Atomic, Molecular and Optical Physics
*Tracing and control of electronic motion in atoms, molecules, and nanostructures in space and time (4D). Progress in lightwave electronics. *Table-top XUV and soft X-ray laser-like sources. Nano-scale spatial resolution to optical science of attosecond pulses. *New dynamic imaging modalities – significantly improved spatial/temporal resolution, new contrast imaging for lifescience and nanotechnology. *And much more…
High-Energy Physics
In particle physics, spontaneous breaking of scale invariance is applied to confinement mechanisms of quarks and gluons, while in gravity and cosmology it relates to the present universe acceleration, quintessence scenarios and early universe inflation. In gravity and cosmology, it is implemented in the context of the Two Measures Theory, which I developed with Alex Kaganovich, addressing the above cosmological questions and providing an interesting solution to the 5th force problem. I also study the possibility of creating a universe in the laboratory starting from a bubble of false vacuum.
Astrophysics and Cosmology
Massive galaxy clusters bend light rays from background sources to form magnified, distorted, and multiple arcs. Using this Gravitational Lensing phenomenon, we can map the Dark Matter distribution of the lens, invisible otherwise. Thanks to the magnification power from lensing we can also access increasingly fainter and high-redshift (earlier) galaxies, and study the evolution of the first generation galaxies and the Reionization of the Universe.
Biological and Soft Matter Physics
We use single cell phase-contrast and fluorescence time-lapse microscopy to monitor morphological changes during the division of E. coli. To bypass the limitations of optical resolution, we process the images using pixel intensity values for edge detection. We study the dynamics of the constriction width, W, and find that its formation starts shortly after birth much earlier than can be detected by simply viewing phase-contrast images. A simple geometrical model is shown to reproduce the behavior of W(t). Moreover, the time-dependence of the cell length, L(t), consists of three linear regimes.
Condensed Matter Experimental
In the STM image shown, observed in our lab, we see some disordered white spots. The STM does not have chemical identification capability. Such chemical identification is observed macroscopically using macroscopic magnetic resonance – both of electrons and nuclei. We develop a magnetic resonance technique on the single atom level, observed via a Larmor frequency component in the tunneling current. We identify the type of atoms under the tip using their spectrum – for example the SiC hyperfine spectrum. Preliminary results showed the observation of the nuclear transitions (NMR) with the STM.
Condensed Matter Theory
It is possible to induce non-equilibrium steady state current, which required e.g. a radiation source. We have studied the non-monotonic dependence of the current on the intensity of the driving, and its statistical properties. We also have addressed questions that concern the relaxation of such current, and how it depends on percolation and localization properties of the model.