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Abstract

We study the chaotic dynamics of a heterogeneous reaction—diffusion medium composed of two uniform regions: one oscillatory, and the other
excitable. It is shown that, by altering the diffusion coefficient, local chaotic oscillations can be induced at the interface between regions, which
in turn, generate different chaotic sequences of pulses traveling in the excitable region. We analyze the properties of the local chaotic driver, as
well as the diffusion-induced transitions. A procedure based on the abnormal frequency-locking phenomenon is proposed for controlling such
sequences. Relevance of the obtained results to cardiac dynamics is briefly discussed.

© 2006 Elsevier B.V. All rights reserved.

PACS: 05.45.-a; 41.20.Jb

1. Introduction

Wave processes in excitable reaction—diffusion systems have
been widely discussed recently. Besides the obvious theoret-
ical interest, these studies allow deeper understanding of the
complex dynamics of real periodically stimulated excitable me-
dia, a prominent example of which is the cardiac muscular
tissue, the myocardium. This tissue supports the propagation
of pulses of cardiac electrical activity in the form of action po-
tentials generated by a self-oscillating pacemaker region, i.e.,
the sinus node (SN) [1,2]. Strongly chaotic sequences of action
potential pulses are sometimes associated with serious cardiac
dysfunctions (e.g., atrial or ventricular fibrillation, AF or VF),
and various controlling techniques for their elimination have
recently been proposed [3—6]. On the other hand, exactly peri-
odic sequences of action potentials resulting in purely periodic
heartbeats are also abnormal cardiac phenomena [7]. (A pos-
sible way to combat them by the use of different anticontrol
strategies was suggested [8,9].) In order to achieve the abil-
ity to control this chaotic dynamics, it is important to clar-
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ify the conditions for generation of such wave trains. Some
chaotic regimes were previously obtained in excitable systems
by applying external periodic stimuli of different waveforms,
amplitudes and frequencies [10-14]. However, diffusion cou-
pled periodic sources leading to the generation of chaotic wave
trains have rarely been discussed. For example, chaotic dynam-
ics was obtained in chemical systems composed of a few cou-
pled excitable and oscillatory cells [15,16]. Note that driving
the excitable system by a coupled extended self oscillating
(limit cycle, LC) region differs from an external forcing in that:
(a) the driver waveform better simulates the natural pacer dur-
ing steady operation; (b) considerable interplay takes place be-
tween the coupled regions, altering the ensuing dynamics, and
(c) diffusion and size effects can be examined.

In the present work we investigate a heterogeneous reaction—
diffusion medium composed of two adjacent uniform regions,
one of which operates in an oscillatory regime, while the sec-
ond is in an excitable mode. Such a simplified system allows us
to generate chaotic wave trains traveling in the excitable region.
It is shown that the regions’ interface operates as a local chaotic
driver, and is responsible for generation of chaotic wave trains.
The simulations indicate that variation of the diffusion coeffi-
cient drastically changes the type of interface oscillations. As a
result, different wave trains can propagate in the excitable re-
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gion. This phenomenon is an interesting case of the so-called
diffusion-induced chaos, which was a subject of several recent
studies (see, e.g., [17,18]). It is also shown that the character
of interface oscillations depends on the sizes of the two uni-
form regions. Namely, an increase in the size of the LC region
is similar to an increase in the diffusion coefficient, whereas a
size increase of the excitable region results in an opposite ef-
fect. In addition, the frequency of oscillations in the LC region
also plays a role in the way these wave trains are generated.
Thus, higher-frequency oscillations of practically equal am-
plitude generate even more chaotic wave trains. A procedure
based on the abnormal frequency-locking phenomenon [19] is
proposed for controlling such trains. In order to produce the de-
sired effects, the parameter values of the model system were
chosen in a range which turned out to be quite wide. Finally,
the obtained results are invoked to portray chaotic-like cardiac
pathologies, thus extending our models [19-21] of the cardiac
pacemaker.

2. A diffusion induced local chaotic driver

The generation of chaotic wave trains is examined in a one-
dimensional (1D) reaction—diffusion medium which is divided
at a selected interface point x¢, into two uniform space regions
of equal size. The left uniform region operates in an LC mode,
while the right one is in an excitable regime. For this purpose
we solve the FitzHugh—Nagumo (FHN) equations [22]:
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where a = ay, ¢ = €1, d = dq for 0 < x < x0, and a = a»,
e =¢,d=dy for xg < x < L. Here v(x,t) stands for an
activator, embodying, e.g., the cardiac action potential, while
w(x,t) is an inhibitor, or a refractoriness function. D is the
diffusion coefficient, a is the excitability parameter, and ¢ is a
parameter, usually small, measuring the ratio between the time
constants of the activator and the inhibitor; d is a parameter
which, together with e, determine the speed of growth of w.
The time ¢ is measured in units of the activator time constant.
Neumann boundary conditions are imposed at both ends of the
integration domain.

Let us recall (see, e.g., [23]) that a may be either positive or
negative; if a is negative below a certain threshold value, the
system will be in a limit-cycle regime, whereas positive values
of a correspond to an excitable mode. We use the value a; =
—0.16 throughout this work which puts the left region in an
LC regime (one unstable fixed point at v = w = 0), and a2 =
0.015, or a; = 0.12 in the excitable region to the right (one
stable fixed point at v = w = 0). The diffusion coefficient D is
the same for both regions of space, and L = 200. All parameters
and variables are dimensionless.

The numerical integration of the system (1) was carried out
using the unconditionally stable Crank—Nicolson method [24].
The values of time and space intervals, used in all numerical
experiments, were At = (0.5 and Ax = 1. In order to avoid tran-

sient processes observed in the case of locally excited uniform
LC regions [25,26], the initiating excitation here (amplitude
~ 0.8) was generally applied at ¢ = O throughout the entire left
region.

The numerical simulations results are presented in Fig. 1.
As a consequence of the simultaneous initial excitation, and
with the exception of a narrow transient zone near the inter-
face, almost all points of the LC region exhibit monotonic
bulk oscillations with zero phase lag. The intrinsic LC period
is T =70, and amplitude 0.76. (Fig. 1(a)). This extended pe-
riodic source, nevertheless, induces in the excitable region a
sequence of pulses separated by chaotically varied time inter-
vals (Fig. 1(b)). Such a chaotic wave train arises after period
doubling bifurcations (Fig. 2), and represents an example of the
so-called phase chaos, e.g., [27-29]. Here we show that such
chaotic wave trains can be obtained in a wide range of excitable
systems as a result of complex interactions with the adjacent
LC region. The simulations also demonstrate that the variation
of the diffusion coefficient D drastically changes the chaotic
dynamics of the pulses traveling in the excitable region.

To clarify the underlying mechanism of the chaotic wave
trains generation we propose a simplified explanation as fol-
lows: let us consider the local oscillations at the interface point
xo, (representing a thin layer of excitable points) shown in
Fig. 1(c). These chaotic oscillations can only be induced by the
diffusion current from the nearest LC points, since the point xq
belongs to the right-hand excitable region. When the amplitudes
of these induced oscillations exceed a certain threshold value,
they initiate pulses traveling in the rest of the right-hand region.
Since the time intervals between oscillations with sufficiently
large amplitudes are chaotic, they result in chaotic sequences of
traveling pulses. Thus the interface layer, of sufficient (liminal)
width, see, e.g., [30], operates as a local internal driver whose
complex dynamics is responsible for the generation of a chaotic
wave train.

Since the local oscillatory dynamics at the interface arises as
a result of diffusion coupling with the self-oscillating points, it
can be transformed by changing the value of the diffusion co-
efficient D. Diffusion-induced bifurcation transitions between
different types of interface oscillations are presented in Fig. 2.
Starting from D = 0, it is evident that an increase in D, firstly
leads to the appearance of very small oscillations (Fig. 2(a)),
then goes through a cascade of period doubling bifurcations
(Fig. 2(b), (c)), and further on, into chaotic oscillations with
increasing, but still low amplitudes (Fig. 2(d)). An additional
increase in D leads to the appearance of few spikes of sig-
nificantly larger amplitudes, shown in Fig. 2(e). These large-
amplitude intermittent spikes initiate traveling pulses in the
right region.

To analyze these diffusion-induced bifurcations, let us con-
sider the way in which the corresponding return maps change
with D (Fig. 3). These maps represent successive maxima of
v: M1 vs. M;. Fig. 3(a) represents for D = 1 a chaotic map
corresponding to the small-amplitude time series of Fig. 2(d),
situated in a limited portion of the map plane, roughly 0.3 <
M < 0.4. With increasing D the attractor increases in size now
spreading over the entire range 0 < M; < 1. Fig. 3(b) shows for
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Fig. 1. The development of chaotic wave trains in a medium with two uniform regions: the LC region (a; = —0.16, £1 = 0.06, d| = 1, intrinsic period T = 70,

At =0.5) on the left, and the excitable region (a; = 0.015, e = 0.005, dy = 3) on the right; D = 8 throughout. (a) Synchronized bulk oscillations in the whole left
region (except for a narrow transient zone near the interface) generate pulses propagating in the right region; (b) chaotic time series of pulses in the right region at
the point x, (x = 180); (c) intermittency at the interface x¢ (x = 100) (see expanded time scale in Fig. 2(e)). There is a one-to-one correspondence between high
amplitude pulses in frames (b) and (c), delayed indistinguishably at the figure scale. Remark: the snapshot in frame (a) is obtained at any time ¢ corresponding to a

high amplitude spike in frame (b).

D = 8 that, seemingly, two separate parts of the attractor coex-
ist, between which the motion switches chaotically. The part
of the map situated inside the little dotted frame approximately
corresponds to the small amplitude oscillations as in Fig. 3(a),
while the rest of the map corresponds to the large-amplitude in-
termittent spikes in Fig. 2(e). With further increase in D, the
number of large-amplitude spikes increases significantly form-
ing an almost closed chaotic contour (Fig. 3(c) for D = 200).
Their chaotic behavior arises due to perturbation induced by the
chaotic diffusion current Dv,, from the adjacent LC region.

We wish to emphasize that, unlike the 1D maps obtained for
periodically forced FHN excitable systems [12,14], all return
maps of Fig. 3 portray the dynamics of a chaotically forced
excitable system (the interface), and are therefore more compli-
cated.

A very strong diffusion coupling, on the other hand, plays
an inhibiting action on the generation of chaotic wave trains.
More precisely, an increase in D from 480 to 600 results in
bifurcation transitions from large-amplitude intermittent chaos
to chaos of small amplitude, and then, via a set of inverse
period-doubling bifurcations, to a complete disappearance of
oscillations at the interface. Moreover, since a very strong dif-
fusion current drastically decreases phase differences between
adjacent excitable points, most of them (except a few points in
a narrow transient zone) are compelled to oscillate in phase.

These diffusion-induced synchronous oscillations prevent the
propagation of pulses even though the interface by itself does
exhibit large-amplitude spikes.

Returning to the small oscillations of Figs. 2(b), (c), the fol-
lowing question arises: why are they unable to generate prop-
agating pulses in spite of being in considerable excess of the
excitation threshold for an uncoupled interface point? The qual-
itative explanation is that strong diffusion causes a spread of the
disturbance into the following excitable points, and can increase
the threshold of interface excitation [31]. A very small diffu-
sion coupling, on the other hand, also stops normal propagation
of pulses. In this case the amplitudes of traveling pulses pro-
gressively decrease, and the pulses completely disappear after
crossing some fixed space interval. This interval rapidly shrinks
with further decrease of D.

One may conclude therefore that, in order to generate
chaotic wave trains, the diffusion coupling must, on the one
hand, be sufficiently large in order to induce oscillations with
super-threshold amplitudes at the interface, and to support nor-
mal propagation of pulses in the excitable region. On the other
hand, it must be small enough in order not to enlarge the thresh-
old of the interface excitation too much, or to induce in-phase
oscillations in nearly all excitable points.

Additional numerical experiments were performed in which
external excitations were periodically applied at a single point
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Fig. 2. Diffusion induced bifurcations at the interface xg (x = 100). (a) Sim-
ple, period-1 oscillations; (b) period-2; (c) period-4; (d) low amplitude chaotic;
(e) intermittency.

of a uniform excitable medium. This was done by adding to the
equation of ‘g—'; the following term:

Aex Y 8(t —mTey), 2)

m=0

where Aex is the amplitude of the external excitations, and &
is the Dirac delta function. The uniform medium had the same
parameters as the right-hand region discussed above, and the
amplitudes of the external excitations were chosen to be the
same as those in Fig. 2(b), (c). Here, stable traveling pulses
were observed only if the values of D were in the range 0.004 <
D < 0.4 (dimensionless units). The chosen values are consid-
erably smaller than D = 8, because a localized excitation of
limited spatial extent creates a stronger diffusion current (see
below). This verified our assumption that different diffusion
couplings can initiate, as well as suppress, the propagation of
pulses in the excitable region.
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Fig. 3. First return maps for the chaotic oscillations at the interface xq (x = 100)
shown in the preceding figure. They represent successive maxima of v: M|
vs. M J*

Note that, from the viewpoint of nonlinear dynamics the-
ory, the chaotic time evolution in Fig. 2(e) represents an ex-
ample of intermittency which can arise after period doubling
bifurcations, as a result of “switching” between different at-
tractors [32,33,39]. Here a somewhat similar route to this type
of intermittency is achieved by chaotic switching between the
diffusion-induced strange (or periodic) attractor with low am-
plitudes, and the large-amplitude excitable spikes. Such coex-
istence of the diffusion induced oscillations, and the inherent
excitable dynamics, may represent a new type of canards which
combine excitable and oscillatory features [34]. But the usual,
autonomous canards in a diffusionless FHN system are two-
dimensional, and hence, can display intermittent chaos only in
the presence of noise [35]. By contrast, the diffusion-induced
“canards” are three-dimensional and therefore enable us to gen-
erate a completely deterministic intermittency.

3. The role of sizes of the adjacent regions

The influence of the SN and atrium sizes, and their mutual
coupling, on the cardiac dynamics, was studied in the semi-
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Fig. 4. Period-doubling route to chaos at the interface, generated by an increase
in the size /1 of the LC region. (a) Period-1 oscillations; (b) period-2; (c) low
amplitude chaotic; (d) intermittency.

nal paper by Joiner and van Capelle [36]. In this section we
follow [36], and check whether, in addition to changes in the
diffusion coefficient, the size variation of the adjacent regions
also leads to changes in the interface oscillations, and generates
different wave trains. We investigate the interface dynamics as
a function of /1, the length of the LC region, under constant val-
ues of the diffusion coefficient (D = 8), and of /5, the length of
the excitable region. The results show that an increase of /| from
its minimal value leads to the appearance of small periodic os-
cillations at the interface; these transform via period-doubling
bifurcations, into chaotic oscillations with enlarged amplitudes,
which, in turn, transform into large-amplitude intermittency
(Fig. 4). This behavior is similar to the one previously obtained
by increasing D, and can be explained in the following man-
ner.

Keeping I, = 100 constant, let us first assume that the length
of the left LC region is just /; = 1, i.e., one elementary interval
at xo — 1, coupled by diffusion to that at xo. The oscillation
amplitude of this LC element at the interface will be lower
that its natural one, due to the presence of a diffusion current
towards the right. Next, add a second LC elementary inter-
val at xop — 2, making /; = 2. This, in turn, will oscillate at a
lower-than-natural amplitude, yet a bit higher than xo — 1 in
the previous step. The element at xo — 1 will now oscillate
at a higher amplitude than in the previous step, when it stood
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Fig. 5. Bifurcation transitions at the interface generated by an increase in the
size [ of the excitable region. (a) Period-1 oscillations; (b) period-2; (c) low
amplitude chaotic; (d) intermittency. Note that the amplitude of oscillations
progressively decreases with the increasing complexity at the interface.

alone, because it now “receives” a diffusion current from the
left, prior to “transmitting” it at the interface, into the right-
hand excitable region. The result therefore is an increase of
the driving amplitude at the interface. The described “thought”
experiment can be carried on in building the transition zone fur-
ther and further, until a certain limit size is obtained for the LC
region, beyond which the process ceases to be “felt” at the in-
terface.

Next, we changed the values of /5, while keeping /; = 100
and D = 8 fixed. An increase of [/, from its smallest value
(I = 1) resulted in a bifurcation evolution to more com-
plex interface oscillations with progressively decreasing am-
plitudes (Fig. 5). The decrease in amplitudes, which is simi-
lar to that obtained in [36], occurs because the same diffusion
current from the LC region spreads over a growing number
of excitable points. This gradually decreasing current induces
different sub-threshold oscillations in neighboring excitable
points.

4. The influence of frequency oscillations in the LC region

By increasing the parameter dj, more regular oscillations,
with shorter time intervals between nearest spikes, are obtained
at the interface. Consequently, the pulses in the right region also
become more regular, and more frequent.
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Fig. 6. Phase-space trajectories (a), and time evolutions (b) at the left re-
gion point x1 (x = 20), for different values of dy: (1) dy = 1.5; (2) d] =2;
(3) di = 2.5; (4) di = 3. The increase in d; results in shortening of the
phase-space trajectories, and in creation of a closed separatrix curve S shown
by the dotted line, di = 3. The trajectories that come close to the separa-
trix display oscillations with ever increasing periods: 7'(1) =73; T(2) =79;
T(3) =93; T(4) = 123; (At =0.5). Also shown is the v-nulcline, dash-dot.

In order to clarify these effects we first consider what hap-
pens in the driving LC region. For the present values of pa-
rameters, an increase in d; leads—at any point inside the LC
region, but not too close to the interface (Fig. 6)—to a reduc-
tion of size of phase-space trajectories (Fig. 6(a)). The smaller
limit cycles, however, exhibit an increase in the period of the lo-
cal oscillations, together with an insignificant decrease in their
amplitude (Fig. 6(b)). Similar phenomena, sometimes referred
to as negative nonlinear dispersion [37], were observed in the
FHN system in the vicinity of subcritical, as well as supercriti-
cal Hopf bifurcations [19,38]. Here the first type of bifurcation
transition is present, when an increase in d; above some critical
value, leads to the stabilization of the hitherto unstable focus
v = w = 0. This is accompanied by the creation of a closed
separatrix curve, between two concentric basins of attraction:
an internal stable focus, and an external stable LC. The bifur-
cation value of d| may be analytically determined. By standard
stability analysis of an uncoupled LC oscillator (D = 0), the
eigenvalues of the linearized system near a stable focus must be
complex conjugate with negative real parts [39]. The conditions
for this are

dei(ardy + 1) — (e1dy +a))* >0 and (e1d) +ap) > 0.
(3)

The first condition is always satisfied while the second yields

dy > —ai/s1, “4)

giving d; > 2.667 for the present values of a; = —0.16 and
&1 = 0.06. Numerical results show that a nonzero diffusion term
noticeably lowers this bifurcation value giving, e.g., di > 2.57
for D = 8. Now, the increase in the period of the LC oscilla-
tions, especially for larger d; values, is due to a slow motion
in the vicinity of the above mentioned separatrix (unstable LC),
resulting in generation of canard-like orbits [40], as shown in
Fig. 6(a).

The stabilizing effect of such lengthy oscillations on the in-
terface dynamics may be explained by a gradual approach of
their frequencies to a “strong resonance” when every nth oscil-
lation in the left region generates a large-amplitude spike at the
interface.

5. Non-feedback chaos control

The above mentioned bistable oscillators, also called oscil-
lators with “black holes”, were discussed, e.g., in Ref. [41].
When coupled by diffusion, they exhibit properties either of a
pure LC, or of an excitable medium. Depending on the initial
excitations, they can sustain either collective “natural frequen-
cy” oscillations, or the propagation of a single pulse [42,43].
In a recent paper [19] it was shown that this feature allows an
interesting effect, where a bistable oscillator can lock a lower
frequency from an external periodic source. Such “abnormal”
frequency-locking was studied in a simple system comprised
of two uniform, spatially adjoining regions, of different types:
a low frequency pure LC region and a bistable (LC/excitable)
one. The same effect is used here to demonstrate the possibility
of a simple non-feedback control of chaotic wave trains.

The existing non-feedback strategies for chaos control [44]
typically utilize external periodic driving of higher frequency,
and become inefficient in the case where frequency lowering
is needed. Our approach, on the other hand, allows overcom-
ing this inefficiency, at least for bistable chaotic systems. To
show this we examine an extended medium composed of three
uniform regions operating respectively, in pure LC, bistable
(LClexcitable), and excitable modes (Fig. 7(a), (b)). The re-
gions’ parameters were selected in such way that the natural
frequency in the left region was lower than that of the LC part of
the middle one, thus allowing an abnormal frequency-locking.
Moreover, the parameter a3 = 0.12 in the right, excitable region
here is higher than a, = 0.015 of the preceding sections. This
permits generation of chaotic wave trains when the left region
is absent, or when the locking of its (lower) frequency becomes
impossible. The latter case occurs if strong initial excitation is
applied at a sufficiently large part of the middle, bistable region.
This region thereafter operates in the oscillatory regime, and its
own higher-frequency oscillations induce intermittent chaos at
the bistable/excitable interface (Fig. 7(c)), which in turn gener-
ates chaotic wave trains in the right region.

The situation is changed when an initial excitation is applied
inside the left, pure LC region. Now the lower frequency of
this region is locked by the middle one, which operates in the
excitable mode. The ensuing slower periodic motion of the mid-
dle region induces regular oscillations in a bistable/excitable
interface (Fig. 7(d), (e)). The chaotic wave trains can thus be
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Fig. 7. Low-frequency control of chaotic wave trains. (a) The e(x) profile in
the three regions: a; = —0.16, ¢ = 0.01 for 0 < x < 70 (LC); ap = —0.16,
gy = 0.056 for 70 < x < 100 (BS, bistable), and a3z = 0.12, ¢35 = 0.005
for 100 < x < 200 (excitable); d = 3, and D =1 throughout; (b) v and w
space profiles in the heterogeneous medium; stimulation in the LC region.
(c) Strongly chaotic oscillations at the interface, xo = 100, arising when the
initial stimulation is launched throughout the BS region. (d) The interface os-
cillations become periodic when the initial stimulation is launched anywhere in
the LC region. (e) Same as (d), except for a smaller value of &1 (¢; = 0.008);
here the simple, period-1, interface oscillations become complex, period-2.
(f) Same as (d), except for a larger value of &1 (g1 = 0.0124); in this case the
periodic interface oscillations become nearly periodic, i.e., slightly chaotic.

controlled, and transformed into periodic (Figs. 7(d), (e)), or
nearly periodic (Fig. 7(f)) sequences of traveling pulses.

6. Discussion

The dynamical nature of fibrillations in the mammalian heart
is not fully understood, but is believed to be the result of 2D
spiral, or 3D scroll wave propagation, and their breakup into
many small, asynchronous wavelets [45,46]. In this Letter we
demonstrate that even in a one-dimensional model, an alter-

native fibrillation mechanism, may arise as a result of chaotic
motion at the interface between clusters of self-oscillating car-
diac cells, and the surrounding excitable tissue. In addition
to the SN/myocardium, such interfaces are also found at the
boundaries of the atrioventricular node, the Purkinje fibers, as
well as pathological ectopic sources. For example, the chaotic
wave trains discussed in Sections 2, 5 may be associated with
SN-induced paroxysmal atrial fibrillations (see [47,48], and ref-
erences therein).

In a previous paper we have utilized bistable oscillators to
portray the complex heterogeneous structure of the cardiac SN
[19]. The SN center there was simulated by a low-frequency,
pure LC region, while the peripheral zone, the perinode, was
assumed to operate as a bistable regime. Due to the abnor-
mal frequency-locking, the low frequency center operates as
the driver of the entire heart. The results obtained in Section 5
here, regarding the “switching” between strongly chaotic, and
nearly periodic wave trains, reveal new properties of this model.
As was shown, external interventions, as well as an anomalous
intercellular coupling, can shift the leading site from the SN
center to its perinode [49,50]. From our simulations it follows
that such a shift can result in the generation of strongly chaotic
wave trains (Fig. 7(c)) associated with AF. This, in turn, could
be stabilized by restoring the leading site to its normal location

(Figs. 7(d)—()).
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