm. A generic direct product (for
x 6= 0) is a superposition of two same-energy states |E〉
belonging to one of the combined subspaces S = Ss+Sa
or A = As+As,

|E,±x〉γ =
1√
2

(|E〉γs ± |E〉γa) , γ = A,S (D1)

The special case of x = 0 consists of the states

|E, 0〉S = |E〉Ss . (D2)

The spectral properties of all four subspaces are similar,
and hence the dynamics generated by them will also be
similar. We consider only eigenstates belonging to the
combined A = As+As subspace, thus avoiding the com-
plications induced by the |E, 0〉 states.

For v = 0 both the direct products |E0,±x0〉 and their
superpositions |E0, x0〉±|E0,−x0〉 are energy eigenstates.
For a finite, but very small v the spectrum consists of
pairs of near-degenerate states that evolve from these two
superpositions. In reverse, for a sufficiently small v the
states |E0,±x0〉 are mainly combinations of two near-
degenerate eigenstates, and hence the flow of probability
from x0 to −x0 is extremely slow. Even for very long
simulation times we may observe the probability distri-
bution spreading over a wide range of x yet not crossing
over to the other side of the x-axis. This creates two dis-
tinct time scales — one for spreading (by diffusion), and
the other for saturation (by tunneling).
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