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Abstract 

 

AC losses in superconductors characterize their physical properties (the microscopic 

motion of the Abrikosov vortices, phase state of the vortex lattice, etc) as well as determining 

ranges of the rated currents and magnetic fields for superconducting devices that are required 

for the optimal operation power of cryogenic equipment and economical gain. The methods of 

AC loss calculation are usually based on consideration of the non-linear Maxwell equations in 

which a superconductor is simulated by a media with non-linear voltage current characteristic, 

in the general case which depends on a local magnetic field and a local temperature. Many 

investigations are devoted to a consideration of AC losses in superconductors of various forms 

such as wires, tapes, coated conductors, etc., under different conditions. However, most of the 

works consider sinusoidal magnetic fields or/and currents. In reality, currents in physical 

experiments and in electric power systems exhibit a distribution of harmonic frequencies. 

The main goal of this thesis is the treatment of AC losses in superconductors and coated 

conductors under non-sinusoidal conditions. 

Analytical expressions were obtained for various configurations of superconductors such as: 

bulk materials, thin strips, coated conductors in the framework of critical state model as well 

as in high magnetic field approximation for a power law superconductor. An analysis of 

losses in power law superconductors was carried out using the MatLab software to perform 

numerical solution of the integral equation. 

The analysis shows that in devices with bulk superconductors, higher harmonics can 

substantially change losses. Thus, the 5% second harmonic can cause a loss increase of 20% 

in superconductors in comparison to 1% for a normal metal. Moreover, the contribution of the 

higher harmonics depends on their phases. In a certain range of phases, the odd harmonics can 

even reduce AC losses. These peculiarities distinguish the behavior of superconducting 

devices from that of conventional ones. 
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Influence of higher harmonics losses in coated conductors is markedly stronger. Thus, the 

5% third current harmonic causes a loss increase of 45% in the superconducting part of a 

coated conductor and 80% in the normal-metal parts at a current close to the critical value. 

Numerical calculations of the total losses (sum of losses in superconducting and normal metal 

parts) in a coated conductor within the power-law approximation showed that the relative 

contribution of higher harmonics increases with their amplitude. 

The relative contribution of the third 10% harmonic to the total losses can achieve up to 110% 

of the losses caused by the main harmonic and is about ten times larger than losses caused by 

the same higher harmonic in the normal-metal conductor of the same form.  Even at a low 

power index (n = 4) the predicted losses are substantially higher than AC losses in normal 

metals: relative contribution can be 4 times higher and achieves it 44% of the main harmonic 

losses replace of 11%. 
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1. Introduction 

 

A superconductor has zero resistance only under DC conditions, under AC conditions a 

changing magnetic field (either self generated or externally applied) acting on the material 

interacts with transport and leads to energy dissipation. The subject of AC losses in 

superconductors may be considered under various aspects. 

Firstly, the physical properties of high temperature superconductors (HTSC) such as: the 

microscopic motion of Abrikosov vortices, phase state of the vortex lattice, current density, 

critical temperature and also with developing the theory where the microscopic processes are 

described by a nonlinear current –voltage characteristic E E J , B
    

 
 
 

 ( E  is the local 

electric field caused by the current density J  and depending also on a local magnetic 

induction  B ) and by reversible magnetization curve H H B
  
  

 
 [1-3] . 

Secondly, from the technical point of view AC loss values determine ranges of the rated 

currents and magnetic fields for superconducting devices, required power of cryogenic 

equipment and economical gain. 

The methods of AC loss calculation are usually based on consideration of the non-linear 

Maxwell equations in which a superconductor is simulated by a metal with non-linear voltage 

current characteristic, in the general case, depending on a local magnetic field and a local 

temperature. 

A lot of investigations are devoted to a consideration of AC losses in superconductors of 

various forms, wires, tapes, coated conductors and. under different conditions (see for example 

[4-6] and works referenced in them). However, most of the works consider sinusoidal 

magnetic fields or/and currents. In reality, currents  I t  in physical experiments and electric 

power systems contain a wide variety of harmonics and can be represented as 
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   k k
k

I t I cos k t                     (1.1)

                                                                                                                                                                                                             

where 2 f ,   f is the frequency of the first harmonic, kI  and k  are the amplitude and 

phase of the k-th harmonic, (k = 0,1,2…..). The frequency f  for power systems is 50 or 60 Hz, 

while for special electric systems (airplanes, ships, etc.) frequently is 400-800 Hz. 

For the normal metal parts of a device the Joule losses Pj  caused by a current  I t  and the 

eddy losses  Ped  caused by a magnetic field  H t  are presented in the form: 

 

 1

2
21 1

2 1

2
21 1

2 1
p

R f I
P r ij k k

k

K f H
P h
ed k k

k

 
 
 
 

 
 
 
 

  


  


                                                                                             (1.2) 

where  R f  is the conductor resistance at the frequency f , r
k

 gives the frequency 

dependence of the resistance, 
1

k
k

I
i

I
 , 

1

k
k

H
h

H
 , kH  is the k-th harmonic amplitude of the 

magnetic field,  1

2 2
1

K f H /   is the eddy losses caused by the main harmonic, p
k

 

characterize the dependence of the losses on the frequency. The explicit forms of R, K, rk  ,pk 

depend on the conductor shape and magnetic field direction. For example, losses per unit 

length in a thin normal metal strip in an external magnetic field directed perpendicular to the 

wide surface are 

2 2 2
20

1

2
 and  

3
k

a d
K p k

 


                                                                                                   (1.3) 

where 0  is the magnetic permeability of the vacuum,   is the resistivity,  d  is the strip 

thickness, a  is a half of the strip width. 

According to the requirements of power quality supported by power systems, the contribution 

of higher harmonics is a few percent and currents are very close to sinusoidal. Usually higher 

harmonics decrease proportionally to 
1

k
 at least and it is sufficient to take into account 
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several first harmonics. 0 0I   because a direct current cannot be transferred by the 

transformer. So, with the accuracy of about 1% the losses in normal conducting parts of the 

power devices are determined by the main harmonic. Currents become strongly non-sinusoidal 

at the operation of the converters, non-linear reactors and during transient and overload 

conditions. In this case all harmonics have to be taken into account at the loss estimation. 

Since superconductors posses a strongly non-linear current voltage characteristic, one can 

expect substantial contribution of higher harmonics to AC losses in superconducting elements. 

The main goal of this thesis is the consideration of AC losses in superconductors and coated 

conductors under non-sinusoidal conditions. 

The objectives are the following 

- analysis of penetration of a non-sinusoidal magnetic field into superconducting slab, 

thin film (strip), and coated conductor; 

-        development of analytical methods for AC loss calculation based on the critical state 

model  (CSM); 

-         numerical calculation of AC losses in power law superconductors and coated 

conductors. 

The thesis structure is the following: 

Chapter 2- contains a brief introduction to the subject of AC losses in superconductors 

including description of the mechanism of AC losses, analytical methods for calculation of AC 

losses in magnetic fields or with transport currents; 

Chapter 3- reveals an analytical analysis of AC losses under non-sinusoidal conditions for 

superconducting slab and thin film (strip); 

Chapter 4- represents analytical approach for calculation of AC losses in coated conductors 

under non-sinusoidal conditions; 

Chapter 5- represents results of numerical simulation of AC losses based on the power law 

approximation for coating conductors. 
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The main obtained results have been presented in the following papers: 

1. V.Sokolovsky, V.Meerovich, M.Spector, G.Levin, and I, Vajda 

Losses in superconductors under non-sinusoidal currents and magnetic fields, 

IEEE  Trans . Appl. Supercon., v.19 pp: 3344-3347 (2009) 

 

2. G.Furman, M.Spector, V.Meerovich, and V.Sokolovsky 

Losses in coated conductors under non-sinusoidal currents and magnetic fields, 

in print in Journal of Superconductivity and Novel Magnetism 

 

and at the conferences 

 

1.  V. Sokolovsky, V. Meerovich, M. Spector, G. Levin, and I, Vajda, 

Losses in superconductors under non-sinusoidal currents and magnetic fields, 

Applied Superconductivity Conference 2008, August 17-22, Hyatt Regency Chicago, 

Illinois, Chicago USA, Conference Program p 80, (2MPB09). Poster Presentation 

 

2. G. Furman, M. Spector, V. Meerovich, and V. Sokolovsky 

Losses in coated conductors under non-sinusoidal currents and magnetic fields, 

International Conference on Superconductivity and Magnetism 25-30 April 2010, 

Antalya, Turkey, Abstract Book: p776, (LSA-P-002). Poster Presentation 
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2. AC losses in superconductors under sinusoidal conditions 

2.1 Origin of AC Losses in Superconductors 

 

The vortices in a type II superconductor create a lattice of parallel flux lines through the 

specimen, each carrying a quantum of magnetic flux 15/ 2 2.07 10
0

h e     2T m  (where 

h  is the Planck constant and e  is the electron charge). The magnetic flux penetrates into the 

specimen through the vortex core, which is in the normal state and located in the centre of the 

vortex. The magnetic field is maximum near the center and exponentially decays with the 

distance from the centre over the London penetration depth of the order of 710 m. The core 

radius is of the order of coherence length   of 810  m. The density of the vortices in the 

lattice is determined by a local magnetic field B  as 

0

B
n


 . This mixed state is observed in 

the superconductors up to the upper critical magnetic field 
2

B
c

. The upper critical magnetic 

field is of the order of 20 T for low temperature superconductors and 100-200 T for high 

temperature superconductors at 4 K. 

The vortices can move freely in a homogenous material, their density is proportional to the 

flux density and they can be pinned by inhomogeneities in the material. Any motion of 

vortices results in energy dissipation. 

Let us assume that the current is applied in the presence of a magnetic field. In homogenous 

superconductors the vortices start to move under the influence of the Lorenz force: 0Lf j 
  

   

( j is the current density), or per unit of volume of the lattice LF j B
  

  . As a result the 

moving magnetic flux generates an electric field E v B
  

   (Fig.1). The motion of vortices 

results in the energy loss per unit of volume of the lattice P = J E . This motion can be 

presented as motion opposite the viscous drag force density df v   (  is the viscosity 

coefficient of the flux lines, v  is the velocity of the vortices). In reality superconductors do 
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contain defects and interaction of vortices with the defects  (pinning force) prevents the 

movement of the vortices until the Lorenz force exceeds the pinning force. There is a current 

density jc, the critical current density at which the Lorentz force is equal to the pinning 

one 0cLp jff  . At higher currents we observe the vortex motion which is known as “flux 

flow”. The vortex velocity is determined from the equality of the Lorentz force and a sum of 

the pinning and viscous drag forces. The power loss per unit of volume is proportional to the 

vortex density n and determined as: 

2

0 ( ) ( )L c FF cp f vn J n J J J J J                                                                                 (2.1) 

where 0( / )FF B    is the flux flow resistivity depending on a local magnetic field and 

temperature. 

 

 

 

Fig. 1 A superconductor with a current in an external magnetic field 

 

 

It was shown by Bardeen and Stephen [11] that the expression for FF  can be given 

approximately as: 

2( , ) ( ) / ( )FF n cB T B T B T                                                                                                   (2.2) 

where n  is the resisitivity in the normal state at temperature T . 

The viscosity coefficient can be approximated by: 

Magnetic field  B 

               



 LFBJ 

J   Current  

    Density  
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2 /c nB                                                                                                                                   (2.3) 

As a result the current density can be presented in superconductors in the form: 

/c FFJ J E                                                                                                           (2.4) 

where the current density cJ  flows without dissipation, and an additional part / FFJ E   is 

related to the motion of the electrons of  the normal conductivity. 

Another mechanism of AC losses predicted by Anderson is the electric field generation in 

superconductors connected with the thermally activated flux jumps out of  pinning centres 

over the pinning barrier  (“flux creep” [7] ). A usual method of the flux creep study is based 

on the measurement of a magnetic field penetration in a hollow superconducting cylinder 

(decay of persistent current in the cylinder). The decay of the cylinder current in the flux 

creep regime is usually described by the logarithmic law while the current decay in the flux 

flow regime obeys to an exponential law. This difference allows one to separate these regimes 

experimentally. 

There are two mechanisms of energy dissipation as a result of the motion of vortices [8,9]: 

- moving vortices cross the current lines (due to continuity of the later ). Hence a current 

flows through a vortex parts (vortex cores) which are in the normal state. This leads to 

energy dissipation. 

- when a vortex passes through some point of the superconductor a phase transition occurs 

in this point from the superconducting to normal state and vice versa. From 

thermodynamics it is known that such a process can occur without energy dissipation only 

if a cyclic phase transition is infinitely slow. A velocity of vortex filaments is finite and 

the phase transition caused by the vortex motion leads to dissipation of energy. 

Estimations [10,11] showed that contributions of these loss mechanisms are about the same. 

Let us discuss briefly models for analytical calculation of AC losses in superconductors and 

their range of application. 
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2.2 Critical State Model 

 

The macroscopic description of magnetic properties type-II low temperature superconductors 

(LTS) was developed in sixties by C. Bean [12] and is known as the critical state model 

(CSM). Bean has proposed to use a continuum description of a vortex lattice: a local magnetic 

field is proportional to vortex density. The conditions when the quantum description could be 

replaced by the continuum one discussed in many publications and books [for example 13-

14]. Brandt noted that a continuum description of a vortex lattice is valid at 12 cB B  [17]. 

The basic postulate of CSM is that there is a limiting macroscopic superconducting current 

density cJ  that every superconductor can carry without resistance and any electromotive 

force will induce this current density. This assumption was based on two facts known for 

LTS. First, the flux creep regime is observed in a very narrow region near cJ .  Second the 

addition of J to the critical current density is very small. The following estimations confirm 

the last point. The LTS are usually used in the form of the multifilament wires where the 

diameter d of a multifilament is about 10
-5 

m. From the Maxwell equations, the induced 

electric field in a filament placed in AC magnetic field with the frequency f and amplitude B0 

can be estimated as 02E fdB . Taking into account  Eqs. (2.2) and (2.4), the additional 

current density is
 

 
22 c

n

fdB T
J

T





 . The upper critical field 2cB  and normal resistivity n  of 

LTS are the order of the magnitude of 20 T and 810  Ω m  , correspondingly, and 

10 210  A/mcJ  . Therefore, 310cJ / J ~   at the frequency of 50 Hz. Thus, in real conditions 

the additional current density is much less than the critical current density. 

The basic points of Bean’s model can be summarized as follows: 

- current density in a superconductor is equal to cJ  or 0; 

- critical current density appears whereas there is nonzero electric field; 

- current density remains constant with time when an electric field equals to zero; 

- current density is field independent; 
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- magnetic field penetrates a superconductor from its surface . 

Note that Bean’s model describes magnetic properties of a hard superconductor in a steady-

state limit. Since any variation of the magnetic flux in the sample results in an induced electric 

field, superconductors in the dynamic regime are always in the resistive state (a current 

density is higher than the critical value). This fact is usually neglected for the analysis of the 

magnetic properties of LTS’s in dynamic regime. 

The technique of the AC loss calculation is based on classical electrodynamics (Maxwell’s 

equations): 

0; ; 0; 0;_ _ _ _
B

E H J D B B H
t




          
         


                                              (2.5) 

complemented by Bean’s assumptions. Here D  is the electric field induction which is 

proportional to E and the linear relation between B and H is valid only for an isotropic 

superconductor at 12 cB B  [15]. 

There are various methods for calculation of losses in the superconductor per a period of the 

current: 

- integrating the Poynting vector eS E H
  

  (where eH  is magnetic field at the 

superconductor surface), on the sample surface over the period; 

- integrating the power Joulle losses cE J  through the sample volume 

- calculation of the work of mechanical forces put out opposite the pinning forces at the 

motion of the vortex lattice. Loss power per unit volume is equal to cp J B v
  

   
 

, where the 

velocity v of the vortices can be determined by the conservation law of vortex density 

B
div B v

t


   

 
 

. 

- using the surface impedance concept. The surface impedance is defined as the relation of the 

first harmonic of electric and magnetic fields on the surface: 
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     
0

0

1
0Z E x ,t exp i t d t

H



 


                                                                                                                                 (2.6) 

where i is the unit imaginary number. 

The loss power P dissipated in a sample is determined by the real part of the surface 

impedance: 

  2

0P Re z H  

This concept is widely used for characterization of superconductors in high magnetic fields. 

- calculation using AC susceptibility. 

For sinusoidal external magnetic field one may define the complex susceptibility 

, ,,

m m mi    ;       m = 1,2,3…..; 

       
2

0
0

0

m

i
H , M t exp im t d t

H



   


                                                                         (2.7) 

where  M t  is the component of the (dipolar) magnetic moment of M along the external 

magnetic field. The magnetic moment is 

    31

2
M t r J r,t d r                                                                                                         (2.8) 

The energy converted into heat in the whole of the specimen during one cycle of the AC field 

is proportional to the imaginary part of the first harmonic 

2

1 0 0

,,P H                                                                                                                        (2.9) 

The real part of the complex AC susceptibility determines the time average of the magnetic 

energy stored in the volume occupied by the sample. The approach is widely used to describe 

the linear and nonlinear response of HTSC specimens in various geometries (slab, infinite and 

finite cylinders, strip, disc, and etc. [16,17]). The AC susceptibility allows one not only to 

determine value of AC losses but also to conclude the physical properties of the material. 
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2.2.1 Analytic calculation of AC losses in a superconducting slab 

 

Let us consider a superconducting slab with thickness 2  whose inward surface normal 

points in the positive x-direction. The external sinusoidal magnetic field:  0eH H sin t  is 

applied in the z-direction, which is parallel to the surface of the slab while the electric field E 

and current J are induced along the y-axis. Fig. 2 shows two different cases of a distribution of 

the magnetic field and current in a superconducting slab; the first one (top) relates to the slab 

placed in a magnetic field while the second case (bottom) corresponds the slab with a 

transport current. 

 

Fig. 2 The profiles of the magnetic field and current in a slab in an external magnetic field 

(top) and with a transport current (bottom). 

 

The problem is symmetric and hereafter it is sufficient to consider only one half of the slab 

thickness from x = 0 till x =  and one half of the period of the applied magnetic field e.g. 

between the minimum 0eH H   to the maximum 0eH H . According to the Bean model 

for the initial state at / 2t    the current density is cJ J   for all x  reached by the 

B 
cJ 

y 
z 

x 

B 

J 
J 

J 

B 

B 

J 

cJ 

Slab in a magnetic field 

Slab with transport current 

B 

B 

2
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penetrating magnetic field. For the slab, in the area in which magnetic field penetrates, 

Eqs. (2.5) are reduced to 

c

H
J

x


 


                                                                                                                            (2.10) 

0

E H

x t


 
 

 
                                                                                                                      (2.11) 

with boundary conditions:  eH H  at 0x  and 2x  . 

This initial profile of the magnetic field is marked as 1 in Fig. 3. In the case of an incomplete 

penetration (the amplitude of the applied magnetic field 0H  is less than the complete 

penetration field 
p cH J  ) there is a region when magnetic field and current are absent. The 

region with cJ J  extends to the Bean penetration depth 0p cx H / J . In the case of the 

complete penetration,
0 pH H , magnetic field penetrates the whole of the slab and the region 

with cJ J   extends to 
px   (Fig. 3 b). 

As the magnetic field increases, the profile of the current density changes and starts to contain 

a region with J=Jc. Let us denote by x1 the point at which the current reverses its sign. We 

have J = Jc for 1x x  and J = -Jc  for x>x1. 

The solution of Eq. (2.10) is 

1

0 1

,

,

e c

c

H J x x x
H

H J x x x

 
 

  
                                                                                                    (2.12) 

The point 1x  is determined from a continuum for the magnetic field in this point 

1 0( ) / 2e cx H H J                                                                                                               (2.13) 

In this point the electric field equals zero: 1( ) 0E x  . This is the boundary condition for Eq. 

(2.11). The electric field in the superconductor is 

 0 1 0 1

1

,

0,

eH
x x x x

E t

x x




 
 
   

                                                                                     (2.14) 
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Fig. 3 The profiles of the magnetic field and current in a slab at the increase of external 

magnetic field from -H0  to H0  for the cases of an  incomplete penetration (left column) and 

the complete penetration (right column).  

 

Note that in the case of the complete penetration the increase of an applied magnetic field 

above 2 p cH H  does not lead to increase of the current density in the superconductor. At the 

external magnetic field above 2 p cH H , 1x   , and the boundary condition for the Eq. 

(2.11) is zero electric field in the centre of the slab. There are several different approaches for 
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calculation of AC losses per a period of time in a superconductor. Here we will use the 

formula for the power Joule losses, i.e. by integrating cE J  through the sample volume and 

period. The calculation procedure is in details presented in many papers (see for example 

[2,12]), here we represent the results for the case when a superconducting slab and an 

infinitely long cylinder are subjected to a sinusoidal external field or a transport current. For 

the case of the incomplete penetration 
0 pH H , the loss density per a period and per a 

surface unit is determined as 

per one side of a slab:  30
0

2

3 c

p H
J


  ;                                                                                 (2.15) 

for a cylinder:              30 0
0

2
(1 )

3 2c c

H
p H

J J R


  ;                                                                  (2.16) 

for the case of complete penetration: 

for one side of a slab:    

2

0

0

2 2
( )

3

p

p

c

H
p H H

J


  ;                                                              (2.17) 

for a cylinder: 

2
0

0

0

0

3
22 2 2( ) 1

3 3 2

pc
pc

pc

c pc

H HH
p H H

J H H


 

 
   

 
 

;               (2.18)                                                                                                                          

where for the cylinder 
pc cH J R , R is the radius of the cylinder. 

Total power losses are determined by multiplying Eqs. (2.16)-(2.18) by the sample surface 

and frequency. Losses in the slab with the alternating transport current can be determined 

using equation (2.12) where the magnetic field amplitude 0H  is replaced  by the 0 2I /  

(where 0I  is the amplitude of the current per a height unit of the slab). AC losses per a period 

per unit of length of the superconducting cylinder with a transport current along its axis are: 

2
4

0 {(1 )[ln(1 ) ] }
2

c

i
p J R i i i                                                                                       (2.19) 
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where a

c

I
i

I
 ; aI is the amplitude of transport current; 2

c cI J R  is the critical current of 

the cylinder. 

 

2.3 AC losses in thin superconducting strip 

 

In the previous section we considered AC losses in bulk superconductors using the model of 

an infinitely long slab (cylinder) with a transport current or in an external magnetic field 

parallel to the superconductor surface. In many cases of real applications superconductors, 

such as thin films, tapes, coated conductors, can be simulated by infinitely long thin strips 

carrying a transport current or in an external magnetic field [4, 17, 18]. Below we will briefly 

discuss the main points of the mathematical model developed in [17,18] for analysis of 

magnetization and AC losses in the strips. Let us consider a superconducting strip filling the 

space 2x d / , y a , z    with d << a (Fig. 4) and assume that the critical current 

density jc is independent of a local magnetic field. Taking into account that d << a 

consideration of a real current distribution in the strip cross-section is reduced to 

consideration of a sheet current determined as [4,17]: 

   
/ 2

/ 2

,
d

d

J y j x y dx


 . 

In the frame of this approximation the y-component of a magnetic field on the superconductor 

surface is    
1

/ 2,
2

yH d y J y   (upper surface, y > 0) and    
1

/ 2,
2

yH d y J y   (lower 

surface, y < 0) and the x-component      / 2, / 2,x xH d y H d y H y    and is given by 

[4,17]: 

 
 1

2

a

e
a

J u du
H y H

y u



 


 .                                                                                            (2.20) 
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The magnetic field penetrates through the superconducting strip only in the area, where 

/ 2

/ 2

d

c c
d

J J j dx


  .  Where J < Jc the x-component of the magnetic field is zero at. 

The current distribution is sought in the form: J =± Jc near the strip ends and as a solution of 

Eq. (2.20) with H(y) = 0 in a central part of the strip. 

The negative magnetic moment M and the total magnetic flux   per length unit of the strip 

are defined by 

 
a

a

M yJ y dy


                                                                                                                  (2.21) 
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 
 

 
    

 
.                                               (2.22) 

 

 

Fig. 4 Strip carrying a transport current in an external magnetic field He . 

 

 

2.3.1 Strip with transport current 

 

In this section we consider a case when a superconducting strip carries a transport current It in 

zero external magnetic field. A sheet current density distribution, as a solution of Eq. (2.20), 

is given by the following expression [17]: 
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.              (2.23) 

Integrating this one gets the total current (transport current) 

 
1 2

2 22
/

t c II J a b                                                                                                              (2.24) 

and the penetration width   
1 2

2
1

/

I t cb a I / I                                                        (2.25) 

where 2c cI aJ  is the maximum critical current occurring at full penetration bI = 0. We may 

obtain the magnetic field profiles by using Ampere’s law and Eq. (2.23) [4]. 
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                                                   (2.26) 

where c cH J /  . 

The results (2.23)-(2.26) apply to the initial virgin state where tI  is increased from zero. The 

corresponding expressions for an alternating applied current with amplitude 1I  are obtained 

by looking e.g., at the situation when tI  is reduced monotonically from 1I  to - 1I . We can see 

that the resulting current J


 and field H


 profiles are linear superpositions of the form [17] 

     
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1 1
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e c c e c
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H y,I ,J H y,I ,J H y,I I , J





  

  
                                                                (2.27) 

with   e cJ y,I ,J  and   e cH y,I ,J  given by  Eqs. (2.23) and Eqs. (2.26). 
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When  1eI I   is reached, the original state is reestablished, with J and H having changed 

sign,    1 1c cJ y, I ,J J y,I ,J   and    1 1c cH y, I ,J H y,I ,J   . In the half period with 

increasing Ie one has    e c e cJ y,I ,J J y, I ,J
 

    and    e c e cH y,I ,J H y, I ,J
 

   . 

When eI  increases from 1I  to 1I  the electric field in the strip is  
 y

E y
t





 with the 

magnetic  flux    0

y

o

y H u du   . The energy dissipated in the strip during this half cycle 

is then 

     0
0

2
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y/ a a

HC c
a b b

U dt E y J y dy J dy H u du
 




     .               (2.28) 

Inserting (2.26) in (2.28) and performing integration one obtains the dissipated power 

P=2fUHC   per length unit of the strip [17]: 

   2

0 1c cP f I q I / I                                                       (2.29) 

where           2 1 ln 1 1 ln 1q x x x x x x       . 

For small and large amplitudes this gives 
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 

 
                                                               (2.30) 

 

2.3.2 Strip in a perpendicular magnetic field 

 

The current and field profiles in a thin strip in a perpendicular field eH  and with zero 

transport current can be calculated in a similar way as for the current carrying strip in Sec 

2.3.1. Here we present the results for current and magnetic field profiles for a thin strip in a 

perpendicular field [17]: 
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                                                          (2.32) 

where     cosh   tanh .H e c H e cb a / H / H , c H / H   The results (2.31)-(2.32) apply to the 

initial virgin state where He is increased from zero. 

At the end one can obtain in a similar way as described in Sec 2.3.1 the expression for the 

dissipated power when the strip is in an external sinusoidal magnetic field [17] 
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                (2.33)                               

For small and large amplitudes H1 this gives 
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2.4 Further development of Bean’s Model 

 

Bean’s critical model has been successfully applied for the calculation of AC losses and 

analysis of magnetic behaviour of low temperature type-II superconductors and gives a good 

agreement with experimental data. For high magnetic fields deviations between the 

experimental data and the prediction given by this model have been found. 
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One of the main reasons for these deviations is the dependence of the critical current 

density on a local magnetic field. This dependence is particularly strong for HTSCs and 

manifests itself even for low magnetic fields. 

The development of the Bean model was directed towards consideration of the magnetic field 

dependence of the critical current density. One of the widely used models is the Kim-

Anderson model [19]: 

0

1 / con

j
j

H H



                                                                                                                   (2.35) 

where 0j  and conH  are the constants of the material. 

Other widely used models are 

( / ) ,
1

nJ J H Hc c
                              Yeshurun [20] 

exp( / ),
0

J J H Hc con                      Fietz [21] 

0 /(1 / ),c conJ J H H                        Watson and Shi [22] 

1/ 2/ ,cJ K H                               Matshushita [23]. 

The fitting parameters of the models 1,  ,  ,  o con cj H H K  can be determined experimentally 

from the critical current measurements in DC magnetic field, from experimental investigation 

of the dependence of the AC losses and susceptibility on the magnetic field [16], and of the 

magnetic shielding properties of superconductors [24]. 

In the framework of the models listed above, the Bean dependencies of the losses on the 

magnetic field amplitude are disturbed. Note, however, that the losses per a period are 

frequency independent as it is given by the original Bean model. 

 

2.5 Losses in HTSC 

 

After the discovery of high temperature superconductivity the Bean model and the other 

models based on the conception of the critical state are used for the description of the 

magnetic field 
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response of new class superconductors [25]. It is noted in many papers the CSM gives the 

good agreement with experimental data. 

However, pronounced deviations from CSM predictions are observed in many experiments. 

In particular, the penetration threshold of magnetic field depends on the rate of magnetic field 

increase. 

A pronounced frequency dependence of AC losses per cycle in HTSC materials was found 

[26]. It was noted that an HTSC sample demonstrated pronounced deviations from the CSM 

under varying external conditions. 

 

 

2.5.1 Peculiarities of HTSC 

 

HTSC have clearly defined the granular and the layered structure and hence, these 

superconductors are highly anisotropic. The granularity is caused by weak links at grain 

boundaries. These links have a very low Jc as compared with granules and magnetic field 

penetrates to the centre of the sample leaving the grains unpenetrated. 

Other peculiarities of HTSC are associated with particular properties of the vortex lattice 

described in reviews [15,25]. It is noted that the oxidant vacations in HTSC can be the 

pinning materials. These pinning centres posses a lower potential barrier than defects of the 

material structure. It reduces the critical current density and increases the effect of flux creep. 

In HTSC the thermal depinning is observed in wide temperature and current intervals below 

the critical values. A strong and rapid flux creep, i.e. the thermally activated motion of 

vortices, is the characteristic feature of HTSC. This "giant flux creep" [20] can be observed 

till very high electric fields 310  V/cm in comparison with LTSC where the creep is 

observed only at electric fields of the order of 610  V/cm and in a very narrow range of 

current near the critical value. The criterion of 1 µV/cm for the critical current of a LTS 

clearly determining the demarcation line between the flux creep and flux flow regimes loses 
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its meaning in HTSC. For HTSC, the transition point from one regime to the other 

depends on the superconductor type, preparation technology and external magnetic field. 

The thermally activated flux creep leads to a marked decay of persistent currents in the HTSC 

sample and decreases the magnetization and the gradient of the magnetic field in the 

superconductor. In LTSC the decrease of the magnetization is well described by logarithmic 

law [26]. For HTSC, the law of the decrease is dependent on the state of the vortex lattice 

[27]. In many cases the law is also close to the logarithmic one [20,27]. Formally, this flux 

creep is equivalent to a nonlinear current –dependent resistivity  1~ exp J / J . 

A novel feature in HTSC is the (TAFF) thermally assisted flux flow with a linear (ohmic) 

resistivity that is observed practically from zero current [28]. The both, flux creep and TAFF 

are limiting cases of Anderson’s general expressions for the electric field  E H ,T ,J  which 

may be written as [9]: 

   0 02         c c B c B cE J exp U / k T sinh JU / J k T , J J                                                    (2.36) 

where  c H ,T  is the resistivity at cJ J ;  0U H ,T  is the pinning potential; Bk  is the 

Boltzman constant. 

The electric field in HTSC appears from motion of the vortices. At a current density lower 

than the critical value, the average vortex velocity is determined by the probability of the 

directional jump of the vortices through a potential barrier. This velocity is determined as 

    0 c Bv v j / j exp U J / k T                                                                                           (2.37) 

where 0v  is constant ;  U J  is the activation energy. The E J  characteristic of a 

superconductor is determined by the substitution of (2.37) in the expression 0E Hv . 

Generally the activation energy depends on the temperature, magnetic field, vortex lattice 

state, and pinning type. For LTSC, the usual expression for the activation energy follows from 

the Kim-Anderson model [7,19]. 

For HTSC, there are a number of different models confirmed experimentally for different 

samples. One of the widely used models proposes 
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                          (2.38) 

Where the exponent   characterizes the vortex pinning model: single vortex, vortex glass or 

collective creep models. The parameter   depends on the properties of HTSC, the external 

magnetic field and also on the current density and temperature. In the framework of the Kim-

Anderson theory 1    and the activation energy is: 

  0 1 cJ
U J U

J

  
    
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 .                                                                                                    (2.39) 

Theoretical treatment of the collective pinning showed that there are three different regimes 

depending on the current density J  [30]: 
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Other frequently used forms for the dependence of the activation energy on the current 

density are the power law   0

c

J
U J U

J

  
    
   

 and the logarithmic law 
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U J U ln

J
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    
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. The last dependence leads to a power law E J  characteristic in the 

flux creep region: 
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c

J
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J
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                                                                                                                     (2.41) 

where 0 1
B

U
n

k T
  . 

Expression (2.41) is frequently used for approximation of a measured E-J dependence in the 

flux creep regime n and E0 are determined from fitting experimental data and for an analysis 

of magnetic properties and calculation of AC losses in HTSC [6]. Calculation of AC losses is 

based on numerical methods or approximately approaches [37]. 
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All the models listed above have been applied for calculation of AC losses in 

superconductors under sinusoidal conditions (sinusoidal magnetic fields or/and currents). In 

reality, currents  I t  in electric power systems contain a wide variety of harmonics and can 

be represented by Eq (1.1). Since superconductors posses a strongly non-linear current 

voltage characteristic, one can expect substantial contribution of higher harmonics to AC 

losses in superconducting elements. In the next sections we will consider AC losses in 

superconductors under non-sinusoidal conditions. We are going to take into account the first 

two harmonics k = 2 or k = 3. The second harmonic is the main one appearing in two-phase 

circuits and the third – for three-phase circuits. Usually higher harmonics rapidly decay. 



 31 

3. Analytical calculation of AC losses in superconducting slab 

under non-sinusoidal conditions 

 

The waveforms of non-sinusoidal currents (magnetic fields) can be divided into three 

types: I-symmetrical case a current monotonically increases (decreases) from the minimum 

(maximum) to the maximum (minimum) and the maximum equals the module of the 

minimum (Fig. 5, line 1); II –asymmetrical case a current monotonically increases (decreases) 

from the minimum (maximum) to the maximum (minimum) and the maximum does not 

equals the module of the minimum (Fig. 5 , line 2); III – a current change is no-monotonic 

from the minimum to the maximum (Fig. 5, line 3). The type of the waveform depends on the 

number of harmonics, their frequencies, amplitudes and phases. If  

     1 1e kH t H cos t H cos k t    the monotonic behavior is observed at 
2

1
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H k
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Fig. 5 Non-sinusoidal current waveform: 1 – symmetrical case; 2 - asymmetrical case; 3 - 

non-monotonic case. 

 

In previous chapter we presented the expressions for calculation of AC losses in the frame of 

CSM in the cases of sinusoidal external magnetic field or transport current. Using the same 

approach and mathematical models developed in [8,9,13] we obtained the following 
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expressions for the AC power losses for non- sinusoidal monotonic current waveforms 

(symmetrical and asymmetrical cases): 

(a) losses per surface unit of a slab in a parallel magnetic field are 

 
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                                              (3.1) 

(b) losses per length unit of a thin strip in a perpendicular magnetic  field are 
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04     c cP a fJ H hg h ,                                                                                                  (3.2) 

where 
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
 ,  g x  is given by Eq. (2.33) 

(c) losses per length unit of a thin strip with a transport current are 
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where  q x  is given by Eq. (2.29) 

Note, that AC losses caused by a current in a slab can be estimated using the first equation of 

(3.1) where values of the magnetic field are replaced by the current per height unit of the slab. 

As seen from Eqs. (3.1)-(3.3) the losses in superconductors under non-sinusoidal monotonic 

current waveforms are independent of frequency of higher harmonics, while  in the case of 

normal metal parts of the device power of the Joule losses and eddy current losses are given 

by Eqs. (1.2) and both have a very strong dependence on the frequency of the higher 

harmonics. Losses per a current period in a superconductor are determined only by the 

difference max minH H  and are independent of frequency of the main harmonic and higher 

harmonics. 

The AC loss calculation accounting the main harmonic only leads to an error determined by 

the difference   12max minH H H H    . 

To a first approximation, the AC losses can be estimated as 
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 1 11 2P P K H / H                  (3.4) 

where 1P  is the AC losses caused by the main harmonic, K is the coefficient depending on the 

shape of a superconductor and on the value of 1H . So, K = 3 for a slab at 2max min pH H H  ; 

K = 4 for a strip at max min cI I I   or at max min cH H H  ; K=1 for both configurations at 

high magnetic fields. A relatively low difference 12H / H  leads to a noticeable increase of 

AC losses. For example, losses increase by up to 20% at 12 0 05H / H .  . At the same time, 

in the normal metal, the five percent second harmonic causes the loss increase by 1%. The 

difference H is determined not only by the harmonic amplitudes but also their phases (Fig. 

6). 

And what is more this difference can be negative (Fig. 6b), hence the appearance of higher 

harmonics can reduce AC losses. At design of superconducting power devices, one should 

calculate AC losses for the worst case when the losses are maximal. For k = 2 the maximum 

of H  is achieved when 2 0  and increases as 1 8

22 4 .. H , for k = 3 the maximum equals 32H  

at 3  . 

Now, we consider a non-monotonic current change when additional maximums and 

minimums appear in the waveforms of magnetic field and current (Fig. 5, line 3). The field 

cyclically changes from point A to point B through point C. The AC losses induced during 

this cycle can be calculated using Eqs. (3.1)-(3.3) where maxH  and minH  are replaced by AH  

and CH , respectively. The number of wells and their depths, A CH H , depend on the number 

of harmonics, their frequencies, amplitudes and phases. If 

     1 1e k kH t H cos t H cos k t     , the maximum well number is k-1. The total AC 

losses per period are a sum of the losses contributed by all cycles. Fig. 7 presents the 

characteristic values of a two-harmonic waveform for 2 2/   at k = 2.  
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Fig. 6 Dependences of  H on phase a) second harmonics b) third harmonics. 

 

 

At H2/H1 < 0.25, and Hmax -Hmin= 2H1, the losses are determined only by the main harmonic 

amplitude. If H2 is higher, the losses increase due to the growth of Hmax -Hmin and the 

contribution of an additional, "inner", cycle. If HA – HC < 2Hp, the last contribution achieves 

5% at H2/H1 = 1; for HA –HC >> 2Hp the 5% level is observed at H2/H1 = 0.4. So, one has to 

account the loss part appearing due to wells at relatively high amplitudes of higher harmonics.  
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Fig. 7 Normalized characteristic values for  1 2   2  2  H( t ) H sin( t ) H sin( t / )     as 

functions of  2 1H / H : 1- (Hmax -Hmin)/2H1;  2 - (HA –HC)/2H1;  3 - (HA –HC)/(Hmax -Hmin). 

 

 

3.1 Summary 

 

The calculation results show that in devices with superconducting elements, higher harmonics 

can substantially change the loss values. While, in the normal metal, the 5% second harmonic 

causes the loss increase by 1%, in superconductors this increase can achieve 20%. Moreover, 

the contribution of the harmonics depends on their phases: in a certain range of phases, the 

odd harmonics can even reduce AC losses. These peculiarities distinguish the behavior of 

superconducting devices from that of conventional ones. Non-monotonic character of the 

waveforms of a current or a magnetic field influences AC losses only at very high amplitudes 

of additional harmonics. 
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4. Coated Conductors 

 

In previous chapters we have considered an AC loss problem for the model cases 

(slab, strip) and shown that existence of higher harmonics can cause pronounced changes of 

AC losses. For example, the 5% second harmonic can cause the loss increase by 20% in 

superconductors. Moreover, the contribution of the harmonics depends on their phases: in a 

certain range of phases, the odd harmonics can even reduce AC losses. These peculiarities 

distinguish the behavior of superconducting materials from that of conventional ones. In this 

section we will consider AC losses in the superconducting wire under non-sinusoidal 

conditions. At present the main candidate for broader commercialization of HTSC wires is the 

second generation (2G) YBa2Cu3O6+x (YBCO)-coated conductor [31,32]. These conductors 

are produced by deposition of a 1-3 m film of YBa2Cu3O6+x on 10 - 100 m thick metallic 

substrate, and superconducting film is subsequently covered by protective silver and 

stabilizing copper layers (Fig. 10). Buffer layers, typically oxides (CeO2, MgO, GdZO and 

etc.), are sandwiched between the YBCO and substrate, the buffer layers are functioned as a 

texture base, a reaction barrier between the YBCO and the metallic substrate layer and a layer 

prevents diffusion of metal atoms into the superconductor. The nature of buffer layer is 

selected depending on the production process of the coated conductor. The typical 

characteristics of coated conductors are presented in Tabl. 1. 

The 2G superconductors are characterized by very high critical current density, up to 4 

MA/cm
2 

at 77 K, close to that in the epitaxial thin films. The sheet critical current density is 

usually of the order of 100 A/cm, for the best samples this density can achieve 1000 A/cm 

[32]. The implementation of superconductors in AC power applications such as transformers, 

motors and generators depends crucially on the success in designing conductors with low 

losses in time-varying magnetic environment. AC loss values determine ranges of the rated 

currents and magnetic fields for superconducting devices, required power of cryogenic 

equipment, and economical gain. A lot of investigations are devoted to a consideration of AC 
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losses in coated conductors and coils winded using these conductors under different 

conditions (see for example [33, 34] and references in them). However, most of the works 

consider sinusoidal magnetic fields or/and currents. 

In this section we will analyze losses in coated conductors under non-sinusoidal conditions 

when a current monotonically increases (decreases) from the minimum (maximum) to the 

maximum (minimum) (see Fig. 5, lines 1 and 2). 

 

 

Fig. 10 Sketch of a coated conductor. 

 

Table 1 

The typical characteristics of coated conductors 

 Thickness of layer Resistivity at 77 K 

 ( n m  ) 

Metal substrate (Ni- 

alloy) 

20-100 m  4.6 

Buffer layer 10-20 nm dielectric 

SC layer (YBCO) 5 m  - 

Protective layer ( Ag) 25 300 m  2.65 

Stabilizer (Cu) 300 m  2 1.  
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4.1 AC power losses in coated conductor 

 

The total losses in a coated conductor are determined as a sum of losses in a superconductor 

(hysteresis losses) and in a normal-metal parts (eddy current losses). For loss calculation the 

coated conductors can be presented as a metal strip and a type II superconducting strip placed 

one on top of the other as shown in Fig 11. Losses in coated conductors will be calculated for 

cases: (i) a non-sinusoidal magnetic field is applied perpendicular to the conductor wide 

surface (in the z-direction) and (ii) non-sinusoidal current flows through the conductor in the 

y-direction without an external magnetic field. In this section losses are estimated in the 

framework of the critical state model neglecting the response of the normal-metal substrate 

and stabilization layers. For a sinusoidal magnetic field perpendicular to a normal-metal strip 

the last is valid if 

0 1mad



 ,                                        (4.1) 

where   is the resistivity of the metal, dm and a are the thickness and half-width of the metal 

strip. 

In the mathematical model of a coated conductor the substrate, protective silver and 

stabilizing copper layers can be represented by an effective normal-metal strip where dm/ is 

replaced by dsub/sub + dsil/sil + dst/st  (here sub, sil, st, and dsub, dsil, dst are the resistivities 

and thicknesses of the substrate, protective and stabilizing layers, respectively). For a non-

sinusoidal magnetic field the condition (4.1) has to be valid for each harmonic taken into 

account. If the condition (4.1) is valid, the field produced by a current in the normal-metal 

strip may be neglected and this strip can be considered in a total field which is a sum of the 

applied field and field produced by a current in the superconductor. 

We assume that the normal-metal and superconducting strips are of half-width a and length l 

and {dsc, dm }<< a << l. The model of infinitely long thin strips can be applied. In the 

framework of the thin strip approximation the magnetic field induced by a current in the 

conductor is perpendicular to the surface and is independent of the z-coordinate inside a strip. 
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The real current distribution through the strip thickness can be replaced by the sheet current 

determined as an integral of the current density through the strip thickness [4, 17]. 

Expressions for AC losses in a superconducting strip under non-sinusoidal conditions were 

obtained in the previous chapter, see Eqs. (3.2) and (3.3). In this chapter we consider eddy 

current losses in a normal-metal strip and compare them with hysteresis losses. The 

peculiarity of this consideration is that this strip is subjected to an external non-sinusoidal 

non-uniform magnetic field. 

 

Fig. 11 Sketch of a coated conductor (thin strip approximation), where d d a l
sc m

   , 

dsc is the superconducting layer thickness 

 

 

4.1.1 Coated conductor in a perpendicular magnetic field 

 

A non-sinusoidal magnetic field He(t) is applied perpendicular to the surface of a coated 

conductor. 

If an external magnetic field monotonically increases, in the framework of CSM AC losses 

per a period in a superconductor are determined only by the extreme values and do not depend 

on the waveform and frequency. If the critical current density is independent of a magnetic 

field, value of these losses is given by Eqs. (3.2). When an external field increases (decreases) 

the magnetic field is described by the following equations, respectively: 

d sc 

l
 

 2a 

dm
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 max max( ,  ,  )  , ,2z z c z e cH H x H J H x H H J                                                                (4.2) 

 min min( ,  ,  )  , ,2z z c z e cH H x H J H x H H J                                         (4.3) 

here, zH  is the z-component of the magnetic field which is the sum of the external field eH   

and the z-component of the magnetic field produced by the currents in the superconducting 

layer and it is given by, similarly to the case of a sinusoidal external field [33], the following: 

 

2 2

arctanh

0

c

z e c

x b
H , b x a

H x,H ,J c x

, x b

 
 

 




                                                             (4.4) 

where  
 cosh e c

a
b

H / H
 ,   tanh /e cc H H , Hc=Jc/. 

In opposite to a superconducting strip, losses in the normal strip depend on the field 

extremums as well as on the field waveform. In the considered task there are the y-

components of the electric field Ey and current density jy,ed , only. The eddy current loss power 

ped per unit of volume in an infinity long thin strip is a function of x and time t: 

   txEtxjp yedyed ,,, .                                                 (4.5) 

The electric field and current density are related according to Ohm’s law: 

edyy jE , .                                                                   (4.6) 

The electric field Ey is induced by the time varying magnetic field 

 
 

0
0

,
,

x
z

y

H u t
E x t du

t



 


  .                                                                                            (4.7) 

The eddy loss power per length unit is: 

 
2

2
2

0
02

/ a
zm

ed
a

H x,td
P dt dx

t

 


  

 
 

  
 

.                                       (4.8) 

Integration of the last expression through x gives: 

2 3 2
20

1
3

m
ed h

d a
P H F

 


                                                                                                   (4.9) 

where 
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 
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 
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F h dt
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h dt
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 
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





  
      

  

  
    

  

                                                  (4.10) 

where 
 

1

1 e

e

H t
h

H t


 


 , max

2

e

c

H H
Y

H


 , min

2

e

c

H H
X

H


 ,  t1, is t2 are the points at which 

the external field reaches its maximum and minimum, respectively. 

We obtain the following expression for the total loss power (the sum of the loss powers in a 

superconductor and normal-metal) per length unit in a coated conductor: 

 2 3 2 2

0 13

Htot
H h h h

m

P
p F c Q

d a / H  
    ,                                                     (4.11) 

where   2

1

6h

h
Q g h

h


 , 

0

h

m

c
ad



 
 , 1

1

c

H
h

H
 . 

Here losses are normalized to the eddy losses caused by the uniform magnetic field with the 

amplitude and frequency equaled to those of the main harmonic when a superconductor is 

absent. 

 

 

4.1.2. Coated conductor with a transport current 

 

Let us consider losses caused by a non-sinusoidal transport current I(t) flowing in the y-

direction without an external magnetic field. We study the case when the current maximum 

Imax and module of the current minimum Imin are less than the critical value Ic = 2aJc. It is 

assumed that the magnetic field produced by a current induced in the metal is negligible in 

comparison with the field from the current in the superconductor. Losses in the 

superconductor are given by Eq. (3.3). To calculate the eddy current loss power Pied per 
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length unit, Eq. (4.8) is used where, at a decrease (increase) of the current from its 

maximum (minimum) till the minimum (maximum), the magnetic field is determined as [17]: 

      2
~ ~

z z max c z max cH x,t H x,I ,I H x,I I t , I                                                                 (4.12) 

      2
~ ~

z z min c z min cH x,t H x,I ,I H x,I I t , I                                       (4.13) 

where   1 2
2 2

2 2

0

2 arctanh

i
~

/

z c i
c i

i

, x b

H x,I ,I x bx
H , b x a

x a b

 


   
   

 

, 

and 2 21i cb a I I  . 

Using the approach developed in section 4.1.1 the total loss power per length unit of a coated 

conductor carrying a non-sinusoidal transport current is: 

 
 

2 3 3 2 2

0 12

Itot
I i h i

m

P
p F c Q i

d a / I


  
    ,                                                         (4.14) 

where max min

2 c

I I
i

I



 , Qi(x) = q(x)/i1

2
, i1 = I1/Ic, 
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c
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b
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   
 

,  
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1

1 dI t
i t

I dt
  . 

 

 

4.2 Results and discussion 

 

In the case of a sinusoidal waveform (    1sineH t H t  or I(t) = I1sin(t)), the dependence 

of the functions Fh,  Fi, Qh and Qi on the magnetic field and current has been analyzed in 
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when I(t)=I1sin(t)+Iksin(kt+k), the [17,33]. Under non-sinusoidal conditions 

monotonic behavior of the waveform is observed at Ik/I1 <1/k
2
. Losses in the normal metal 

also depend on a phase of the higher harmonic. Our calculation showed that the maximum of 

the losses is achieved at the same phases at which losses in a superconductor are maximal: 2 

= 0 for the second harmonic and 3 =  for the third one. At design of superconducting power 

devices, one should calculate AC losses for the worst case when the losses are maximal, 

therefore here we will analyze the cases of the second harmonic with 2 = 0 and of the third 

harmonic with 3 = . The numerical integration and graphical presentation were carried out 

using Mathematica. For monotonic waveforms functions Fh, Qh and Qi , Fi are shown in Figs. 

12 and 13, respectively. Note, that functions Fh and Fi characterizing the eddy losses as well 

as functions Qh and Qi corresponding to losses in superconductor which are independent of 

frequency of the main harmonic. Despite this fact the total losses in a coated conductor are 

frequency dependent: eddy current losses are proportional to 2
 and losses in a 

superconductor ~ . Using our normalization it is clearly shown that the relative contribution 

of losses in a superconductor losses depend on the parameter hc  which is frequency 

dependent, 
1

hc ~


. Thus the relative contribution of AC losses in a superconductor is given 

by the inverse relation of the main harmonic frequency. 

The influence of higher harmonics on losses in a superconducting strip in perpendicular 

magnetic field has been analyzed in chapter 3, where it was shown that the hysteresis losses 

per a current period are independent of frequency of the harmonics. These losses depend only 

on the maximum and minimum of the current or magnetic field. Figs.14 and 15 present the 

relative contribution  1 1/P P P P    of higher harmonics to losses (here P1 is losses caused 

by the main harmonic). The contribution is maximal at a low magnetic field and decreases 

when the field increases. For example at 
1

0 05
2

H
.

H


  for the third harmonic, the contribution 

to AC losses achieves 20% in a superconductor and 35% in the normal metal parts (Fig 15, 

green line). At a high field when screen properties of a superconductor can be neglected, eddy 
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losses are determined as for a normal-metal strip in the uniform external non-sinusoidal 

field and the relative contribution of the k-th harmonic is given by 2 2 2
1kP k H H  and for 

the 5% third harmonic losses in the metal increase by 2% and in the superconductor – by 5%. 
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a)     b) 

Fig. 12 Dependences of  the functions Fh and Qh on amplitudes of two first harmonics: a) the 

case of the main and second harmonics at 2 = 0 (blue, Qh , and red, Fh , lines at H2 =0; black, 

Qh, and green, Fh, lines H2 =0.25 H1) and b) main and third harmonics at 3 = (blue, Qh , 

and red, Fh , lines at H3 =0; black, Qh, and green, Fh, lines at H3 =0.1 H1). 
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a)     b) 

Fig. 13  Dependences of the functions Fi and Qi on amplitudes of two first harmonics: a) the 

main and second harmonics at 2 = 0 (blue, Qi, and red, Fi, lines at I2 =0, black, Qi, and green, 

Fi, lines at I2 =0.25 I1) and b) main and third harmonics at 3 = ( blue, Qi, and red, Fi, lines 

at I3 =0; black, Qi, and green, Fi, lines at I3 =0.1 I1) 
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a)                              b) 

Fig. 14 Relative contribution of the second harmonic of the magnetic field to losses in a 

superconductor (a) and normal-metal parts (b): blue line – H2 =0.25 H1; green – H2 =0.15 H1, 

red line – H3 =0.05 H1. 
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a) b) 

Fig. 15 Relative contribution of the third harmonic of the magnetic field to losses in a 

superconductor (a) and normal-metal parts (b): blue line - H3 =0.1 H1; green – H3 =0.05 H1, 

red – H3 =0.02 H1 

 

Fig. 18 shows the dependence of losses in a superconductor as function of third a) magnetic 

field and b) transport current harmonics, qualitatively similar behavior is expected for the 

second harmonics. Another dependence is obtained for a coated conductor with a transport 

current (Figs. 16, 17, 18b). At Imax-Imin <<Ic losses in a superconductor are determined by the 

expression similar to (3.4) with K = 4, where the magnetic field values are replaced by the 

corresponding currents. At I/2I1 = 0.05 the losses increase also by about 20%. However, in 

contrast to the case of a magnetic field, the relative contribution increases with the current and 

achieves about 35% at cI I  (Fig. 17a, blue line). Qualitatively similar behavior is observed 
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for losses in the normal-metal parts: the relative contribution increases with the 

current (Figs. 16b and 17b). 
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a)                                                                             b) 

Fig. 16 Relative contribution of the second current harmonic to losses in a superconductor (a) 

and normal-metal parts (b): red line – I2 =0.25I1 , blue line – I2 =0.15I1, green – I2 =0.05I1. 
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a)                   b) 

Fig. 17 Relative contribution of the third current harmonic to losses in a superconductor (a) 

and normal-metal parts (b): red line - I3 =0.1I1 , blue line - I3 =0.05I1, green - I3 =0.02I1. 

       

a)       b) 

Fig. 18 Relative contribution of higher harmonics to losses in the superconducting part of a 

coated conductor: a) contribution of the third magnetic field harmonic; b) contribution of the 

third current harmonic. 
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However, the relative contribution can be more substantial. For example, the 5%-third 

harmonic causes increase of eddy losses by about 35% at low currents and achieve about 80% 

at cI I  (Fig. 17b, blue line). At the same time losses in a superconductor increase by from 

20% up to 45% (Fig. 17a, blue line). 

The total losses in a coated conductor are determined by the sum of the losses in the 

superconducting and normal-metal strips. The relative contributions of these parts are 

determined by the ratio Fh  and Qh in case of the magnetic field and by the ratio Fi  and Qi for 

the current as well as by the constant ch. At h1 << 1 both functions, Fh and Qh , are well fitted 

by power laws with exponents 4 and 2, respectively. At h1  >> 1 Qh decreases proportionally to 

1/h1 while Fh tends to the limiting value 1+(kHk/H1)
2
. Thus, the relative contribution of eddy 

current losses to the total losses increases with the applied field (Fig. 12). 

In spite of the fact that both functions Fi and Qi increase (Fig. 13) with the current, the relative 

contribution of losses in a normal-metal strip to the total losses also increase. For example, for 

the 5% third harmonic the ratio Fi /Qi  = 0.02 at i1 = 0.2 and this ratio increases up to about 

0.6 at i1 = 0.9. 

Let us estimate the parameter ch which is the same in the expressions for the total losses in 

both cases and depends on a frequency of the main harmonic and characteristics of the 

normal-metal strip (resistivity, thickness, and width) only. For a coated conductor without 

protective silver layer and stabilizer [33] the parameter ch is evaluated as (10
6
 s

-1
)/f , for a 

conductor with the silver layer with thickness of ~2 k [35] ch ≈ (8 10
4
 s

-1
)/f, for a well 

stabilized coated conductor with cooper stabilizer thickness of 100 k [36] the parameter ch is 

evaluated as (1.6 10
3
 s

-1
)/f . The estimations were done for the coated conductor with the 

width of 1 cm, the resistivity of a hastelloy-C substrate was taken 1.24 10
-6

  m and 

resistivity of silver and cooper – 2 10
-9

  m at 77 K. 

One can see that the losses in a superconductor dominate in the two first conductor types till 

high frequencies of the order of 1 MHz. The losses in the normal-metal parts of a well 

stabilized coated conductor can be comparable or even dominate at electrotechnical 
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frequencies ~1 kHz (the range of frequency is used in special electric power systems such 

as airplanes, ships, etc.). At 50-60 Hz losses in the normal-metal parts will dominate in 

magnetic field h1 > 30, e.i. when 0H1 > 0.1 T at the typical value of Jc = 10
4
 A/m (0Hc = 

0.004 T). This value is much less than the working magnetic fields in many power devices, 

for example, a working field in a generator is of the order of 1 T, and losses in the normal 

metal parts of a coated conductor dominate. In superconductor power cables the working 

fields are of the order of 0.03 T and the total losses are mainly determined by losses in a 

superconductor. Basing on the fact that AC loss values in a normal-metal parts can not exceed 

losses in a superconductor. Thus, AC loss values in a  nominal regime of power devices 

imposes a restriction on the possible thickness of the stabilization layers. 

For a coated conductor without a protective layer AC loss value in normal metal parts prevails 

losses in superconductor at the typical value of  10  T which is significantly higher than all the 

working magnetic fields in modern power devices. 

 

 

4.3 Analytical approach for AC losses in striped coated conductors 

 

A sufficiently AC-tolerant YBCO coated conductor can enable the fully superconducting 

version for motors and generators in which both the field and armature windings are 

superconducting [32]. From expressions (3.2) and (3.3) one can see that the value of 

hysteresis losses is proportional to the strip width in square. 

The width of the developed coated conductor is 1 cm with plans to reduce it to 4 mm. When 

such a wide superconducting tape is exposed to time varying external field a large amount of 

heat is generated [5,37]. Thus, a significant reduction of hysteresis losses in coated conductors 

is a prerequisite for their use in AC power applications. It is also important for such a 

modification to be compatible with current techniques of manufacturing the coated 

conductors. To reduce hysteresis losses in tapes several millimeters wide, subdividing of the 
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tape into narrow parallel strips has been proposed [37]. The resulting conductor is a 

multifilamentary tape with parallel thin strips (filaments) separated by narrow gaps (Fig. 18). 

Let us consider losses caused by a perpendicular non-sinusoidal magnetic field in a striped 

coated conductor. 

 

 

a) b) 

Fig.19 a) One cm wide uniform coated conductor and 33-filament striated sample shown side 

by side the top visible layer is silver ; b) microphotograph of the cross-section of the striated 

sample in  the groove area. The Hastelloy substrate, YBCO and silver layer are indicated. 

 

It was shown [26] that the losses can be presented as a sum of the loss in a normal conducting 

substrate, the transverse coupling current loss and the loss in the filamentary strips. For a 

sufficiently high magnetic field these losses can be estimated separately assuming that the 

magnetic field equals the external one. To find the area of applicability of this approach we 

will use the solution obtained in the framework of the model of a thin strip [17]: 

 0 1xBP P g h                  (4.15) 

where 2

0 0 14 cP f a J H . 

At 1 1h  ,  1 11 1 386g h . / h  . The last term,  11 386. / h  describes the decrease of losses 

during the lower field part of a period due to partial field penetration and also due to the 

difference among the local magnetic field to the external one. The term can be neglected at 

1 15h   with an accuracy of 10%. 
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The value of cJ  is typically of the order of 10
4 

A/m for modern coated conductors [31]. 

Therefore 2

0 4 10  TcH ~   and the approximation that the magnetic field equals the external 

one can be used for external magnetic fields with amplitudes higher than 0.6 T, typical for 

transformers, electrical motors and generators. Under this assumption, the coupling loss and 

loss in a substrate per length unit are given by the following expression 

 1
2

21 1
2 1

p
K f H

P h
ed k k

k

 
 
 
 

  


                                                        (4.16) 

where  1

2 2
1

K f H /   is the eddy losses caused by the main harmonic, p
k

 characterize the 

dependence of the losses on frequency. Generalizing Eq. (44) from [5], we obtained for both 

losses 2p k
k
 , for a strip K1 = 

2 2 2
02

3

ma d 


, while for the coupling losses per the length 

unite this coefficient is  2 2 3 1 ga L N R  , where L is the conductor length or the twisting 

step length, N is the number of filamentary strips, Rg is the resistance between two 

neighboring filaments. Losses in superconducting strips can be estimated using the results 

obtained above. 

 

 

4.4. Power law superconducting strip 

 

The results presented above have been obtained in the framework of the critical state model 

with the critical current density independent of a local magnetic field. A more realistic picture 

is given by the models based on a power law fitting of the voltage-current characteristic of a 

superconductor or/and taking into account the dependence of the critical current on a 

magnetic field. It was shown [6] that at high magnetic fields the loss values obtained for 

power-law dependence even with a high index of power (10-30) are markedly different from 

those given by the critical state models. Let us analyze the influence of higher harmonics on 

losses in a thin superconducting strip with the power-law relation between the sheet current 
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density J and electric field E and dependence of the critical current on a magnetic field 

according the Kim-Anderson model: 

0

n
JE E
Jc

 
 
 
 

 , 
| |c

H
bJ J

H H
b




,               (4.17) 

where E0 = 1 V/cm is the electric field caused by the critical current density jc and jc0 is its 

value at H = 0, Hb is a constant determined by the properties of the superconductor. 

At high magnetic fields losses per unit of the strip length are 

1
0 1

0 4 2 0

/ n
w HnP P F,
En

 
 

  
  
   

  
 




                                                                           (4.18) 

1 1

1

0 1
1

/ n

h k cos ktk kT kF dt

h h sin ktb k k
k

  

 

 
 
 

 
 
 




 

 


  , 

where 1b bh H / H , 2

0 0 14 cP f J a H  is the loss given by CSM in asymptotically high 

magnetic fields. The dependence of losses on the properties of a superconductor, n, E0, Hb, 

has been investigated in [6] for a sinusoidal magnetic field. 

The influence of higher harmonics on losses appears in the value F of the integral in (4.18). 

For a sinusoidal field (hk = 0 for k >1) and at n→∞, hb = 0, (the critical state model), this 

integral equals 4 and P = P0. Let us analyze the value of F for two cases of a two-harmonic 

waveform: (a) k = 1, 2; (b) k = 1, 3. For practical applications it is important to determinate 

the maximum attainable values of AC losses. F has the maximum at 2 =0 in the case (a) and 

3 =  in the case (b). The results of numerical integration are presented in Fig. 20  at hb = 0 

and (2 =0, 3 = π). 

The value of F decreases with an increase of hb approximately as 1/(1+0.85 hb)
0.625

 for both 

cases and increases with the amplitudes of higher harmonics proportional to 1+a2h2
1.8

 for the 

first case and 1+a3h3 for the second case. The coefficients a2 and a3 depend on the power 

index n and parameter hb. For hb < 1 and n >10, within the accuracy of 10%, a2 and a3 can be 
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taken 1.3 and 0.9, respectively. The increase of n above 20 does not lead to a marked 

growth (the difference of the values of F at n = 20 and n = 40 is less than 2%). 

 

    

a) b) 

Fig. 20 Dependence of F on n and a) h2 for      1 2 sin  sin 2H t H t H t   , b) h3 for 

     1 3 sin  sin 3H t H t H t     . 

 

To determine the applicability of the approach developed in this section let us compare the 

asymptotic result for n>>1 and hb =0 (Eqs. (4.18)), and analytical exact results obtained for 

CSM (see section 4.1.1). Fig. 21 shows that for the first harmonic amplitude higher than 15Hc 

one can use the approximation of asymptotic high magnetic field. 
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a)       b) 

Fig. 21 Relative contribution of higher harmonics to AC losses vs. amplitudes the main 

harmonics: a) the second harmonics; cyan line–CSM, blue - asymptotic high magnetic field 

approximation, b) the third harmonics: cyan line–CSM, blue - asymptotic high magnetic field 

approximation. 
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4.5 Summary 

 

Our results show that higher harmonics can substantially change power losses in coated 

conductors, especially, in the conductors with a transport current. Thus, the 5% third current 

harmonic causes loss increase by 45% in the superconducting part of a coated conductor and 

by 80% in the normal-metal parts at a current close to the critical value. These peculiarities 

distinguish the behavior of coated conductors from that conventional ones when this harmonic 

increases losses by about 2%, only. So, it is very important to take into account higher 

harmonics at estimation of losses in coated conductors. 

Note that approach of thin strips for estimation of losses can be applied also to 

superconducting films covered by stabilization (protective) layers, mono-filamentary thin tape 

based on YBCO and BSSCO ceramics. 
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5. Numerical analysis of AC losses in coated conductors 

 

5.1 Introduction 

 

In previous chapter we have analyzed AC losses in coated conductors in the framework of 

CSM and of the asymptotic high magnetic field approximation for a power law 

superconducting layer. It was shown that contribution of relative small higher harmonics to 

AC losses in coated conductors can achieve 110 % of losses caused by the main harmonic in a 

superconducting layer (Figs. 16, 17 and 18b) and 250% in a normal metal parts (Fig. 17b). 

In this section we analyze influence of higher harmonics on losses in coated conductors 

simulated more real voltage-current characteristic – power law. Here the mathematical model 

and numerical algorithm are presented following [38].The algorithm was used to study the 

response of a coated conductor to pulse currents. We broadened and adopted the model and 

algorithm to calculation losses in power law coated conductors. 

 

 

5.2 Mathematical Model 

 

In the general case normal metal layers (substrate, protected and stabilized coverers) can be 

wider than a superconducting one. For loss calculation the coated conductors can be presented 

as a metal strip and a type II superconducting strip placed one on top of the other (Fig. 22) 

similarly to the model discussed in Section 4. The thickness of the metal strip is dm and of the 

superconducting strip is dsc and the half-width are a and asc, respectively. The length of both 

strip is the same, l, where { ,   }   <   sc m scd d a a l  , and the approximation of infinitely 

long thin strips can be applied. In the framework of this approximation the magnetic field 

induced by a current in the conductor is perpendicular to the surface and is independent of the 

z-coordinate inside a strip. We shall consider losses in coated conductors for the following 
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cases: (i) a non-sinusoidal uniform magnetic field is applied perpendicular to the conductor 

wide surface (in the z-direction) without transport current and (ii) a non-sinusoidal transport 

current flows along the conductor in the y-direction without applied magnetic field. In both 

cases the electric field E


 and sheet current density J


 have only the y-components. In the thin 

strip approximation, the electric field is independent of the z- coordinate and is the same in the 

normal-metal and superconducting strips. The sheet current densities are various in these strips 

and distribution of the current between the strips is determined by their voltage-current 

characteristics. 

 

Fig. 22 Sketch of coated conductor simulated by two strips. 

 

However, the results of experiments published in literature (see for example [39]) and of 

experiments performed at the Physics Department, BGU, showed that DC voltage-current 

characteristics of coated conductors are well fitted by a power law. Therefore, a local E-J 

relation can be written in the following form: 

 0

2                                    

        

m m sc

n

c sc

J / d a x a
E

E J / J x a

  
 



                                                              (5.1) 
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field is the sum of the external field  eH t  At z = 0, the z-component of the magnetic 

and field produced by a current: 

 
 

 
1

2

a

z e

a

J u,t
H x,t du H t

x u


  
 .                   (5.2) 

The total current is given by 

   
a

a

I t J x,t dx

 .                                                                                                                  (5.3) 

For the case (i): I(t) = 0, for the case (ii): He(t) = 0 and I(t) equals the transport current It(t). 

By substitution of Eq. (5.2) into the Faraday law equation 

0

E H

x t


 


 
                                                                                                                           (5.4) 

we obtain the following equation for the electric field 

   
0

0
2

a
e

a

J u,t dH tE du

x t x u dt




 



  
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.                                                                               (5.5) 

In dimensionless units the last equation is rewritten as 

 1

0 0 1

01

m k

m

e u,ad H a he du

u E

 

     


 
  

                      (5.6) 

here 
0 1

   k
k

HE x t
e , , , h

E a H
 


    , and the normalization parameter E0 can be arbitrarily 

chosen.  The characteristic time is chosen by the following formula 

0 m

m

ad



 .                      (5.7) 

as a result Eq.(5.6) may be rewritten in the following form 

 1
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5.3 Numerical algorithm 

 

To develop a numerical algorithm we integrate equation (5.5) with respect to the x-coordinate 

substitute   2E x,J J / a  where  x,J  is a nonlinear resistivity corresponding to the 

E J  characteristics of a coated conductor and obtain 

 
 

 02
a

m
m

a

J u,td A
x,J J / d ln x u du C t

t t




 

 

    
 

                                                 (5.8) 

where  C t  is unknown function of time and A is the vector potential of external magnetic 

field 

The system of equations (5.2) and (5.5) determines both the current distribution in a conductor 

and the function  C t  was solved numerically. 

Let    0ix , i ,......N  be an equidistant mesh on  a,a  with 1i ix x   . We use piecewise- 

constant finite elements and approximate  J x,t  by    
1

N

j j
j

J t x

  where 

 
11                

0               otherwise

j j

j

x x x
x

  
 


                    (5.9) 

Multiplying equation (5.5) by  i x  0i ,...,N  and integrating we obtain 
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                                                                                         (5.10) 

where 
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.                                                           (5.12) 

Now using standart routine for ordinary differential equations we can integrate over time the 

system 

1 1
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 with zero initial conditions. 

The value of AC losses per a period is calculated according to: 

0

T a

t
a

P dt E J dx
 


                                                                                                                    (5.13) 

Here Pt represents total AC losses per a period  which is the sum of losses in normal and 

superconducting parts 

In our algorithm we use a differential equation for calculation of AC losses: 

a
t

a

dP
E J dx

dt

 


   

with zero initial conditions. 

The numerical algorithm was realized using “MatLab” and is given in dimension units. We can 

easily use it in dimensionless units by replacing the appropriate coefficients, for example a is 

replaced by 1. 

In calculations we used the dimensionless units with the timescale   chosen for a normal 

metal tape according to Eq. (5.6) and  = x/a. In these units, the resistivity of normal 

conducting parts near the conductor edges 1 
sca

a
   is equal to unity. Our estimation for a 

well stabilized coated conductor showed that the power law characteristic for the central part 

sca

a
     containing the superconductor can be taken in the following dimensionless form: 
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 
1

0 015  
~

n

cJ . J / J


 .  Calculations below were performed for dimensionless time  

estimated for the current frequency of 50 Hz. 

 

 

5.4 Results and discussion 

 

The numerical algorithm has been tested in comparison with the numerical and analytical 

results for a thin superconducting film described by CSM. At 400 steps through the conductor 

width, an error in loss determination is less than 1%. Below all the calculations were 

performed at step number of 400 with zero initial conditions. Our calculation show that the 

process steadies during the first period for 4 10 25n , ,  and losses per a period do not 

practically change from a period to period. 

Results of the numerical calculations of relative contribution of higher harmonic to the total 

losses in coated conductors are presented in Figs. 23-26. 

In both considered cases( (i) a non-sinusoidal uniform magnetic field and (ii) a non-sinusoidal 

transport current) the relative contribution of higher harmonics increases with the harmonic 

amplitude (Figs. 23 and 24). The contribution increases also with the power index n. At n = 

25 the results for the power law model and critical state model are about the same and can be 

about 10 times larger than in a normal metal (Fig. 23 b). The contribution can achieve about 

110% of losses caused by the main harmonic. Simulation of a coated conductor by power law 

with low power index (n = 4) predicts losses (contribution) can achieve 45% of losses caused 

by the main harmonic (Fig. 23 b), up to 4 times higher than losses caused by the same 

harmonic in the normal metal (~11% ). 

The relative contribution increases with the main current harmonics (Figs. 25 a and 26 a) 

while decreases when the main magnetic field harmonics increase (Fig. 25 b and 26 b).  

Similar behavior of the relative contribution of higher harmonics was observed for 

superconducting strips considered in the frame of CSM in section 4.  
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a) b) 

Fig. 23 Numerical results of power law voltage –current characteristics (n = 10) for AC losses 

as function of higher harmonics; a) the second harmonics; b) - the third harmonics; Black line 

– critical state model; cyan line - normal metal; red, green, and blue lines – power law voltage-

current characteristics with n = 25, 10, and 4, respectively. 
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a) b) 

Fig. 24  Numerical results of power law voltage –current characteristics (n = 10) for AC 

losses as function of higher harmonics a) second current harmonics b) second field harmonics; 

Black line – critical state model; cyan line - normal metal; red, green, and blue lines – power 

law voltage-current characteristics with n = 25, 10, and 4, respectively. 
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a) b) 

Fig. 25 Relative contribution of the higher current harmonic to the total losses in a coated 

conductor described by a power law voltage-current characteristic a) the second harmonics; b) 

- the third harmonics; 

green line-h2 = 0.25 h1, red line- h2 = 0.15 h1, black line- h2 = 0.05 h1 
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Fig. 26 Relative contribution of the higher current harmonic to the total losses in a coated 

conductor described by a power law voltage-current characteristic a) the second harmonics; b) 

- the third harmonics; 

green line-h3 = 0.1 h1, red line- h3 = 0.05 h1, black line- h3 = 0.02 h1 
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5.5 Summary 

 

The adopted algorithm for numerical calculation of AC losses in coated conductors gives well 

agreement with the analytical results obtained in the framework of the critical state model at 

the step number of 400 through the conductor width.  As is expected for a high power index 

(n = 25) the analytical approach using CSM and numerical calculation within the power-law 

approximation give close results. The relative contribution of the third 10% harmonic can 

achieve up to 110% of losses caused by the main harmonic that is about ten times larger than 

losses caused by the same higher harmonic in the normal-metal conductor of the same form.  

Even at low power index (n = 4) the predicted losses are substantially higher than AC losses 

in normal metals: relative contribution can be 4 times higher and achieves 44% of main 

harmonic losses replace of 11%. 

The relative contribution increases with the higher magnetic field and current harmonics as 

well as with the main current harmonics while decreases when the main field harmonics 

increase. 
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6. Conclusion 

The behaviour of superconductors under non-sinusoidal conditions was investigated 

describing a superconductor by a nonlinear voltage-current characteristic. The main attention 

was given to analysis of the contribution of higher harmonics to AC losses in 

superconductors. 

Analytical expressions were obtained for various configurations of superconductors such as: 

slab, thin strip, coated conductors in the framework the of critical state model as well as in the 

high magnetic field approximation for a power law superconductor. Analysis of losses in 

power law superconductors was carried out using MatLab software performing numerical 

solution of the integral equation. 

The analysis shows that in devices with bulk superconductors, higher harmonics can 

substantially change losses. Thus, the 5% second harmonic can cause the loss increase by 

20% in superconductors while by 1% in a normal metal. Moreover, the contribution of the 

higher harmonics depends on their phases: in a certain range of phases, the odd harmonics can 

even reduce AC losses. These peculiarities distinguish the behavior of superconducting 

devices from that of conventional ones. The increase of the amplitude of higher harmonics 

leads to the violation of the monotonic character of the waveform change from the minimum 

(maximum) to the maximum (minimum). Non-monotonic character of the waveforms of a 

current or a magnetic field influences AC losses only at very high amplitudes of higher 

harmonics. 

Influence of higher harmonics losses in coated conductors is markedly stronger. Thus, the 5% 

third current harmonic causes loss increase by 45% in the superconducting part of a coated 

conductor and by 80% in the normal-metal parts at a current close to the critical value. 

Numerical calculation of the total losses (sum of losses in superconducting and normal metal 

parts) in a coated conductor within the power-law approximation gives close results to ones 

obtained using the analytical approach for CSM at a high power index (n = 25), as is 

expected. The relative contribution increases with the higher magnetic field and current 
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harmonics as well as with the main current harmonics while decreases when the main 

field harmonics increase. The relative contribution of the third 10% harmonic to the total 

losses can achieve up to 110% of the losses caused by the main harmonic that is about ten 

times larger than losses caused by the same higher harmonic in the normal-metal conductor of 

the same form.  Even at low power index (n = 4) the predicted losses are substantially higher 

than AC losses in normal metals: relative contribution can be 4 times higher and achieves 

44% of main harmonic losses replace of 11%. 
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 תקציר

 

 מערבולות)התנועה המיקרוסקופית של  על מאפיין את תכונותיהם הפיסיקליות כגון-אנרגיה במוליכי הפסדי

כמו כן לקבוע טווחים של הזרמים והשדות המגנטיים הנמדדים  ,מופע של סריג ערבול וכדומה...(אבריקוסוב, 

על -אנרגיה במוליכי הפסדי.הדרכים למדידת להתקני מוליכות על, ההספק הנדרש מהציוד הקריוגני והרווח הכלכלי

בין  יתווך עם אופיין לא ליניארמתואר בעזרת  על -כאשר מוליך תמתבססים על משוואות מקסוול לא ליניאריו

אנרגיה  הפסדיהרבה מחקרים מוקדשים לנושא של תלוי בטמפרטורה ובשדה המגנטי המקומי.  לזרם,-המתח

 ( תחת תנאים שונים.מוליך מצופהט דק, על מצורות שונות )תיל, סר-במוליכי

 צופים תחת תנאיםעל ובמוליכים מ-היא שקול של איבודי אנרגיה במוליכיזאת המטרה העיקרית של התיזה ה

 סינוסואידליים.-לא

נתקבלו ביטויים   םליניאריי -למוליכי על לא תחת הקרוב של השדה המגנטי הגבוהובמסגרת המודל המצב הקריטי 

 .על כגון : חומרים צברים, פסים דקים, מוליכים מצופים -ר תצורות שונות של מוליכיאנליטיים עבו

ן נומרי של כאשר בוצע פתרו Matlabנעשה באמצעות תוכנת  םאיבודי אנרגיה במוליכי על לא ליניאריי חניתו

לים לשנות באופן על צברים הרמוניות נוספות יכו-מראה כי בהתקנים של מוליכי חהניתו משוואות דיפרנציאליות. 

על לעומת -במוליכי 21%בהרמוניה שנייה גורם לעלייה בהפסדים ב  5%ניכר את ההפסדים.לפיכך תוספת של 

 על למוליכים רגילים.-מבדילה בין מוליכיעל -הנ"ל של מוליכי תבמוליך רגיל. הייחודיו 1%עלייה של 

בהרמוניה שלישית גורמת לעלייה בהפסדים  5%השפעה של מוליכים מצופים ניכרת עוד יותר. לפיכך תוספת של 

 45%-ב

 .םבחלקים הנורמאלי 81%-בחלקים העל מוליכים ו

( םמוליכים ובחלקים הנורמאלי-חשוב נומרי של הפסדי אנרגיה כוללים )הסכום של הפסדים בחלקי ם העל

להפסדים גדלה  כי התרומה היחסית של הרמוניות נוספותהראה  power-lawבמוליכים מצופים תחת ההנחה של 

מההפסדים  111%-בהרמוניה שלישית  יכולה לגרום לעלייה ב 11%עם המשרעת שלהם. התרומה היחסית של 

פעמים מהאיבודים הנגרמים ע"י אותה הרמוניה למוליך רגיל מאותה  11הנגרמים מההרמוניה הראשית  שזה פי 

 צורה.

ן ניכר מההפסדים במוליך רגיל: התרומה היחסית היא ( ההפסדים הנצפים גבוהים באופn=4אפילו בחזקות נמוכות )

 .45%-וגורמת לעלייה ב  4פי 
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 נושא החיבור: איבודי אנרגיה במוליכי על תחת שדות מגנטיים וזרמים חשמליים לא סינוסידליים

 חיבור לשם קבלת תואר "מגיסטר"

 בפקולטה למדעי הטבע

 מאת ספקטור מרט

 סוקולובסקי ולדימירשם המנחה ד"ר 

 ראובן שוקר 'שם המנחה פרופ

 המחלקה לפיסיקה

 הפקולטה למדעי הטבע

 אוניברסיטת בן גוריון בנגב

 

 תאריך       חתימת המחבר

 תאריך       חתימת המנחה

 תאריך       חתימת המנחה

 תאריך     אישור יו"ר ועדה מחלקתית 

 


