BGU logo
BGU Physics Department logo
Admin

Introduction to Computational Methods in Physics

Course number: 203-1-3451
Semester: B 2019
4 points

Lecturer: Uri Keshet
TA: Ofir Arad

Messages

Course Plan

Week Topic Sources
1 TBA Sample text

Office hours

Name Day Hours Building/Room E-mail
Prof. Uri Keshet Thursday 16:30-17:30 54/214 ukeshet@bgu.ac.il
Ofir Arad Tuesday 17:00-18:00 54/321 ofirara@post.bgu.ac.il

Lecture/Tutorial

Group What? Name Day Hours Building/Room
1 Lecture Prof. Uri Keshet Sunday 18:00-21:00 54/207
11 TA Ofir Arad Tuesday 15:00-17:00 97/201

Class Exercises

# Published Topic Exercise Solution
1 26/02/2019 C Concepts and Binary Integers
2 05/03/2019 Matlab
3 12/03/2019 Errors, Recursion, Variable scope
4 19/03/2019 Interpolation
5 26/03/2019 Piece-Wise Interpolation, Integration, Taylor DiffEq Solution
6 02/04/2019 Integration and MATALB ex
7 11/04/2019 Monte Carlo, Random walk
8 30/04/2019 Monte Carlo integration
9 14/05/2019 Drawing in MATLAB, Statistical analysis of data
10 21/05/2019 Hypothesis testing
11 28/05/2019 Root Finding
12 04/06/2019 Function Minimization, Mathematica
13 11/06/2019 Minimization
14 18/06/2019 ODEs

Home Exercises:

# Published Topic Exercise Solution Deadline upload
1 26/02/2019 C Concepts and Binary Integers 05/03/2019
2 05/03/2019 Matlab, binary, precision 13/03/2019
3 13/03/2019 Errors and Recursion 24/03/2019
4 20/03/2019 Interpolation 27/03/2019
5 28/03/2019 Integration, Taylor DiffEq Solution 04/04/2019
6 06/04/2019 Integration, Richardson extrapolation, Gaussian quadrature 14/04/2019
7 12/04/2019 Monte Carlo, Random walk 01/05/2019
8 04/05/2019 Monte Carlo Simulation 14/05/2019
9 15/05/2019 Monte Carlo, Fractals, Statistical analysis 29/05/2019
10 03/06/2019 Kolmogorov Smirnov, Modeling of data 12/06/2019
11 13/06/2019 Mathematica, Minimization 20/06/2019
12 20/06/2019 ODEs

Course Policy

Additional information

 

 


"The purpose of computing is insight, not numbers."

                           - Richard Hamming



> Class and extra material:

 

 

 

 

 

Lecture Topic Class notes Links & extra
1 Course Intro, programming languages, C basics Lec 1 Snake in 5 minutes, Dinosaurs in 3 minutes
2 Variable representation, precision, accuracy, stability, variable scope 1 Lec 2 Golden ratio, Roundoff disasters
3 Variable scope 2, referencing, arrays, recursion, dynamical programming, interpolation and extrapolation motivation Lec 3 C (de) referencing, scope
4 Polynomial and rational interpolation, searching an ordered table, reading NR codes Lec 4 Interpolation in Matlab
5 Interpolation: spline, and multiple dimensions; Integration: Newton-Cotes formulae Lec 5 Integration in Matlab
6 Newton Cotes algorithms, Richardson extrapolation, Romberg open+closed methods, improper integrals, using Gaussian quadrature Lec 6 P vs. NP
7 Orthogonal polynomials, Gaussian quadrature, integration in multiple dimensions, Monte Carlo 1 Lec 7 Monte Carlo examples
8 Monte Carlo 2: generalizations, examples, variance reduction, importance and stratified sampling Lec 8 Mandelbrot zoom: short, long
Randomness
9 Diffusion problems with MC, working with data, moments of a distribution, Student t-test Lec 9 Student t-test
10 MCMC, pitfalls in statistics, chi-squared test, KS-test, maximal likelihood Lec 10 Simpson's paradox
11 Chi-squared minimization, root finding: bracketing, bisection, secant, false position, Brent, Newton-Raphson Lec 11 2D bracket
12 Root finding in multiple dimensions: Newton-Raphson, Broyden; Optimization: bracketing, golden-section, Brent, steepest descent Lec 12 Newton optimization
13 Optimization: conjugate vectors, quasi-Newton, simulated annealing. ODEs: Euler, Runge-Kutta, explicit vs. implicit methods, stiff equations, adaptive step, Bulirsch-Stoer Lec 13 ODEs in gaming
14 Review Review

 

 

 

 

 

Software access

 

 

 

Exams