מטוטלת באורך
l
מחוברת למסה
m
ותלויה ממסה
m
הנמצאת על משטח אופקי ומחוברת
לקפיץ. את הקפיץ מניעים כך שקצהו נמצא ב-
\( x(t)=x_0\sin\omega t \)
באשר
\( x_0 \)
היא נקודה מסוימת על המשטח.
הנח תנודות קטנות,
ומצא פתרונות למיקומים של שתי המסות כפונקציה של הזמן,
לפי השלבים הבאים:
-
מצא את האמפליטודות של תנועת המסות במצב העמיד
(הניחו שקיים חיכוך קטן אשר גורם לדעיכה של הפתרון ההומוגני, אך אין צורך להכניס את האיבר הזה למשוואה)
.
-
צייר
גרף של אמפליטודות כתלות בתדירות.
-
מהי התדירות של הכוח המאלץ
עבורה אחת המסות נייחת? הסבר את התוצאה.