Biological and Soft Matter Physics

Nonlinear Dynamics and Biological Applications

Arik Yochelis

Simulation of waves in a model for intra-cellular actin polymerization and membrane ruffles

Biological systems show a plethora of fascinating self-organized behaviors that range from organ to cellular levels, such as spiral waves, pulses, synchronization, and steady states that are periodic in space. These non-equilibrium phenomena emerge through either spontaneous or forced symmetry breaking mechanisms. Employing nonlinear dynamics methods, we attempt to understand specific cases (localized waves in the inner ear) as well as gain general insights into the emergence of traveling waves with motivation taken from molecular motors, actin polymerization and cardiac system.

Atomic, Molecular and Optical Physics

Attosecond Science and Nanophotonics Lab

Eugene Frumker

We are setting up a brand-new research laboratory of Attosecond Science and Nanophotonics in the Physics Department of the Ben-Gurion University. In our group, we focus on both experimental and theoretical studies at the interface of ultrafast nonlinear optics, attosecond science and nanoscience. More specifically, our work involves generation, measurement and control of the interaction of light and matter in atoms, molecules and nanosystems in space and time at extremely short (attosecond=10^(-18)sec) time scales. Our interests range from fundamental physical phenomena to applications.

Astrophysics and Cosmology

Gravitational Lensing and High Redshift Galaxies

Adi Zitrin

Galaxy Cluster Abell 370 and its famous gravitational arcs, imaged with the Hubble Space Telescope.

Massive galaxy clusters bend light rays from background sources to form magnified, distorted, and multiple arcs. Using this Gravitational Lensing phenomenon, we can map the Dark Matter distribution of the lens, invisible otherwise. Thanks to the magnification power from lensing we can also access increasingly fainter and high-redshift (earlier) galaxies, and study the evolution of the first generation galaxies and the Reionization of the Universe.

Condensed Matter Theory

Superfluidity and thermalization in low dimensional Bose-Hubbard circuits

Doron Cohen

Circuits with condensed bosons can support superflow. Such circuits, if realized, will be used as QUBITs (for quantum computation) or as SQUIDs (for sensing of acceleration or gravitation). We are studying the feasibility and the design considerations for such devices. The key is to develop a theory for the superfluidity in an atomtronic circuit. Such theory goes beyond the traditional framework of Landau and followers, since is involves ''Quantum chaos'' considerations.

High-Energy Physics

Effective Theories and Quantum Gravity

Eran Palti

Effective theories are simplified physics models which neglect high-energy processes. If those theories include gravitational physics, then the omitted high-energy physics must include that of Quantum Gravity. Not all effective theories can be consistently completed at high energies into Quantum Gravity. Those which can are said to belong to the Landscape of effective theories. While those which cannot are said to belong to the Swampland of inconsistent theories. We study what are the criteria which differentiate an effective theory in the Landscape from one in the Swampland.

Condensed Matter Experimental

Noise in strongly correlated systems

Grzegorz Jung

Normalized spectral density and R(T) for distinct resistivity states

To many physicist the subject of fluctuations appears esoteric and even pointless; spontaneous fluctuations seem nothing but an unwanted evil which only an unwise experimenter would encounter. In reality, noise enables a deep insight into physics of the system. Recently, we have employed noise to discriminate various resistivity states in the ferromagnetic insulating manganite La0.86Ca0.14MnO3. Different states arise due to transitions between local minima of the electronic glass potential landscape. Remarkably, freezing into the glass state is marked by the onset of non-Gaussian noise.