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Adiabatic passage through chaos
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We study the process of nonlinear stimulated Raman adiabatic passage within a classical mean-
field framework. Contrary to the prevailing dogma, the breakdown of adiabaticity in the interacting
non-integrable system, is not related to bifurcations in the energy landscape, but rather to the
emergence of quasi-stochastic motion that drains the followed quasi-stationary state. Consequently,
faster sweep rate, rather than quasi-static variation of parameters, is better for adiabaticity.

Adiabatic passage is a major tool of quantum control
and quantum state engineering. For two-level systems,
the Landau-Zener-Stuckelberg-Majorana linear crossing
[1–4] has been a prominent paradigm. Three level con-
figurations offer, in addition to Landau-Zener-like rapid
adiabatic passage (RAP) schemes, also the possibility of
stimulated Raman adiabatic passage (STIRAP) [5, 6] in
which an interference-induced dark state supports the ef-
ficient transfer of population from source to target state
without projection onto an intermediate (often sponta-
neously decaying) state.

Advances in the field of Bose-Einstein condensation
(BEC) have triggered great interest in the application
of adiabatic passage to many-body interacting systems.
Two-mode adiabatic schemes were modelled by the Bose-
Hubbard dimer Hamiltonian, using either classical non-
linear mean-field theory [7–13] or quantum many-body
methods [11, 14–19]. Transfer efficiency was found to
have a power-law dependence on the sweep rate, with
an unavoidable nonadiabatic fraction beyond a critical
interaction strength. Similar results were obtained for
coupled atomic and molecular condensates [20–28]. The
common denominator for all these studies is the quest for
energetic stability: Nonlinear instability is attributed to

the emergence of a separatrix in the energy landscape.

The same energetic stability paradigm was adopted
for adiabatic passage in the three-mode trimer [30–34]:
The stationary points (SPs) of the energy landscape were
found as a function of time, resulting in a bifurcation
diagram that reflects topological changes in the energy
landscape. Such bifurcations, notably the ’horn’ avoided
crossing in the nonlinear STIRAP case [30], were as-
sumed to cause the breakdown of adiabaticity. However
the three-mode system offers richer physics due to its
inherent nonintegrability. Specifically, dynamical stabil-

ity should be distinguished from energetic stability, and
different dynamical domains can coexist on the same en-
ergy surface [29]. The bifurcation diagram lacks essential
information on this mixed chaotic phasespace structure.

Outline.– We show that the adiabatic passage effi-
ciency is drastically affected by the appearance of chaotic

regions, whose existence is not related to the SP bifur-

cation diagram. Consequently the analysis of adiabatic
passage goes beyond the prevailing energetic stability

paradigm. Specifically, reduced efficiency in STIRAP is
observed even in the absence of avoided crossings. We es-
tablish that the breakdown of adiabaticity occurs during
specific time intervals in which the followed-SP becomes
immersed in chaotic strips on the same energy surface.
One outcome of this novel breakdown mechanism, is that
adiabaticity may be restored by faster variation of the
control parameter, so as to guarantee that the chaotic
interval is traversed before ergodization takes place.

STIRAP.– Many-body STIRAP is modelled by the
time-dependent Bose-Hubbard trimer Hamiltonian [30,
35–42] for N particles in three second-quantized modes:

H = En̂2 +
U

2

3
∑

j=1

n̂2
i (1)

− 1

2

(

Ωp(x)â
†
2â1 +Ωs(x)â

†
3â2 + h.c.

)

.

Here, âj , â†j are boson annihilation and creation oper-

ators with associated occupation operators n̂j ≡ â†j âj .
The interatomic interaction is U , while E is equivalent to
the one-photon detuning of the optical scheme [5, 6]. In
STIRAP, the couplings are Gaussian Stokes and Pump
pulses Ωs,p(x) = Ke−(x−xs,p)

2

which depend on the di-
mensionless parameter x. The standard realization is a
simple constant-rate sweep x(t) = t/τ , with a ‘counter-
intuitive’ sequence tp − ts = (xp − xs)τ > 0 (see Fig.1a).
The system is prepared in the first mode (n1(0) = N).
For U = 0, an adiabatic sweep transfers the population
to the third mode (n3(∞) = N) by following a coherent
dark eigenstate that does not project on the intermedi-
ate mode at any time (n2(t) = 0). The studied effect is
the breakdown of this adiabatic 100% efficiency in the
presence of repulsive interactions (U > 0).

Classical dynamics.– In classical mean-field theory,
field operators are replaced by c-numbers âj 7→ aj ≡√
nje

iφj . Rescaling aj 7→ aj/
√
N , and t 7→ Kt, we obtain

the nonlinear Schrödinger equations [30]:
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FIG. 1. (color online) (a) The STIRAP counter-intuitive
pulse scheme. Here and throughout the manuscript, the
shaded intervals correspond to the range where chaos leads to
breakdown of adiabaticity as explained in the main text, while
vertical dashed lines mark the location of the horn avoided
crossings. The interaction parameter is u = 0.2. Here and in
all subsequent figures we set ε=0.1 for the detuning. (b) The
effective interaction parameter ueff(x) for the same u. Addi-
tionally we plot the chaoticity measure ts, see Fig.4 for its defi-
nition. (c) The adiabatic E[SP] energies for the same u. The
followed state corresponds to the middle curve. (d) Emer-
gence of the horn state. The E[SP] of the followed state is
zoomed for u = 0 (dotted gray), u = 0.1 (dashed black), and
u=0.101 (solid magenta).

where the dimensionless parameters are the interaction
u = NU/K, the detuning ε = E/K, and the couplings
gp,s = Ωp,s/K. We also define the effective nonlinearity
ueff(x) = u/(g2p(x) + g2s(x))

1/2. The latter is largest at
the beginning and at the end of the sweep, where the
linear coupling terms are small, see Fig.1b.

Bifurcation diagram.– The x-dependent SPs stud-
ied in [30], satisfy iȧ = µa at fixed x, where µ is the
chemical potential. For u = 0 there are three SPs, corre-
sponding to the adiabatic eigenstates of linear STIRAP
[6]. In the presence of interaction the SPs bifurcate if the
effective interaction ueff(x) is large enough, i.e. at early
and late times, as shown in Fig.1c. For u > ε the ’horn’
avoided crossing appears [30], as illustrated in Fig.1d. As
the nonlinearity (u) increases, more SPs emerge.

Irrelevance of bifurcations.– In the spirit of the
two-mode energetic stability paradigms, the loss of adi-
abaticity in the nonlinear three-mode STIRAP scheme,
was attributed to the appearance of the horn crossing
[30]. However, a careful inspection of the nonlinear STI-
RAP process shows that the interaction-induced break-
down of adiabaticity goes beyond the bifurcation diagram
analysis. In fact, as shown in Fig.2a, inefficient trans-
fer in the adiabatic limit (ẋ → 0) is obtained even for
u < ε, where no horn crossing is present. Note that the
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FIG. 2. (color online) The evolution of the site populations
is plotted versus x(t). The locations of the horn crossings (if
exist) and of the chaotic intervals of Fig.1ac are indicated.
(a) Failure of STIRAP in the absence of SP bifurcations:
here u = 0.8ε is below the critical value for obtaining the horn
crossing. The sweep rate is ẋ/K = 6× 10−5. (b) Recovery of
adiabatic passage when the sweep rate is increased (ẋ/K =
6× 10−4) during the marked chaotic intervals. (c) Failure of
STIRAP for u=0.22, with initial conditions that bypasses the
horn crossing: the process is launched at the adiabatic state
after the avoided crossing. Sweep rate is ẋ/K = 6 × 10−3.
(d) For the same interaction strength, efficiency is recovered
due to faster sweep (ẋ/K = 3 × 10−2) during the chaotic
interval.

population oscillations that indicate non-adiabaticity, are
boosted only during the two marked narrow intervals in
Fig.2a, for which the adiabatic bifuraction diagram ex-
hibits no special nonlinear features. Moreover, as demon-
strated in Fig.2c, while for u > ε the horn crossing does
appear in an early stage, adiabaticity breaks down even
if the system is initiated after it. Here too, the growth
of population oscillations does not correlate with the lo-
cation of the avoided crossing or any other feature in the
bifurcation diagram.

Another unique finding is the dependence of the trans-
fer efficiency on the sweep rate. Strangely enough, the
efficiency increases for faster sweep rates. In fact, as
demonstrated in Fig.2b and Fig.2d, adiabaticity can be
restored by speeding up the sweep process only during
the well-defined marked intervals mentioned above. This
prescription obviously has nothing to do with bifurca-
tions of stationary solutions.

We thus conclude that the breakdown of adiabaticity
in the quasi-static limit takes place irrespective of the
bifurcation diagram. Below we establish that a different
mechanism is responsible for this breakdown.

Passage through chaos.– In Fig.3, we show repre-
sentative Poincare sections for several x values during the
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FIG. 3. (color online) Poincare sections for the frozen (time-
independent) Hamiltonian for representative values of x. Here
u=0.22. Each x-panel corresponds to the dynamics at the en-
ergy E = E[SP] of the followed-SP. The cross section of the
trajectories is taken through the n2 = n2[SP] plane of the 3D
energy surface. We use polar coordinates z = (ϕ, r) where
ϕ = ϕ1−ϕ3 is the phase difference, and r = (1− (n/N))/2
reflects the population imbalance n = n1−n3 ∈ [−N,N ]. Ma-
genta dots correspond to a semiclassical cloud, initially local-
ized around the followed-SP. Gray shading marks energeti-
cally forbidden regions. Note that these panels depict the adi-
abatic sequence up to the middle point x ∼ 3. The Poincare
sections at later times mirror the presented panels, and con-
tain a second chaotic interval.

adiabatic passage. The Poincare sections are taken at the
followed adiabatic energy E = E[SP]. Coordinates are
chosen such that the radius corresponds to the popula-
tion imbalance n = n1−n3, and the azimuth corresponds
to the relative phase ϕ = ϕ1−ϕ3. It is important to clar-
ify that the observed structures do not reflect the topog-
raphy of the energy landscape, but correspond to various
periodic orbits, invariant tori, and chaotic regions on the

same energy surface. The plotted sections contain a sin-
gle SP that supports the followed adiabatic eigenstate,
while the other ’fixed-points’ are in fact periodic orbits.
In each section, we plot the evolution of a cloud that is
launched around the followed-SP.

The sequence of Poincare sections clearly reveals the
mechanism that is responsible for the breakdown of the
STIRAP efficiency. At early times (Fig.3, x = 1.1818)
the two coupling pulses are too weak to induce transitions
between the trimer sites and the dynamics is interaction-
dominated. The evolution is restricted to self-trapped
trajectories, and the followed SP is energetically stable: it
is surrounded by an energetically forbidden region (gray).
As the coupling increases this forbidden region disap-
pears and an intermediate non-linear resonance shows
up as a ‘belt’ in the Poincare section. The presence of
this belt structure becomes prominent as x is increased
(Fig. 3, x = 2.3939). At larger x, the belt expands,
and a chaotic strip is formed along its border. The en-
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FIG. 4. (color online) Quasi-stationary spreading dynamics in
the chaotic strip. (a) Time evolution of the population imbal-
ance P1−P3 of representative trajectories in the semiclassical
cloud, for u=0.1 and fixed x = 2.7273. (b) The resulting vari-
ance growth of the initially localized cloud for u = 0.1 (dotted
blue), 0.2 (dashed red), 0.3 (solid orange), with fixed x within
the chaotic range. The spreading is ballistic with a stochas-
tic component. The spreading time ts to double the initial
variance is numerically extracted. (c) The dependence of the
spreading time ts on x for u = 0.1, 0.2, 0.3 (line types same
as in b). Outside of the chaotic intervals ts = 0 means ‘no
spreading’. From here we find, for the given u, the chaotic
interval width ξs. The associated limiting ts is the minimal
value within this chaotic interval. (d) The dependence of ξs
(×) and ts (◦) on the interaction u.

closed ’island’, which contains the followed-SP, shrinks
down (Fig.3, x = 2.6970) until the SP hits the chaotic
strip (x = 2.7576). The intervals during which adia-
baticity breaks down correspond to the embedding of the
followed-SP in the chaotic strip, resulting in the quasi-
stochastic spreading of the initially localized distribution
over the chaotic region (Fig.3, x = 2.7879). The entire
progression takes place on a single 3D energy surface,
and has no trace in the adiabatic energy diagram. Thus
the breakdown of STIRAP efficiency is not due to the
destruction of energetic stability, but rather due to the
loss of dynamical stability.
Adiabaticity threshold.–The passage through chaos

mechanism also explains why the speed-up of the sweep
during the chaotic intervals can restore the STIRAP ef-
ficiency. The spreading during the chaotic intervals (see
Fig.4) is characterized by a typical spreading onset time
ts followed by ballistic expansion throughout the stochas-
tic strip. The draining of the SP region can be practically
avoided if the chaotic interval ξs is traversed on a time
scale which is short compared with ts. This leads to the
deduction of a lower adiabaticity threshold. Combining
with the standard adiabaticity condition we deduce that
high STIRAP efficiency is maintained for

ξs
ts

< ẋ <
1

3π
K (3)
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The upper limit condition is required for 96% efficiency
[6] and ensures small probability for non-adiabatic tran-
sitions in the transverse (energy) direction. If ẋ is con-
stant throughout the evolution, the adiabaticity thresh-
old condition translates into τ < ts/xs for the sweep
time. For larger u, the ξs range becomes larger, while
ts becomes smaller (see Fig.4d). Consequently the adia-
baticity threshold is monotonically increasing as a func-
tion of u.
Horn vs Belt resonance.– The horn avoided cross-

ing [30] can be regarded as a 1:1 resonance. It is born
provided u > ε such that the condition Un1 = E can be
satisfied. We realize that there is also a nonlinear 2:1
resonance that manifests itself if u > ε/2, and shows up
in the Poincare section as a belt that consist of two is-
lands. This belt is born far away from the followed SP,
but nevertheless it can choke the SP in a later stage.
We would like to clarify that weak non-adiabatic effects

due to horn resonance can be detected as well, but for re-
pulsive interactions (u > 0), as discussed above, they are
overwhelmed by the passage-through-chaos mechanism.
In contrast, for an attractive interaction (u < 0) the situ-
ation is quite different. The Poincare sections in this case
(not displayed) show that the SP does not go through
the chaotic strip of the non-linear belt. Consequently,
in the latter case, the passage-through-chaos mechanism
becomes irrelevant, and the failure of STIRAP is purely
due to the horn crossing effect.
STIRAP efficiency.– Our results are summarized in

Fig.5, showing the STIRAP efficiency as a function of
the interaction parameter u for several values of ẋ, as
well as the complimentary dependence on ẋ at fixed u.
The shrinking of the u region where STIRAP efficiency
is ∼100% as ẋ is decreased, reflects the breakdown of
adiabaticity due to the passage-through-chaos mecha-
nism. In the adiabatic regime (panels c-d), the range of
∼100% efficiency is restricted by the chaoticity threshold

(|u| < |ε|/2) below which no stochastic strips are formed.
We note that a similar plot in Ref. [30] corresponds to an
intermediate value of ẋ, hence it does not represent the
adiabatic regime.
Looking at the dependence of the efficiency on the

sweep rate (right panels of Fig. 5), we see that below
the chaoticity limit (panel e) there is no breakdown in
the slow sweep limit, and the efficiency is monotonically
decreasing with the rate, just as in the linear case. Once
chaos sets in (panels f-h), high efficiency can still be main-
tained if condition Eq.(3) is satisfied. As u is further in-
creased, the high efficiency range between the ’slow’ and
’fast’ sweep boundaries shrinks, until the two inequlities
of Eq.(3) can not be satsified simultaneously (panel h).
The transfer probability P3 can be written as a sum

Psurv + Pscat, where Psurv is the probability for survival
in the SP region, while Pscat the scattered component.
The former can be estimated as follows: The spread-
ing trajectories in the stochastic region have frequencies
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FIG. 5. (color online) STIRAP efficiency. P3 is the fraction
of the population that is transferred to the target state at the
end of the nonlinear sweep process. In the left panels it is
shown as a function of u for ẋ/K values of (a) 6×10−3, (b)
6×10−4, (c) 6×10−6, (d) 6×10−7. The vertical lines in the
lower left panels mark the chaoticity threshold u = ε/2. The
panels on the right present the same efficiency as a function
of the sweep rate ẋ for u values of (e) 0.05, (f) 0.1, (g) 0.2, (h)
0.3. Vertical lines border the sweep rate range determined by
the adiabaticity condition Eq.(3). The estimated SP survival
probability Eq.(4) is plotted as orange dashed line.

ω ∈ [0, 1/ts] with roughly uniform distribution. Trajecto-
ries that survive in the SP region satisfy ω × (ξs/ẋ) < 1,
hence their fraction is

Psurv = min{(ts/ξs)ẋ, 1} (4)

This estimate can serve as a lower bound for the STIRAP
efficiency as illustrated in Fig.4 panels f-h.
Conclusions.– We have found that the breakdown

of adiabaticity in three-mode adiabatic passage schemes,
such as STIRAP, is governed by far more intricate physics
than that of the nonlinear Landau-Zener paradigm. The
latter relies entirely on energetic stability, which is en-
dangered by bifurcations of the followed-SP. By contrast,
the failure of adiabatic passage in non-integrable sys-
tems is related to dynamical instability on a single multi-
dimensional energy surface that contains both quasi-
integrable and chaotic regions. One puzzling consequence
of this observation is the possibility to improve adiabatic-
passage efficiency by faster variation of the control pa-
rameters. Future work would focus on the quantum as-
pects of STIRAP in interacting many-body systems and
the implications for linear response theory.
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