Atomic, Molecular and Optical Physics

Attosecond science and nanophotonics Lab


Eugene Frumker

*Tracing and control of electronic motion in atoms, molecules, and nanostructures in space and time (4D). Progress in lightwave electronics. *Table-top XUV and soft X-ray laser-like sources. Nano-scale spatial resolution to optical science of attosecond pulses. *New dynamic imaging modalities – significantly improved spatial/temporal resolution, new contrast imaging for lifescience and nanotechnology. *And much more…

Nonlinear dynamics

Nonlinear Dynamics and Biological Applications


Arik Yochelis

Simulation of waves in a model for intra-cellular actin polymerization and membrane ruffles

Biological systems show a plethora of fascinating self-organized behaviors that range from organ to cellular levels, such as spiral waves, pulses, synchronization, and steady states that are periodic in space. These non-equilibrium phenomena emerge through either spontaneous or forced symmetry breaking mechanisms. Employing nonlinear dynamics methods, we attempt to understand specific cases (localized waves in the inner ear) as well as gain general insights into the emergence of traveling waves with motivation taken from molecular motors, actin polymerization and cardiac system.

Condensed Matter Theory

Electronic Transport in the Nano-Scale


Yigal Meir

The surprising emergence of a localized electronic state in a QPC, leading to the "0.7 anomaly".

As electrons are confined to smaller and smaller spaces, quantum effects and strong correlations among the electrons start to dominate the underlying physics. In this area of research we investigate how such effects influence the electronic properties of miniaturized devices, such as quantum dots (QDs) and quantum point contacts (QPCs), and how such devices can be used to enhance our understanding of quantum mechanics and many-body physics.

Astrophysics and Cosmology

Virial shocks


Uri Keshet

In the hierarchical paradigm of large-scale structure formation, galaxy clusters are the largest objects ever to virialize. These island universes are thought to grow by accreting mass through surrounding large scale, strong yet elusive, virial shocks. A combination of analytical, numerical, and observational techniques has recently led us to the first detections of these shocks, thus providing new routes for studying large-scale structure, tracing the cosmic-web, constraining shock physics, and probing dark matter and dark energy.

Condensed Matter Experimental

Mechanical properties on the nm scale


Yishay Manassen

Strain map from Gd islands and Local young modulus of nanoparticles.

The scanning tunneling microscope is a device capable of observing an image with atomic resolution and is capable of observing physical phenomena on the atomic scale. In this study we are interested in the nm scale mechanical properties, normally studied macroscopically, which can vary in different locations on the surface. These properties are the stress and strain tensors, the elastic constants, the surface energy and stress. These values can be measured either using a external perturbation (the STM tip) or internal perturbation (a heteroepitaxial island, chemical reaction).

High-Energy Physics

Fluid-Gravity Correspondence


Michael Lublinsky

Illustration of a collision of two gold nuclei at RHIC.

Quark Ggluon Plasma (QGP) is created in Heavy Ion Collisions at the Relativistic Heavy Ion Collider (RHIC) and LHC. A striking discovery of RHIC is that QGP produced there is strongly coupled and behaves like a nearly perfect fluid with relativistic hydrodynamics being an appropriate description of the observed phenomena. Remarkably, hydrodynamical properties of QGP could be studied using gravitational theory of Black Holes in curved five-dimensional spaces. The fluid/gravity correspondence relates graviton`s absorption by a Black Hole to dissipation taking place in the QGP.

Biological and Soft Matter Physics

Internal dynamics of biological polymers: DNA molecules, actin filaments


Oleg Krichevsky

The dynamics of a semi-flexible polymer

The problem of polymer dynamics is rather old, going back to the 1930-s. How the stochastic thermal motion (diffusion) reveals itself in the dynamics of polymer segments which are bound by connectivity along the chain, by polymer stiffness, by topological constrains, by hydrodynamic and other interactions? The question does not have simple solutions in neither theory, computer simulations, or experiments. We have developed an original experimental approach to measure the dynamics of biological polymers, such as DNA at the level of single monomer with high temporal and spatial resolution.