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Abstract

AC losses in superconductors characterize their physical properties (the microscopic
motion of the Abrikosov vortices, phase state of the vortex lattice, etc) as well as determining
ranges of the rated currents and magnetic fields for superconducting devices that are required
for the optimal operation power of cryogenic equipment and economical gain. The methods of
AC loss calculation are usually based on consideration of the non-linear Maxwell equations in
which a superconductor is simulated by a media with non-linear voltage current characteristic,
in the general case which depends on a local magnetic field and a local temperature. Many
investigations are devoted to a consideration of AC losses in superconductors of various forms
such as wires, tapes, coated conductors, etc., under different conditions. However, most of the
works consider sinusoidal magnetic fields or/and currents. In reality, currents in physical
experiments and in electric power systems exhibit a distribution of harmonic frequencies.

The main goal of this thesis is the treatment of AC losses in superconductors and coated
conductors under non-sinusoidal conditions.

Analytical expressions were obtained for various configurations of superconductors such as:
bulk materials, thin strips, coated conductors in the framework of critical state model as well
as in high magnetic field approximation for a power law superconductor. An analysis of
losses in power law superconductors was carried out using the MatLab software to perform
numerical solution of the integral equation.

The analysis shows that in devices with bulk superconductors, higher harmonics can
substantially change losses. Thus, the 5% second harmonic can cause a loss increase of 20%
in superconductors in comparison to 1% for a normal metal. Moreover, the contribution of the
higher harmonics depends on their phases. In a certain range of phases, the odd harmonics can
even reduce AC losses. These peculiarities distinguish the behavior of superconducting

devices from that of conventional ones.



4
Influence of higher harmonics losses in coated conductors is markedly stronger. Thus, the

5% third current harmonic causes a loss increase of 45% in the superconducting part of a
coated conductor and 80% in the normal-metal parts at a current close to the critical value.
Numerical calculations of the total losses (sum of losses in superconducting and normal metal
parts) in a coated conductor within the power-law approximation showed that the relative
contribution of higher harmonics increases with their amplitude.

The relative contribution of the third 10% harmonic to the total losses can achieve up to 110%
of the losses caused by the main harmonic and is about ten times larger than losses caused by
the same higher harmonic in the normal-metal conductor of the same form. Even at a low
power index (n = 4) the predicted losses are substantially higher than AC losses in normal
metals: relative contribution can be 4 times higher and achieves it 44% of the main harmonic

losses replace of 11%.
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1. Introduction

A superconductor has zero resistance only under DC conditions, under AC conditions a
changing magnetic field (either self generated or externally applied) acting on the material
interacts with transport and leads to energy dissipation. The subject of AC losses in
superconductors may be considered under various aspects.

Firstly, the physical properties of high temperature superconductors (HTSC) such as: the
microscopic motion of Abrikosov vortices, phase state of the vortex lattice, current density,
critical temperature and also with developing the theory where the microscopic processes are

> (> ->
described by a nonlinear current —voltage characteristic E=E| J,B | (E is the local

electric field caused by the current density J and depending also on a local magnetic

induction B) and by reversible magnetization curve ﬁ =H (gj [1-3].

Secondly, from the technical point of view AC loss values determine ranges of the rated
currents and magnetic fields for superconducting devices, required power of cryogenic
equipment and economical gain.

The methods of AC loss calculation are usually based on consideration of the non-linear
Maxwell equations in which a superconductor is simulated by a metal with non-linear voltage
current characteristic, in the general case, depending on a local magnetic field and a local
temperature.

A lot of investigations are devoted to a consideration of AC losses in superconductors of
various forms, wires, tapes, coated conductors and. under different conditions (see for example

[4-6] and works referenced in them). However, most of the works consider sinusoidal

magnetic fields or/and currents. In reality, currents | (t) in physical experiments and electric

power systems contain a wide variety of harmonics and can be represented as



I(t)=%lk cos(kat + g ) (1.1)

where w=27f, fis the frequency of the first harmonic, I, and ¢ are the amplitude and

phase of the k-th harmonic, (k= 0,1,2.....). The frequency f for power systems is 50 or 60 Hz,
while for special electric systems (airplanes, ships, etc.) frequently is 400-800 Hz.

For the normal metal parts of a device the Joule losses P caused by a current 1(t) and the

eddy losses P,y caused by a magnetic field H (t) are presented in the form:

R(f)llz[ _2]
P. = 1+ ni
'k

(1.2)

Kl(f)le 2

where R(f) is the conductor resistance at the frequency f, e gives the frequency

dependence of the resistance, i, = ! , h =%, H, is the k-th harmonic amplitude of the

I1 1
magnetic field, Kl(f)H12/2 is the eddy losses caused by the main harmonic, Py

characterize the dependence of the losses on the frequency. The explicit forms of R, K, r p«
depend on the conductor shape and magnetic field direction. For example, losses per unit
length in a thin normal metal strip in an external magnetic field directed perpendicular to the
wide surface are

2,202 0

K =
1 3p

and p, =k* (1.3)

where g, is the magnetic permeability of the vacuum, p is the resistivity, d is the strip

thickness, a is a half of the strip width.
According to the requirements of power quality supported by power systems, the contribution

of higher harmonics is a few percent and currents are very close to sinusoidal. Usually higher

harmonics decrease proportionally to © at least and it is sufficient to take into account
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several first harmonics. 1,=0 because a direct current cannot be transferred by the

transformer. So, with the accuracy of about 1% the losses in normal conducting parts of the
power devices are determined by the main harmonic. Currents become strongly non-sinusoidal
at the operation of the converters, non-linear reactors and during transient and overload
conditions. In this case all harmonics have to be taken into account at the loss estimation.
Since superconductors posses a strongly non-linear current voltage characteristic, one can
expect substantial contribution of higher harmonics to AC losses in superconducting elements.
The main goal of this thesis is the consideration of AC losses in superconductors and coated
conductors under non-sinusoidal conditions.

The objectives are the following

- analysis of penetration of a non-sinusoidal magnetic field into superconducting slab,
thin film (strip), and coated conductor;

- development of analytical methods for AC loss calculation based on the critical state
model (CSM);

- numerical calculation of AC losses in power law superconductors and coated
conductors.

The thesis structure is the following:

Chapter 2- contains a brief introduction to the subject of AC losses in superconductors
including description of the mechanism of AC losses, analytical methods for calculation of AC
losses in magnetic fields or with transport currents;

Chapter 3- reveals an analytical analysis of AC losses under non-sinusoidal conditions for
superconducting slab and thin film (strip);

Chapter 4- represents analytical approach for calculation of AC losses in coated conductors
under non-sinusoidal conditions;

Chapter 5- represents results of numerical simulation of AC losses based on the power law

approximation for coating conductors.
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The main obtained results have been presented in the following papers:
1. V.Sokolovsky, V.Meerovich, M.Spector, G.Levin, and I, Vajda
Losses in superconductors under non-sinusoidal currents and magnetic fields,

IEEE Trans . Appl. Supercon., v.19 pp: 3344-3347 (2009)

2. G.Furman, M.Spector, V.Meerovich, and V.Sokolovsky
Losses in coated conductors under non-sinusoidal currents and magnetic fields,

in print in Journal of Superconductivity and Novel Magnetism

and at the conferences

1. V. Sokolovsky, V. Meerovich, M. Spector, G. Levin, and I, Vajda,
Losses in superconductors under non-sinusoidal currents and magnetic fields,
Applied Superconductivity Conference 2008, August 17-22, Hyatt Regency Chicago,

Illinois, Chicago USA, Conference Program p 80, (2MPBQ09). Poster Presentation

2. G. Furman, M. Spector, V. Meerovich, and V. Sokolovsky
Losses in coated conductors under non-sinusoidal currents and magnetic fields,
International Conference on Superconductivity and Magnetism 25-30 April 2010,

Antalya, Turkey, Abstract Book: p776, (LSA-P-002). Poster Presentation
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2. AC losses in superconductors under sinusoidal conditions

2.1 Origin of AC Losses in Superconductors

The vortices in a type Il superconductor create a lattice of parallel flux lines through the
specimen, each carrying a quantum of magnetic flux ¢O —h/2e=2.07-10"1° T.m? (where

h is the Planck constant and e is the electron charge). The magnetic flux penetrates into the
specimen through the vortex core, which is in the normal state and located in the centre of the
vortex. The magnetic field is maximum near the center and exponentially decays with the

7

distance from the centre over the London penetration depth of the order of 10 * m. The core

-8

radius is of the order of coherence length & of 100 ® m. The density of the vortices in the

lattice is determined by a local magnetic field B as n :¢E. This mixed state is observed in
0

the superconductors up to the upper critical magnetic field BC2. The upper critical magnetic

field is of the order of 20 T for low temperature superconductors and 100-200 T for high
temperature superconductors at 4 K.
The vortices can move freely in a homogenous material, their density is proportional to the
flux density and they can be pinned by inhomogeneities in the material. Any motion of
vortices results in energy dissipation.

Let us assume that the current is applied in the presence of a magnetic field. In homogenous

superconductors the vortices start to move under the influence of the Lorenz force: f, = jx ¢,

N

('] is the current density), or per unit of volume of the lattice F = jxB. As a result the

moving magnetic flux generates an electric field E =vxB (Fig.1). The motion of vortices
results in the energy loss per unit of volume of the lattice P =J-E. This motion can be

presented as motion opposite the viscous drag force density f, =-nv (7 is the viscosity

coefficient of the flux lines, v is the velocity of the vortices). In reality superconductors do
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contain defects and interaction of vortices with the defects (pinning force) prevents the

movement of the vortices until the Lorenz force exceeds the pinning force. There is a current
density jc, the critical current density at which the Lorentz force is equal to the pinning
one f = f_= j.4,. At higher currents we observe the vortex motion which is known as “flux
flow”. The vortex velocity is determined from the equality of the Lorentz force and a sum of
the pinning and viscous drag forces. The power loss per unit of volume is proportional to the
vortex density nand determined as:

p=—Ffvn=3¢n(J-3J,)= I (3 -J,) (2.1)

where p- =(4,B/n) is the flux flow resistivity depending on a local magnetic field and

temperature.
Maanetic field B jx E = EL
O O O O O J Current
Density
T—>

Fig. 1 A superconductor with a current in an external magnetic field

It was shown by Bardeen and Stephen [11] that the expression for p.. can be given
approximately as:

Pee (B, T) = Bp,(T)/B,(T) (2.2)
where p, is the resisitivity in the normal state at temperature T .

The viscosity coefficient can be approximated by:
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=981 p, (2.3)

As a result the current density can be presented in superconductors in the form:
J=J.+E/ps (2.4)
where the current density J, flows without dissipation, and an additional part 6J =E/ p.- is

related to the motion of the electrons of the normal conductivity.

Another mechanism of AC losses predicted by Anderson is the electric field generation in

superconductors connected with the thermally activated flux jumps out of pinning centres

over the pinning barrier (“flux creep” [7] ). A usual method of the flux creep study is based
on the measurement of a magnetic field penetration in a hollow superconducting cylinder

(decay of persistent current in the cylinder). The decay of the cylinder current in the flux

creep regime is usually described by the logarithmic law while the current decay in the flux

flow regime obeys to an exponential law. This difference allows one to separate these regimes
experimentally.

There are two mechanisms of energy dissipation as a result of the motion of vortices [8,9]:

- moving vortices cross the current lines (due to continuity of the later ). Hence a current
flows through a vortex parts (vortex cores) which are in the normal state. This leads to
energy dissipation.

- when a vortex passes through some point of the superconductor a phase transition occurs
in this point from the superconducting to normal state and vice versa. From
thermodynamics it is known that such a process can occur without energy dissipation only
if a cyclic phase transition is infinitely slow. A velocity of vortex filaments is finite and
the phase transition caused by the vortex motion leads to dissipation of energy.

Estimations [10,11] showed that contributions of these loss mechanisms are about the same.

Let us discuss briefly models for analytical calculation of AC losses in superconductors and

their range of application.
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2.2 Critical State Model

The macroscopic description of magnetic properties type-11 low temperature superconductors
(LTS) was developed in sixties by C. Bean [12] and is known as the critical state model
(CSM). Bean has proposed to use a continuum description of a vortex lattice: a local magnetic
field is proportional to vortex density. The conditions when the quantum description could be
replaced by the continuum one discussed in many publications and books [for example 13-

14]. Brandt noted that a continuum description of a vortex lattice is valid at B >2B_ [17].

The basic postulate of CSM is that there is a limiting macroscopic superconducting current
density J_ that every superconductor can carry without resistance and any electromotive
force will induce this current density. This assumption was based on two facts known for
LTS. First, the flux creep regime is observed in a very narrow region near J . Second the
addition of 6J to the critical current density is very small. The following estimations confirm
the last point. The LTS are usually used in the form of the multifilament wires where the
diameter d of a multifilament is about 10° m. From the Maxwell equations, the induced
electric field in a filament placed in AC magnetic field with the frequency f and amplitude By

can be estimated as E =2z fdB,. Taking into account Egs. (2.2) and (2.4), the additional

27 fdB,, (T)

P (T)

LTS are the order of the magnitude of 20 T and 10° Q-m, correspondingly, and

current density isoJ = . The upper critical field B,, and normal resistivity p, of

J,=10" A/m?. Therefore, 53 / J_ ~10~° at the frequency of 50 Hz. Thus, in real conditions
the additional current density is much less than the critical current density.

The basic points of Bean’s model can be summarized as follows:

- current density in a superconductor is equal to J, or 0;

- critical current density appears whereas there is nonzero electric field,

- current density remains constant with time when an electric field equals to zero;

- current density is field independent;
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- magnetic field penetrates a superconductor from its surface .

Note that Bean’s model describes magnetic properties of a hard superconductor in a steady-
state limit. Since any variation of the magnetic flux in the sample results in an induced electric
field, superconductors in the dynamic regime are always in the resistive state (a current
density is higher than the critical value). This fact is usually neglected for the analysis of the
magnetic properties of LTS’s in dynamic regime.

The technique of the AC loss calculation is based on classical electrodynamics (Maxwell’s

equations):

—

%xgz—%; %xﬁ=3; 3-5:0; §.§=o; gzyoﬁ (2.5)

complemented by Bean’s assumptions. Here D is the electric field induction which is
proportional to E and the linear relation between B and H is valid only for an isotropic

superconductor at B > 2B, [15].

There are various methods for calculation of losses in the superconductor per a period of the

current:

- integrating the Poynting vector S=ExH, (where H, is magnetic field at the

superconductor surface), on the sample surface over the period;

- integrating the power Joulle losses E-J, through the sample volume

- calculation of the work of mechanical forces put out opposite the pinning forces at the

motion of the vortex lattice. Loss power per unit volume is equal to p = (ch Bj-v , Where the

velocity vof the vortices can be determined by the conservation law of vortex density

div( 3]:@.
at

- using the surface impedance concept. The surface impedance is defined as the relation of the

—

B

first harmonic of electric and magnetic fields on the surface:
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[E(x=0,t)exp(ict)d (at) (2.6)

00

7 =

T
where i is the unit imaginary number.
The loss power P dissipated in a sample is determined by the real part of the surface
impedance:
P=Re(z)H,
This concept is widely used for characterization of superconductors in high magnetic fields.
- calculation using AC susceptibility.

For sinusoidal external magnetic field one may define the complex susceptibility

X =X —VXms  M=123...

I (Ho @) :LHTM (t)exp(imat)d (wt) (2.7)

RN
where M (t) is the component of the (dipolar) magnetic moment of M along the external

magnetic field. The magnetic moment is
1 3
M(t)=§erJ(r,t)d r (2.8)

The energy converted into heat in the whole of the specimen during one cycle of the AC field

is proportional to the imaginary part of the first harmonic

P=—my 1, HQ2 (2.9)
The real part of the complex AC susceptibility determines the time average of the magnetic
energy stored in the volume occupied by the sample. The approach is widely used to describe
the linear and nonlinear response of HTSC specimens in various geometries (slab, infinite and
finite cylinders, strip, disc, and etc. [16,17]). The AC susceptibility allows one not only to

determine value of AC losses but also to conclude the physical properties of the material.
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2.2.1 Analytic calculation of AC losses in a superconducting slab

Let us consider a superconducting slab with thickness 24 whose inward surface normal

points in the positive x-direction. The external sinusoidal magnetic field: H, = H, sin(«t) is

applied in the z-direction, which is parallel to the surface of the slab while the electric field E
and current J are induced along the y-axis. Fig. 2 shows two different cases of a distribution of
the magnetic field and current in a superconducting slab; the first one (top) relates to the slab
placed in a magnetic field while the second case (bottom) corresponds the slab with a

transport current.

J
B J,
B
B
z . g
y I Slab in a magnetic field
X
J
J
JC
B
B
B 24 _
Slab with transport current

Fig. 2 The profiles of the magnetic field and current in a slab in an external magnetic field

(top) and with a transport current (bottom).

The problem is symmetric and hereafter it is sufficient to consider only one half of the slab
thickness from x = 0 till x = 4 and one half of the period of the applied magnetic field e.g.

between the minimum H, =—-H, to the maximum H_, =H,. According to the Bean model

for the initial state at wt=—x/2 the current density is J=-J. for all x reached by the
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penetrating magnetic field. For the slab, in the area in which magnetic field penetrates,

Eqgs. (2.5) are reduced to

oH
AL, 2.10
= c (2.10)
oE oH

ce__, o1 2.11
x| g 211)

with boundary conditions: H =H_ at x=0and x=24.

This initial profile of the magnetic field is marked as 1 in Fig. 3. In the case of an incomplete

penetration (the amplitude of the applied magnetic field H, is less than the complete
penetration field H = J A) there is a region when magnetic field and current are absent. The
region with J =-J extends to the Bean penetration depth x, =H,/J.. In the case of the
complete penetration, H, > H , magnetic field penetrates the whole of the slab and the region
with J =-J. extendsto x, =4 (Fig. 3 b).

As the magnetic field increases, the profile of the current density changes and starts to contain
a region with J=J.. Let us denote by x; the point at which the current reverses its sign. We

have J = J.for x < x, and J = -J; for x>X;.

The solution of Eqg. (2.10) is

H,-J. X, X<
H=< ° ° % (2.12)
—H,+J. X, X>X
The point X, is determined from a continuum for the magnetic field in this point
X =(H,+Hy)/2], (2.13)

In this point the electric field equals zero: E(x,) =0. This is the boundary condition for Eq.
(2.11). The electric field in the superconductor is

oH

E— ,Uo?e(xi_xo)v X<X

0, X, <X<A

(2.14)
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HB X: i y HB EA ,
T > : A
/1/: a\ |24 .
_Ho i i “H /;\
o ] !
I, 0 !
;! J, ] J
& 0o —2 24
_‘]C , E _‘]c
A, X | H., | o
o N\ T
SIREE o
3 Je
[ ]
0 |_| : L 2A 0
e -J, 24
b H !
H, o e :
N NS
0 ——24 0 E 24
J . .
Il Je
|| 24 -3,
-J '5

b)

Fig. 3 The profiles of the magnetic field and current in a slab at the increase of external
magnetic field from -Hy to Hy for the cases of an incomplete penetration (left column) and

the complete penetration (right column).

Note that in the case of the complete penetration the increase of an applied magnetic field

above 2H —H,_ does not lead to increase of the current density in the superconductor. At the

external magnetic field above 2H —H_., x =A, and the boundary condition for the Eg.

(2.11) is zero electric field in the centre of the slab. There are several different approaches for
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calculation of AC losses per a period of time in a superconductor. Here we will use the

formula for the power Joule losses, i.e. by integrating E-J, through the sample volume and
period. The calculation procedure is in details presented in many papers (see for example
[2,12]), here we represent the results for the case when a superconducting slab and an
infinitely long cylinder are subjected to a sinusoidal external field or a transport current. For

the case of the incomplete penetration H, <H , the loss density per a period and per a

surface unit is determined as

per one side of a slab: p:%HO3 ; (2.15)
for a cylinder: p :%H(f(l—zlj—oR); (2.16)

for the case of complete penetration:

f deofasiab: p= Moy 24 ). 2
or one side of a slab: p—J—(HO—ng), (2.17)
for a cylinder:
3
2H,——H
2,{10H§C 2 07 5 e
p \]C ( 0 3 pc) SHO_ZHPC ( )

where for the cylinder H , = J R, Riis the radius of the cylinder.

Total power losses are determined by multiplying Egs. (2.16)-(2.18) by the sample surface
and frequency. Losses in the slab with the alternating transport current can be determined

using equation (2.12) where the magnetic field amplitude H, is replaced by the 1,/2
(where I, is the amplitude of the current per a height unit of the slab). AC losses per a period

per unit of length of the superconducting cylinder with a transport current along its axis are:

D :ﬂﬂOJCR“{(l—i)[In(l—i)+i]+g} (2.19)
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o , . . -
where |:I—a; |, is the amplitude of transport current; 1_=J_zR’ is the critical current of

c

the cylinder.
2.3 AC losses in thin superconducting strip

In the previous section we considered AC losses in bulk superconductors using the model of
an infinitely long slab (cylinder) with a transport current or in an external magnetic field
parallel to the superconductor surface. In many cases of real applications superconductors,
such as thin films, tapes, coated conductors, can be simulated by infinitely long thin strips
carrying a transport current or in an external magnetic field [4, 17, 18]. Below we will briefly
discuss the main points of the mathematical model developed in [17,18] for analysis of

magnetization and AC losses in the strips. Let us consider a superconducting strip filling the
space|x|<d /2, |y|<a, |z]<c with d << a (Fig. 4) and assume that the critical current
density j. is independent of a local magnetic field. Taking into account that d << a

consideration of a real current distribution in the strip cross-section is reduced to

consideration of a sheet current determined as [4,17]:

In the frame of this approximation the y-component of a magnetic field on the superconductor

= %J (y) (lower

surface is Hy (d/2,y)= —%J (y) (upper surface, y > 0) and Hy (-d/2,y)
surface, y < 0) and the x-component H, (d/2,y)=Hy(-d/2,y)=H(y) and is given by
[4,17]:

1 @ J(u)du
-
2w 5 y-u

H(y)= +H, . (2.20)
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The magnetic field penetrates through the superconducting strip only in the area, where

d/2
J=J.= [ Jcdx. WhereJ < J; the x-component of the magnetic field is zero at.

—d/2
The current distribution is sought in the form: J =+ J; near the strip ends and as a solution of
Eq. (2.20) with H(y) = 0 in a central part of the strip.
The negative magnetic moment M and the total magnetic flux @ per length unit of the strip

are defined by
a

M =] y3(y)y (2.21)
—a

a—u

a+u

O = 14 ? H (y)dy:,uo[ZaHe+2i ? J(u)In du]. (2.22)
_ T _g

a

o
®

Ry l[z
—— 25 —» y

Fig. 4 Strip carrying a transport current in an external magnetic field He .

2.3.1 Strip with transport current

In this section we consider a case when a superconducting strip carries a transport current I; in
zero external magnetic field. A sheet current density distribution, as a solution of Eg. (2.20),

is given by the following expression [17]:
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2 2 1/2
¢ arctan| & =P ly|<b
J(y)=1 = b -y*) L (2.23)
Jes b, <|y|]<a
Integrating this one gets the total current (transport current)
I, =23, (a?-b?)"* (2.24)
. . 2\1/2
and the penetration width b, = a(l—(lt/ l.) ) (2.25)

where I, =2aJ, is the maximum critical current occurring at full penetration b, = 0. We may

obtain the magnetic field profiles by using Ampere’s law and Eq. (2.23) [4].

H.y
||

H.y
||

0

arctanh

arctanh

where H . =J./x.

-11/2

1/2

. lyl<b,

, b, <ly|<a (2.26)

. ly>a

The results (2.23)-(2.26) apply to the initial virgin state where |, is increased from zero. The

corresponding expressions for an alternating applied current with amplitude 1, are obtained

by looking e.g., at the situation when 1, is reduced monotonically from I, to - I,. We can see

that the resulting current J, and field H, profiles are linear superpositions of the form [17]

3, (Y 0..3)=3(v.1,,3.)-3(y,1,—1,,23,)

(2.27)

H,(y.1,,3.)=H(y.1,3.)-H(y.1,-1,,23,)

with J(y.l.,J;) and H(y,l,,J.) givenby Egs. (2.23) and Egs. (2.26).
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When |, =-1, is reached, the original state is reestablished, with J and H having changed

e

sign, J(y,~1,,3.)=-J(y.1;,d.)and H(y,—1,,3;)=—H(y,l,,J;). In the half period with

increasing I one has J.(y,1.,J.)=-J,(y,~I..J.) and H.(y,I,,J.)=—H, (y.—I..J.).

When |, increases from —I, to I, the electric field in the strip is E(y)= 8@6?/) with the

y
magnetic flux @(y)= ,uof H (u)du . The energy dissipated in the strip during this half cycle

0

is then

U, = ”iwdti E(y)J (y)dy = Zﬂoch dyi H (u)du. (2.28)
Inserting (2.26) in (2.28) and performing integration one obtains the dissipated power
P=2fUyc per length unit of the strip [17]:

P=(ful?)a(1,/1,) (2.29)
where q(x)=(1-x)In(1-x)+(1+x)In(1+x)—x>.

For small and large amplitudes this gives

o_ (ful6xI2)1E, 1 <<,
(fao ! 7)(2n2-2)12, 1 =1, (2.30)

2.3.2 Strip in a perpendicular magnetic field

The current and field profiles in a thin strip in a perpendicular field H, and with zero

transport current can be calculated in a similar way as for the current carrying strip in Sec
2.3.1. Here we present the results for current and magnetic field profiles for a thin strip in a

perpendicular field [17]:
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Cuy
¢ t S L E A— b
J(y)=4 7 areian (sz_yZ)“2 i<by (2.31)
‘]cy/|y|1 bH <|y|<a
0, ly| <by
(yz_ 2)1/2
H(y)= H.arctanh~—— 2 by <|y|<a (2.32)
Cu Y]
Y]
H.arctanh — = y|>a
(yz_sz)UZ | |

where b, =a/cosh(H,/H,), c, =tanh(H,/H_). The results (2.31)-(2.32) apply to the

initial virgin state where He is increased from zero.
At the end one can obtain in a similar way as described in Sec 2.3.1 the expression for the

dissipated power when the strip is in an external sinusoidal magnetic field [17]

P=4fua’J H,g (%J

c (2.33)
where g(x):éln(cosh(x))—tanh(x).
For small and large amplitudes H; this gives
P=(2mua®/3H2)H}, H,<<H
( Tty c) 1 1 c . (234)
P~4fua’d,(H,—H,) H, >> H,

2.4 Further development of Bean’s Model

Bean’s critical model has been successfully applied for the calculation of AC losses and
analysis of magnetic behaviour of low temperature type-1l superconductors and gives a good
agreement with experimental data. For high magnetic fields deviations between the

experimental data and the prediction given by this model have been found.
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One of the main reasons for these deviations is the dependence of the critical current

density on a local magnetic field. This dependence is particularly strong for HTSCs and
manifests itself even for low magnetic fields.

The development of the Bean model was directed towards consideration of the magnetic field
dependence of the critical current density. One of the widely used models is the Kim-

Anderson model [19]:

: Jo
_ 2.35
LRIy H,,, (2:35)

where j, and H_, are the constants of the material.

Other widely used models are

J=Jc(Hy/H)", Yeshurun [20]
Je= ‘]O exp(—H /Heon), Fietz [21]
J.=J,/A+H/H_,), Watson and Shi [22]
J. =K/HY?, Matshushita [23].

The fitting parameters of the models j,, H.,,, H., K can be determined experimentally

from the critical current measurements in DC magnetic field, from experimental investigation
of the dependence of the AC losses and susceptibility on the magnetic field [16], and of the
magnetic shielding properties of superconductors [24].

In the framework of the models listed above, the Bean dependencies of the losses on the
magnetic field amplitude are disturbed. Note, however, that the losses per a period are

frequency independent as it is given by the original Bean model.

2.5 Losses in HTSC

After the discovery of high temperature superconductivity the Bean model and the other

models based on the conception of the critical state are used for the description of the

magnetic field
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response of new class superconductors [25]. It is noted in many papers the CSM gives the

good agreement with experimental data.

However, pronounced deviations from CSM predictions are observed in many experiments.
In particular, the penetration threshold of magnetic field depends on the rate of magnetic field
increase.

A pronounced frequency dependence of AC losses per cycle in HTSC materials was found
[26]. It was noted that an HTSC sample demonstrated pronounced deviations from the CSM

under varying external conditions.

2.5.1 Peculiarities of HTSC

HTSC have clearly defined the granular and the layered structure and hence, these
superconductors are highly anisotropic. The granularity is caused by weak links at grain
boundaries. These links have a very low J; as compared with granules and magnetic field
penetrates to the centre of the sample leaving the grains unpenetrated.

Other peculiarities of HTSC are associated with particular properties of the vortex lattice
described in reviews [15,25]. It is noted that the oxidant vacations in HTSC can be the
pinning materials. These pinning centres posses a lower potential barrier than defects of the
material structure. It reduces the critical current density and increases the effect of flux creep.
In HTSC the thermal depinning is observed in wide temperature and current intervals below
the critical values. A strong and rapid flux creep, i.e. the thermally activated motion of

vortices, is the characteristic feature of HTSC. This "giant flux creep" [20] can be observed
till very high electric fields =10 V/cm in comparison with LTSC where the creep is

observed only at electric fields of the order of 10° V/cm and in a very narrow range of
current near the critical value. The criterion of 1 pV/cm for the critical current of a LTS

clearly determining the demarcation line between the flux creep and flux flow regimes loses
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its meaning in HTSC. For HTSC, the transition point from one regime to the other

depends on the superconductor type, preparation technology and external magnetic field.

The thermally activated flux creep leads to a marked decay of persistent currents in the HTSC
sample and decreases the magnetization and the gradient of the magnetic field in the
superconductor. In LTSC the decrease of the magnetization is well described by logarithmic
law [26]. For HTSC, the law of the decrease is dependent on the state of the vortex lattice

[27]. In many cases the law is also close to the logarithmic one [20,27]. Formally, this flux
creep is equivalent to a nonlinear current —dependent resistivity o ~exp(J/J,).

A novel feature in HTSC is the (TAFF) thermally assisted flux flow with a linear (ohmic)
resistivity that is observed practically from zero current [28]. The both, flux creep and TAFF

are limiting cases of Anderson’s general expressions for the electric field E(H,T,J) which

may be written as [9]:

E=2p,J,exp(-U, / kT )sinh(JU, / I k,T), I <J (2.36)

where p, (H,T) is the resistivity at J =J;; U,(H,T) is the pinning potential; k; is the
Boltzman constant.
The electric field in HTSC appears from motion of the vortices. At a current density lower

than the critical value, the average vortex velocity is determined by the probability of the

directional jump of the vortices through a potential barrier. This velocity is determined as
v=v,(j/ j,)exp(-U(3)/kT) (2.37)
where v, is constant ; U(J) is the activation energy. The E—J characteristic of a

superconductor is determined by the substitution of (2.37) in the expression E = u,Hv.

Generally the activation energy depends on the temperature, magnetic field, vortex lattice
state, and pinning type. For LTSC, the usual expression for the activation energy follows from
the Kim-Anderson model [7,19].

For HTSC, there are a number of different models confirmed experimentally for different

samples. One of the widely used models proposes
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U (J)=%-[(Jij 1} (2.38)

Where the exponent u characterizes the vortex pinning model: single vortex, vortex glass or
collective creep models. The parameter x depends on the properties of HTSC, the external

magnetic field and also on the current density and temperature. In the framework of the Kim-

Anderson theory 4 =-1 and the activation energy is:

u(J)=U, (1—[%)) . (2.39)

Theoretical treatment of the collective pinning showed that there are three different regimes
depending on the current density J [30]:

u=719, j<<j,;
u=312,  j<i.; (2.40)
“~1, I~ e

Other frequently used forms for the dependence of the activation energy on the current

u
density are the power law U(J)UO-{[\%}J and the logarithmic law

c

uU(J)=Y, In[(%)} The last dependence leads to a power law E—J characteristic in the

c

flux creep region:

J

E-E, [J_] (2.41)

c

where n= &+1.
KT

Expression (2.41) is frequently used for approximation of a measured E-J dependence in the
flux creep regime n and E, are determined from fitting experimental data and for an analysis
of magnetic properties and calculation of AC losses in HTSC [6]. Calculation of AC losses is

based on numerical methods or approximately approaches [37].
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All the models listed above have been applied for calculation of AC losses in

superconductors under sinusoidal conditions (sinusoidal magnetic fields or/and currents). In

reality, currents 1(t) in electric power systems contain a wide variety of harmonics and can

be represented by Eq (1.1). Since superconductors posses a strongly non-linear current
voltage characteristic, one can expect substantial contribution of higher harmonics to AC
losses in superconducting elements. In the next sections we will consider AC losses in
superconductors under non-sinusoidal conditions. We are going to take into account the first
two harmonics k = 2 or k = 3. The second harmonic is the main one appearing in two-phase

circuits and the third — for three-phase circuits. Usually higher harmonics rapidly decay.
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3. Analytical calculation of AC losses in superconducting slab

under non-sinusoidal conditions

The waveforms of non-sinusoidal currents (magnetic fields) can be divided into three
types: I-symmetrical case a current monotonically increases (decreases) from the minimum
(maximum) to the maximum (minimum) and the maximum equals the module of the
minimum (Fig. 5, line 1); Il —-asymmetrical case a current monotonically increases (decreases)
from the minimum (maximum) to the maximum (minimum) and the maximum does not
equals the module of the minimum (Fig. 5, line 2); Ill — a current change is no-monotonic
from the minimum to the maximum (Fig. 5, line 3). The type of the waveform depends on the
number  of  harmonics, their  frequencies, = amplitudes and  phases. If

H, (t) = H, cos(et)+H, cos(kat) the monotonic behavior is observed at He iz
H, k

1(5) - max
AN\ A
SN N /

SRR NS
XL
\/

E Hmin
0 1 2 3 4 ' 5 6
t

Fig. 5 Non-sinusoidal current waveform: 1 — symmetrical case; 2 - asymmetrical case; 3 -

non-monotonic case.

In previous chapter we presented the expressions for calculation of AC losses in the frame of
CSM in the cases of sinusoidal external magnetic field or transport current. Using the same

approach and mathematical models developed in [8,9,13] we obtained the following
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expressions for the AC power losses for non- sinusoidal monotonic current waveforms

(symmetrical and asymmetrical cases):

(@) losses per surface unit of a slab in a parallel magnetic field are

Hmax _Hmin ’
#Of%, |HmaX_Hmin|<2Hp
o_ (3.1)
H[ZJ(Hmax_Hmin_: p)
2u, f - , |Hmax—Hmin|22Hp
)

(b) losses per length unit of a thin strip in a perpendicular magnetic field are

P = 44,82 fJ H 4hg (4h), (3.2)
H —-H_ .
where 4h =w, g(x) is given by Eq. (2.33)

(c) losses per length unit of a thin strip with a transport current are

2
P::uoﬂc q[lmax_lminJ ) (33)

T 21

where q(x) is given by Eq. (2.29)

Note, that AC losses caused by a current in a slab can be estimated using the first equation of
(3.1) where values of the magnetic field are replaced by the current per height unit of the slab.
As seen from Egs. (3.1)-(3.3) the losses in superconductors under non-sinusoidal monotonic
current waveforms are independent of frequency of higher harmonics, while in the case of
normal metal parts of the device power of the Joule losses and eddy current losses are given
by Egs. (1.2) and both have a very strong dependence on the frequency of the higher
harmonics. Losses per a current period in a superconductor are determined only by the

differenceH, ., —H,,, and are independent of frequency of the main harmonic and higher

harmonics.
The AC loss calculation accounting the main harmonic only leads to an error determined by

the difference AH =(H,,, —H,.,) —2H,.

To a first approximation, the AC losses can be estimated as
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P~P,(1+K4H / 2H,) (3.4)

where P, is the AC losses caused by the main harmonic, K is the coefficient depending on the

shape of a superconductor and on the value of H,. So, K=3 foraslabat H _, —H_ <2H;

K=4forastripat I, -1, <<l. orat H_, —H,,, <<H,; K=1 for both configurations at

n c

high magnetic fields. A relatively low difference 4AH / 2H, leads to a noticeable increase of
AC losses. For example, losses increase by up to 20% at AH / 2H, =0.05. At the same time,

in the normal metal, the five percent second harmonic causes the loss increase by 1%. The
difference 4H is determined not only by the harmonic amplitudes but also their phases (Fig.
6).

And what is more this difference can be negative (Fig. 6b), hence the appearance of higher
harmonics can reduce AC losses. At design of superconducting power devices, one should

calculate AC losses for the worst case when the losses are maximal. For k = 2 the maximum
of AH is achieved when ¢, =0and increases as 2.4H.®, for k = 3 the maximum equals 2H,
at g, =7

Now, we consider a non-monotonic current change when additional maximums and
minimums appear in the waveforms of magnetic field and current (Fig. 5, line 3). The field
cyclically changes from point A to point B through point C. The AC losses induced during

this cycle can be calculated using Egs. (3.1)-(3.3) where H_. and H_ . are replaced by H,

and H, respectively. The number of wells and their depths, H, —H_, depend on the number
of harmonics, their frequencies, amplitudes and phases. If
H, (t) = H,cos(mt)+H, cos(kaot+4, ), the maximum well number is k-1. The total AC

losses per period are a sum of the losses contributed by all cycles. Fig. 7 presents the

characteristic values of a two-harmonic waveform for ¢, =7 /2 atk =2,
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Fig. 6 Dependences of A H on phase a) second harmonics b) third harmonics.

At Hy/H; < 0.25, and Hmax -Hmin= 2H1, the losses are determined only by the main harmonic
amplitude. If H, is higher, the losses increase due to the growth of Hpax -Hmin and the
contribution of an additional, "inner", cycle. If Ha— Hc < 2H,, the last contribution achieves
5% at Hy/H; = 1; for Ha —Hc >> 2H, the 5% level is observed at Hy/H; = 0.4. So, one has to

account the loss part appearing due to wells at relatively high amplitudes of higher harmonics.
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Fig. 7 Normalized characteristic values for H(t) = H;sin( t)+H,sin(2ot+x/2) as

fUﬂCtiOﬂS Of H2 / Hl 1‘ (Hmax ‘Hmin)/ZHl; 2 - (HA—HC)/ZH]_, 3 - (HA—HC)/(Hmax‘Hmin).

3.1 Summary

The calculation results show that in devices with superconducting elements, higher harmonics
can substantially change the loss values. While, in the normal metal, the 5% second harmonic
causes the loss increase by 1%, in superconductors this increase can achieve 20%. Moreover,
the contribution of the harmonics depends on their phases: in a certain range of phases, the
odd harmonics can even reduce AC losses. These peculiarities distinguish the behavior of
superconducting devices from that of conventional ones. Non-monotonic character of the
waveforms of a current or a magnetic field influences AC losses only at very high amplitudes

of additional harmonics.
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4. Coated Conductors

In previous chapters we have considered an AC loss problem for the model cases
(slab, strip) and shown that existence of higher harmonics can cause pronounced changes of
AC losses. For example, the 5% second harmonic can cause the loss increase by 20% in
superconductors. Moreover, the contribution of the harmonics depends on their phases: in a
certain range of phases, the odd harmonics can even reduce AC losses. These peculiarities
distinguish the behavior of superconducting materials from that of conventional ones. In this
section we will consider AC losses in the superconducting wire under non-sinusoidal
conditions. At present the main candidate for broader commercialization of HTSC wires is the
second generation (2G) YBa,Cu30¢.+x (YBCO)-coated conductor [31,32]. These conductors
are produced by deposition of a 1-3 um film of YBa,Cu30g.x 0n 10 - 100 um thick metallic
substrate, and superconducting film is subsequently covered by protective silver and
stabilizing copper layers (Fig. 10). Buffer layers, typically oxides (CeO,, MgO, GdZO and
etc.), are sandwiched between the YBCO and substrate, the buffer layers are functioned as a
texture base, a reaction barrier between the YBCO and the metallic substrate layer and a layer
prevents diffusion of metal atoms into the superconductor. The nature of buffer layer is
selected depending on the production process of the coated conductor. The typical
characteristics of coated conductors are presented in Tabl. 1.
The 2G superconductors are characterized by very high critical current density, up to 4
MA/cm? at 77 K, close to that in the epitaxial thin films. The sheet critical current density is
usually of the order of 100 A/cm, for the best samples this density can achieve 1000 A/cm
[32]. The implementation of superconductors in AC power applications such as transformers,
motors and generators depends crucially on the success in designing conductors with low
losses in time-varying magnetic environment. AC loss values determine ranges of the rated
currents and magnetic fields for superconducting devices, required power of cryogenic

equipment, and economical gain. A lot of investigations are devoted to a consideration of AC
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losses in coated conductors and coils winded wusing these conductors under different

conditions (see for example [33, 34] and references in them). However, most of the works
consider sinusoidal magnetic fields or/and currents.

In this section we will analyze losses in coated conductors under non-sinusoidal conditions
when a current monotonically increases (decreases) from the minimum (maximum) to the

maximum (minimum) (see Fig. 5, lines 1 and 2).

Protecting laver of metal as Ag

YBCO superconducting layer
{Pulsed Laser Deposition : PLD)

Biaxially textured buffer layer
(lon Beam Assisted Deposition - IBAD)

Poly-Crystal Metal Substrate
(Hastelloy, SUS)

Fig. 10 Sketch of a coated conductor.

Table 1

The typical characteristics of coated conductors

Thickness of layer | Resistivity at 77 K
p(nQ2-m)
Metal substrate (Ni- [ 20-100 zm 4.6
alloy)
Buffer layer 10-20 nm dielectric
SC layer (YBCO) <5um -
Protective layer (Ag) | 25—300um 2.65
Stabilizer (Cu) 3004m 2.1
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4.1 AC power losses in coated conductor

The total losses in a coated conductor are determined as a sum of losses in a superconductor
(hysteresis losses) and in a normal-metal parts (eddy current losses). For loss calculation the
coated conductors can be presented as a metal strip and a type Il superconducting strip placed
one on top of the other as shown in Fig 11. Losses in coated conductors will be calculated for
cases: (i) a non-sinusoidal magnetic field is applied perpendicular to the conductor wide
surface (in the z-direction) and (ii) non-sinusoidal current flows through the conductor in the
y-direction without an external magnetic field. In this section losses are estimated in the
framework of the critical state model neglecting the response of the normal-metal substrate
and stabilization layers. For a sinusoidal magnetic field perpendicular to a normal-metal strip

the last is valid if

Ho2d,,
o

w<<1, (4.1)

where p is the resistivity of the metal, d, and a are the thickness and half-width of the metal
strip.

In the mathematical model of a coated conductor the substrate, protective silver and
stabilizing copper layers can be represented by an effective normal-metal strip where d./p is
replaced by dsuo/osub + sit/ osit + s o5t (here psub, osil, st @nd dsyp, dsit, dg; are the resistivities
and thicknesses of the substrate, protective and stabilizing layers, respectively). For a non-
sinusoidal magnetic field the condition (4.1) has to be valid for each harmonic taken into
account. If the condition (4.1) is valid, the field produced by a current in the normal-metal
strip may be neglected and this strip can be considered in a total field which is a sum of the
applied field and field produced by a current in the superconductor.

We assume that the normal-metal and superconducting strips are of half-width a and length |
and {ds, dn }<< a << |. The model of infinitely long thin strips can be applied. In the
framework of the thin strip approximation the magnetic field induced by a current in the

conductor is perpendicular to the surface and is independent of the z-coordinate inside a strip.
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The real current distribution through the strip  thickness can be replaced by the sheet current

determined as an integral of the current density through the strip thickness [4, 17].
Expressions for AC losses in a superconducting strip under non-sinusoidal conditions were
obtained in the previous chapter, see Egs. (3.2) and (3.3). In this chapter we consider eddy
current losses in a normal-metal strip and compare them with hysteresis losses. The
peculiarity of this consideration is that this strip is subjected to an external non-sinusoidal

non-uniform magnetic field.

4 y
¢ 2a —?* ‘é X

Fig. 11 Sketch of a coated conductor (thin strip approximation), where dSC < dm <<a<<l,

ds is the superconducting layer thickness

4.1.1 Coated conductor in a perpendicular magnetic field

A non-sinusoidal magnetic field He(t) is applied perpendicular to the surface of a coated
conductor.

If an external magnetic field monotonically increases, in the framework of CSM AC losses
per a period in a superconductor are determined only by the extreme values and do not depend
on the waveform and frequency. If the critical current density is independent of a magnetic
field, value of these losses is given by Egs. (3.2). When an external field increases (decreases)

the magnetic field is described by the following equations, respectively:
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H, =Hz (X Hmaxs 3¢) = Hz (X, Hmax —He,2J¢) (4.2)
H, =Hz (X, Hpin, J¢) + HZ(X’Hmin_He’ZJC) (4.3)
here, H, is the z-component of the magnetic field which is the sum of the external field H,

and the z-component of the magnetic field produced by the currents in the superconducting

layer and it is given by, similarly to the case of a sinusoidal external field [33], the following:

N

H, (GH,.3,) = H_arctanh e b<|x<a (4.4)
0, x| <b
where b= a , c=tanh(Hg/H¢), H=dd/

cosh(H,/H,)

In opposite to a superconducting strip, losses in the normal strip depend on the field
extremums as well as on the field waveform. In the considered task there are the y-
components of the electric field Ey and current density jyeq , only. The eddy current loss power

Peg Per unit of volume in an infinity long thin strip is a function of x and time t:

Ped = iy,ed (% D)Ey(x,t). (4.5)
The electric field and current density are related according to Ohm’s law:

Ey = Ply.ed - (4.6)
The electric field Ey is induced by the time varying magnetic field

X8Hz(u,t)du

Ey(X,t)Z—/lo_[ P (4-7)
0 t
The eddy loss power per length unit is:
2
tlo  a oH, (.t

P2 G g § dx{&} . (4.8)

27 p o -a ot
Integration of the last expression through x gives:

2 3 2
P, zmleFh (4.9)

3mp

where
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F,=—%(en )2 R R
or |y cosh?(Y) cosh®(Y)
27l o+t

2 3 2
. (@) {1_ cosh? (X)) " cosh® (X )}dt}

oH (t H... —H Hooo —H . . .
L oH(1) ,Y=—mX___€ " x __MN__€ "t jst, are the points at which
H, ot 2H, 2H,

(4.10)

where oh, =

the external field reaches its maximum and minimum, respectively.
We obtain the following expression for the total loss power (the sum of the loss powers in a

superconductor and normal-metal) per length unit in a coated conductor:

I:)Htt
o = =F +c¢ , 411
(a3~ e @1
4h 7o H
where =6—g9g(4h), c. = , h =—L.
R I"ll2 g( ) " u,ad o n H.,

Here losses are normalized to the eddy losses caused by the uniform magnetic field with the
amplitude and frequency equaled to those of the main harmonic when a superconductor is

absent.

4.1.2. Coated conductor with a transport current

Let us consider losses caused by a non-sinusoidal transport current I(t) flowing in the y-
direction without an external magnetic field. We study the case when the current maximum
Imax @and module of the current minimum Iy, are less than the critical value I = 2aJ.. It is
assumed that the magnetic field produced by a current induced in the metal is negligible in
comparison with the field from the current in the superconductor. Losses in the

superconductor are given by Eq. (3.3). To calculate the eddy current loss power Pieg per
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length unit, Eq. (4.8) is used where, at a decrease (increase) of the current from its

maximum (minimum) till the minimum (maximum), the magnetic field is determined as [17]:

H, (%)= H, (%1 1) = H, (X1 —1(1),21,) (4.12)
H, (%,8) = Hy (X, Lo B )+ Hy (X Ly = 1 (£),21,) (4.13)
0, x| <b,
where H. (x,1,1 )= 2 _p2 T2 ,

b ) 2H. X arctanh ><2_b,2 , b <[x<a
|| a’—b,

and by =a\1-12/12 .

Using the approach developed in section 4.1.1 the total loss power per length unit of a coated
conductor carrying a non-sinusoidal transport current is:

P .
ltot —=p, =F+¢Q (4i) , (4.14)

(yjdmaSIane’)lla)

where Ai = w Qi(x) = q(x)/i1%, iy = I/l
C

H =%{tf 8i(t)zG(bi)dt+2”/ja)+tlai (t)zG(ﬁi)dt},
2
G(x)=1X\/1x2Log[l+—‘lx_X2}L% Log[lJr ‘i_xzj ,

4.2 Results and discussion

In the case of a sinusoidal waveform (Hg (t) = Hysin(at) or I(t) = I1sin(«t)), the dependence

of the functions F,, Fi, Qn and Q; on the magnetic field and current has been analyzed in
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[17,33]. Under non-sinusoidal conditions when  I(t)=l;sin(at)+lsin(kat+¢),  the

monotonic behavior of the waveform is observed at I,/l; <1/k®. Losses in the normal metal
also depend on a phase of the higher harmonic. Our calculation showed that the maximum of
the losses is achieved at the same phases at which losses in a superconductor are maximal: ¢
= 0 for the second harmonic and ¢; = 7z for the third one. At design of superconducting power
devices, one should calculate AC losses for the worst case when the losses are maximal,
therefore here we will analyze the cases of the second harmonic with ¢ = 0 and of the third
harmonic with ¢; = 7 The numerical integration and graphical presentation were carried out
using Mathematica. For monotonic waveforms functions F, Qn and Q; , Fj are shown in Figs.
12 and 13, respectively. Note, that functions F, and F; characterizing the eddy losses as well
as functions Qy and Q; corresponding to losses in superconductor which are independent of
frequency of the main harmonic. Despite this fact the total losses in a coated conductor are
frequency dependent: eddy current losses are proportional to «® and losses in a

superconductor ~ @. Using our normalization it is clearly shown that the relative contribution

of losses in a superconductor losses depend on the parameter c, which is frequency

1 . L . .
dependent, c, ~—. Thus the relative contribution of AC losses in a superconductor is given
()

by the inverse relation of the main harmonic frequency.

The influence of higher harmonics on losses in a superconducting strip in perpendicular
magnetic field has been analyzed in chapter 3, where it was shown that the hysteresis losses
per a current period are independent of frequency of the harmonics. These losses depend only

on the maximum and minimum of the current or magnetic field. Figs.14 and 15 present the

relative contribution 5P =(P—PR,)/P, of higher harmonics to losses (here Py is losses caused

by the main harmonic). The contribution is maximal at a low magnetic field and decreases

when the field increases. For example at % =0.05 for the third harmonic, the contribution
1

to AC losses achieves 20% in a superconductor and 35% in the normal metal parts (Fig 15,

green line). At a high field when screen properties of a superconductor can be neglected, eddy
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losses are determined as for a normal-metal strip in the uniform external non-sinusoidal

field and the relative contribution of the k-th harmonic is given by 6P = k2H|f/H12 and for

the 5% third harmonic losses in the metal increase by 2% and in the superconductor — by 5%.
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Fig. 12 Dependences of the functions F, and Qn on amplitudes of two first harmonics: a) the
case of the main and second harmonics at ¢, = 0 (blue, Qp, and red, Fy, lines at H, =0; black,
Qn, and green, Fy, lines H, =0.25 H;) and b) main and third harmonics at ¢; = 7 (blue, Qp

and red, Fy, , lines at Hz =0; black, Qn, and green, Fy, lines at Hz =0.1 H).
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Fig. 13 Dependences of the functions F; and Q; on amplitudes of two first harmonics: a) the
main and second harmonics at ¢, = 0 (blue, Q;, and red, F;, lines at I, =0, black, Q;, and green,
Fi, lines at 1, =0.25 I;) and b) main and third harmonics at ¢; = 7 ( blue, Q;, and red, F;, lines

at 13 =0; black, Qj, and green, F;, linesat 13 =0.1 1,) .
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Fig. 14 Relative contribution of the second harmonic of the magnetic field to losses in a
superconductor (a) and normal-metal parts (b): blue line — H, =0.25 Hj; green — H, =0.15 Hjy,

red line — H; =0.05 Hj.
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Fig. 15 Relative contribution of the third harmonic of the magnetic field to losses in a
superconductor (a) and normal-metal parts (b): blue line - H3 =0.1 H;; green — Hz =0.05 Hjy,

red — H; =0.02 H;

Fig. 18 shows the dependence of losses in a superconductor as function of third a) magnetic
field and b) transport current harmonics, qualitatively similar behavior is expected for the
second harmonics. Another dependence is obtained for a coated conductor with a transport
current (Figs. 16, 17, 18b). At Inax-Imin <<l losses in a superconductor are determined by the
expression similar to (3.4) with K = 4, where the magnetic field values are replaced by the
corresponding currents. At A1/21; = 0.05 the losses increase also by about 20%. However, in
contrast to the case of a magnetic field, the relative contribution increases with the current and

achieves about 35% atl ~ I, (Fig. 17a, blue line). Qualitatively similar behavior is observed
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for losses in the normal-metal parts: the relative contribution increases with the

current (Figs. 16b and 17D).
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Fig. 16 Relative contribution of the second current harmonic to losses in a superconductor (a)
and normal-metal parts (b): red line — I, =0.25l; , blue line — I, =0.15l;, green — 1, =0.05I;.
P P
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Fig. 17 Relative contribution of the third current harmonic to losses in a superconductor (a)

and normal-metal parts (b): red line - 13 =0.11y, blue line - 13 =0.05I4, green - I3 =0.021;.

Fig. 18 Relative contribution of higher harmonics to losses in the superconducting part of a
coated conductor: a) contribution of the third magnetic field harmonic; b) contribution of the

third current harmonic.
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However, the relative contribution can be more substantial. For example, the 5%-third

harmonic causes increase of eddy losses by about 35% at low currents and achieve about 80%

at 1 = 1. (Fig. 17b, blue line). At the same time losses in a superconductor increase by from

20% up to 45% (Fig. 17a, blue line).

The total losses in a coated conductor are determined by the sum of the losses in the
superconducting and normal-metal strips. The relative contributions of these parts are
determined by the ratio F, and Qy in case of the magnetic field and by the ratio F; and Q; for
the current as well as by the constant cy. At hy << 1 both functions, F, and Qp , are well fitted
by power laws with exponents 4 and 2, respectively. At h; >> 1 Qp decreases proportionally to
1/h; while Fy, tends to the limiting value 1+(kH/H:1)?. Thus, the relative contribution of eddy
current losses to the total losses increases with the applied field (Fig. 12).

In spite of the fact that both functions F; and Q; increase (Fig. 13) with the current, the relative
contribution of losses in a normal-metal strip to the total losses also increase. For example, for
the 5% third harmonic the ratio F; /Q; = 0.02 at i; = 0.2 and this ratio increases up to about
0.6ati; =0.9.

Let us estimate the parameter ¢, which is the same in the expressions for the total losses in
both cases and depends on a frequency of the main harmonic and characteristics of the
normal-metal strip (resistivity, thickness, and width) only. For a coated conductor without
protective silver layer and stabilizer [33] the parameter ¢y, is evaluated as (10° s™)/f , for a
conductor with the silver layer with thickness of ~2 pk [35] ¢, = (8 10* s/, for a well
stabilized coated conductor with cooper stabilizer thickness of 100 pk [36] the parameter cy, is
evaluated as (1.6 10° s™)/f . The estimations were done for the coated conductor with the
width of 1 cm, the resistivity of a hastelloy-C substrate was taken 1.24 10° Q m and
resistivity of silver and cooper — 2 10° Q m at 77 K.

One can see that the losses in a superconductor dominate in the two first conductor types till
high frequencies of the order of 1 MHz. The losses in the normal-metal parts of a well

stabilized coated conductor can be comparable or even dominate at electrotechnical
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frequencies ~1 kHz (the range of frequency is used in special electric power systems such

as airplanes, ships, etc.). At 50-60 Hz losses in the normal-metal parts will dominate in
magnetic field hy > 30, e.i. when gH; > 0.1 T at the typical value of J. = 10* A/m (uH. =
0.004 T). This value is much less than the working magnetic fields in many power devices,
for example, a working field in a generator is of the order of 1 T, and losses in the normal
metal parts of a coated conductor dominate. In superconductor power cables the working
fields are of the order of 0.03 T and the total losses are mainly determined by losses in a
superconductor. Basing on the fact that AC loss values in a normal-metal parts can not exceed
losses in a superconductor. Thus, AC loss values in a nominal regime of power devices
imposes a restriction on the possible thickness of the stabilization layers.

For a coated conductor without a protective layer AC loss value in normal metal parts prevails
losses in superconductor at the typical value of 10 T which is significantly higher than all the

working magnetic fields in modern power devices.

4.3 Analytical approach for AC losses in striped coated conductors

A sufficiently AC-tolerant YBCO coated conductor can enable the fully superconducting
version for motors and generators in which both the field and armature windings are
superconducting [32]. From expressions (3.2) and (3.3) one can see that the value of
hysteresis losses is proportional to the strip width in square.

The width of the developed coated conductor is 1 cm with plans to reduce it to 4 mm. When
such a wide superconducting tape is exposed to time varying external field a large amount of
heat is generated [5,37]. Thus, a significant reduction of hysteresis losses in coated conductors
is a prerequisite for their use in AC power applications. It is also important for such a
modification to be compatible with current techniques of manufacturing the coated

conductors. To reduce hysteresis losses in tapes several millimeters wide, subdividing of the
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tape into narrow parallel strips has been proposed [37]. The resulting conductor is a

multifilamentary tape with parallel thin strips (filaments) separated by narrow gaps (Fig. 18).
Let us consider losses caused by a perpendicular non-sinusoidal magnetic field in a striped

coated conductor.

e ki
// ¢ g P A A »

Fig.19 a) One cm wide uniform coated conductor and 33-filament striated sample shown side
by side the top visible layer is silver ; b) microphotograph of the cross-section of the striated

sample in the groove area. The Hastelloy substrate, YBCO and silver layer are indicated.

It was shown [26] that the losses can be presented as a sum of the loss in a normal conducting
substrate, the transverse coupling current loss and the loss in the filamentary strips. For a
sufficiently high magnetic field these losses can be estimated separately assuming that the
magnetic field equals the external one. To find the area of applicability of this approach we

will use the solution obtained in the framework of the model of a thin strip [17]:

P =Pg(h) (4.15)
where P, =4f ga*J H, .

At h >>1, g(h)=1-1.386/h,. The last term, —1.386/h, describes the decrease of losses

during the lower field part of a period due to partial field penetration and also due to the
difference among the local magnetic field to the external one. The term can be neglected at

h, =15 with an accuracy of 10%.
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The value of J_ is typically of the order of 10* A/m for modern coated conductors [31].

Therefore g,H, ~4x107 T and the approximation that the magnetic field equals the external

one can be used for external magnetic fields with amplitudes higher than 0.6 T, typical for
transformers, electrical motors and generators. Under this assumption, the coupling loss and

loss in a substrate per length unit are given by the following expression

K,(f)H? 5

where Kl( f)H12 /2 is the eddy losses caused by the main harmonic, Py characterize the

dependence of the losses on frequency. Generalizing Eq. (44) from [5], we obtained for both

losses P, = k?, for a strip Ky = 3
0

, While for the coupling losses per the length

unite this coefficient is a2La)2/3(N -1) Ry, where L is the conductor length or the twisting

step length, N is the number of filamentary strips, Ry is the resistance between two
neighboring filaments. Losses in superconducting strips can be estimated using the results

obtained above.

4.4. Power law superconducting strip

The results presented above have been obtained in the framework of the critical state model
with the critical current density independent of a local magnetic field. A more realistic picture
is given by the models based on a power law fitting of the voltage-current characteristic of a
superconductor or/and taking into account the dependence of the critical current on a
magnetic field. It was shown [6] that at high magnetic fields the loss values obtained for
power-law dependence even with a high index of power (10-30) are markedly different from
those given by the critical state models. Let us analyze the influence of higher harmonics on

losses in a thin superconducting strip with the power-law relation between the sheet current
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density J and electric field E and dependence of the critical current on a magnetic field

according the Kim-Anderson model:

n H
_E | _ b
E=Ey[ 3] ) e (4.17)

where Eo = 1 uV/cm is the electric field caused by the critical current density j. and jeo is its
value at H = 0, Hy, is a constant determined by the properties of the superconductor.

At high magnetic fields losses per unit of the strip length are

WoH Jll n
A F, (4.18)

P=F 4n+2[ =

+1/n
T z hkkcos(a)kt+¢ﬁkj[1
dt

F—I
1+ho‘ > hy sm a)kt+¢k)‘

whereh, =H,/H, ,P, =4f 4 J.a’H, is the loss given by CSM in asymptotically high
magnetic fields. The dependence of losses on the properties of a superconductor, n, Eq, Hp,
has been investigated in [6] for a sinusoidal magnetic field.

The influence of higher harmonics on losses appears in the value F of the integral in (4.18).
For a sinusoidal field (hy = 0 for k >1) and at n—oo, h, = 0, (the critical state model), this
integral equals 4 and P = Pq. Let us analyze the value of F for two cases of a two-harmonic
waveform: (a) k = 1, 2; (b) k = 1, 3. For practical applications it is important to determinate
the maximum attainable values of AC losses. F has the maximum at ¢ =0 in the case (a) and
¢ = min the case (b). The results of numerical integration are presented in Fig. 20 ath, =0
and (¢ =0, ¢3=x).

The value of F decreases with an increase of hy, approximately as 1/(1+0.85 h,)*% for both
cases and increases with the amplitudes of higher harmonics proportional to 1+ayh,"® for the
first case and 1+aghz for the second case. The coefficients a, and az depend on the power

index n and parameter hy. For hy < 1 and n >10, within the accuracy of 10%, a, and a3 can be
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taken 1.3 and 0.9, respectively. The increase of n above 20 does not lead to a marked

growth (the difference of the values of F at n = 20 and n =40 is less than 2%).

-y

a) b)

Fig. 20 Dependence of F on n and a) h, for H (t)=Hy sin(wt)+H, sin(2at), b) hs for

H (t)=Hy sin(wt)+Hgz sin(3wt+ 7).

To determine the applicability of the approach developed in this section let us compare the
asymptotic result for n>>1 and h, =0 (Egs. (4.18)), and analytical exact results obtained for
CSM (see section 4.1.1). Fig. 21 shows that for the first harmonic amplitude higher than 15H,

one can use the approximation of asymptotic high magnetic field.
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Fig. 21 Relative contribution of higher harmonics to AC losses vs. amplitudes the main
harmonics: a) the second harmonics; cyan line—-CSM, blue - asymptotic high magnetic field
approximation, b) the third harmonics: cyan line—CSM, blue - asymptotic high magnetic field

approximation.
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4.5 Summary

Our results show that higher harmonics can substantially change power losses in coated
conductors, especially, in the conductors with a transport current. Thus, the 5% third current
harmonic causes loss increase by 45% in the superconducting part of a coated conductor and
by 80% in the normal-metal parts at a current close to the critical value. These peculiarities
distinguish the behavior of coated conductors from that conventional ones when this harmonic
increases losses by about 2%, only. So, it is very important to take into account higher
harmonics at estimation of losses in coated conductors.

Note that approach of thin strips for estimation of losses can be applied also to
superconducting films covered by stabilization (protective) layers, mono-filamentary thin tape

based on YBCO and BSSCO ceramics.
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5. Numerical analysis of AC losses in coated conductors

5.1 Introduction

In previous chapter we have analyzed AC losses in coated conductors in the framework of
CSM and of the asymptotic high magnetic field approximation for a power law
superconducting layer. It was shown that contribution of relative small higher harmonics to
AC losses in coated conductors can achieve 110 % of losses caused by the main harmonic in a
superconducting layer (Figs. 16, 17 and 18b) and 250% in a normal metal parts (Fig. 17b).

In this section we analyze influence of higher harmonics on losses in coated conductors
simulated more real voltage-current characteristic — power law. Here the mathematical model
and numerical algorithm are presented following [38].The algorithm was used to study the
response of a coated conductor to pulse currents. We broadened and adopted the model and

algorithm to calculation losses in power law coated conductors.

5.2 Mathematical Model

In the general case normal metal layers (substrate, protected and stabilized coverers) can be
wider than a superconducting one. For loss calculation the coated conductors can be presented
as a metal strip and a type Il superconducting strip placed one on top of the other (Fig. 22)
similarly to the model discussed in Section 4. The thickness of the metal strip is dn,, and of the
superconducting strip is ds. and the half-width are a and as, respectively. The length of both
strip is the same, I, where {d., d, } << a5 <a << |, and the approximation of infinitely
long thin strips can be applied. In the framework of this approximation the magnetic field

induced by a current in the conductor is perpendicular to the surface and is independent of the

z-coordinate inside a strip. We shall consider losses in coated conductors for the following
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cases: (i) a non-sinusoidal uniform magnetic field is applied perpendicular to the conductor

wide surface (in the z-direction) without transport current and (ii) a non-sinusoidal transport

current flows along the conductor in the y-direction without applied magnetic field. In both

cases the electric field E and sheet current density 3 have only the y-components. In the thin
strip approximation, the electric field is independent of the z- coordinate and is the same in the
normal-metal and superconducting strips. The sheet current densities are various in these strips
and distribution of the current between the strips is determined by their voltage-current

characteristics.
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Fig. 22 Sketch of coated conductor simulated by two strips.

However, the results of experiments published in literature (see for example [39]) and of
experiments performed at the Physics Department, BGU, showed that DC voltage-current
characteristics of coated conductors are well fitted by a power law. Therefore, a local E-J

relation can be written in the following form:

{pm\] /2d, la.|<x<|a
E- 5.1)

E,(J/3.)  x<la

sc|
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At z = 0, the z-component of the magnetic field is the sum of the external field H,(t)

and field produced by a current:

1 3 I(u)
Hz(x,t)_—g_[lx—_udu+He(t). (5.2)
The total current is given by
(5.3)

! (t):jaa (x,t)dx.

For the case (i): I(t) = 0, for the case (ii): He(t) = 0 and I(t) equals the transport current ly(t)

By substitution of Eq. (5.2) into the Faraday law equation

oE oH
el 5.4
x Ho at (5.4)
we obtain the following equation for the electric field
OE a 03 (u,t) du dH, (t)
— = + 2, 5.5
X 27z Ja o x—u " 9
In dimensionless units the last equation is rewritten as
- oe(u,9
oe __ T J‘ ( ) du " #Ha % (5.6)
o¢ o, 4, 08 &-u Egr 08
E X t H, N :
here e_E— E=—, 9=—, h =—*, and the normalization parameter Eo can be arbitrarily
a T L
chosen. The characteristic time is chosen by the following formula
_ Hoad,, (5.7)
TPr

as a result Eq.(5.6) may be rewritten in the following form

e_.lfﬁe(u,g) du .\ oh,
oc 0% <¢-u o9’

-1

where 7 _Ho, :
E,d

m
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5.3 Numerical algorithm

To develop a numerical algorithm we integrate equation (5.5) with respect to the x-coordinate
substitute E=p(x,J)J/2a where p(x,J) is a nonlinear resistivity corresponding to the

E —J characteristics of a coated conductor and obtain

& (u,t)

p(x,J)d/2d, _ _ HoC [ In|x—u|du+%—c(t) (5.8)
T -a ot
where C(t) is unknown function of time and A is the vector potential of external magnetic

field

The system of equations (5.2) and (5.5) determines both the current distribution in a conductor

and the function C(t) was solved numerically.

Let {x},i=0,....N be an equidistant mesh on [-a,a] with A=x —x_,. We use piecewise-

constant finite elements and approximate J (x,t) by 5 J;(t)6;(x) where
j=1

1 X, SX<X,
5. X)= = ! 59
() {O otherwise 59)
Multiplying equation (5.5) by &, (x) i =0,...,N and integrating we obtain
M Q:A(—_b(j,tj+%—cij (5.10)
ot ot
where
E)i(j,tj:pi(Ji)Ji, (303 =p(%sadt)s Xya=X—A12, I=(Ll...1)'; The
integrals M, :’u';dm? i 8;(x)5 (y)In|x—y|dxdy can be found analytically
T -a-a
2
M, = £odn! (m,_; +2In4) with
T
-3 k=0
m, = ~3+4In2 =1 (5.11)
~3+(k+1)" In(k +1)—2k*Ink +(k-1)"In(k-1) k=2



58
. . 0] oA 5\ .
For each time moment we substitute E:AM b Jt +E_C1 into the

equation —:4&% obtained from Eq. (5.3) and find
i=1
N ~( 3 oA Ol 1 N
C=|xX —Mlb(J,tj t———"— | = M, . 5.12
[1—1( ot oAt ) iE ! (512)

Now using standart routine for ordinary differential equations we can integrate over time the

system

% =AM (—b(J ,t)+ %A—Clj with zero initial conditions.

The value of AC losses per a period is calculated according to:

—

a—)

P=ldt]E J dx (5.13)

o

Here P; represents total AC losses per a period which is the sum of losses in normal and
superconducting parts

In our algorithm we use a differential equation for calculation of AC losses:

d—: ? E-de
dt  -a

~9

with zero initial conditions.

The numerical algorithm was realized using “MatLab” and is given in dimension units. We can
easily use it in dimensionless units by replacing the appropriate coefficients, for example a is
replaced by 1.

In calculations we used the dimensionless units with the timescale r chosen for a normal

metal tape according to Eq. (5.6) and & = x/a. In these units, the resistivity of normal

conducting parts near the conductor edges |as°|

<& <1 isequal to unity. Our estimation for a
well stabilized coated conductor showed that the power law characteristic for the central part

a . . . . .
gsM containing the superconductor can be taken in the following dimensionless form:
a
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p(3)=0.015/3/J,]"" . Calculations below were performed for dimensionless time r

estimated for the current frequency of 50 Hz.

5.4 Results and discussion

The numerical algorithm has been tested in comparison with the numerical and analytical
results for a thin superconducting film described by CSM. At 400 steps through the conductor
width, an error in loss determination is less than 1%. Below all the calculations were
performed at step number of 400 with zero initial conditions. Our calculation show that the
process steadies during the first period for n=4,10,25 and losses per a period do not
practically change from a period to period.

Results of the numerical calculations of relative contribution of higher harmonic to the total
losses in coated conductors are presented in Figs. 23-26.

In both considered cases( (i) a non-sinusoidal uniform magnetic field and (ii) a non-sinusoidal
transport current) the relative contribution of higher harmonics increases with the harmonic
amplitude (Figs. 23 and 24). The contribution increases also with the power index n. At n =
25 the results for the power law model and critical state model are about the same and can be
about 10 times larger than in a normal metal (Fig. 23 b). The contribution can achieve about
110% of losses caused by the main harmonic. Simulation of a coated conductor by power law
with low power index (n = 4) predicts losses (contribution) can achieve 45% of losses caused
by the main harmonic (Fig. 23 b), up to 4 times higher than losses caused by the same
harmonic in the normal metal (~11% ).

The relative contribution increases with the main current harmonics (Figs. 25 a and 26 a)
while decreases when the main magnetic field harmonics increase (Fig. 25 b and 26 b).
Similar behavior of the relative contribution of higher harmonics was observed for

superconducting strips considered in the frame of CSM in section 4.
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Fig. 23 Numerical results of power law voltage —current characteristics (n = 10) for AC losses
as function of higher harmonics; a) the second harmonics; b) - the third harmonics; Black line
— critical state model; cyan line - normal metal; red, green, and blue lines — power law voltage-

current characteristics with n = 25, 10, and 4, respectively.
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Fig. 24 Numerical results of power law voltage —current characteristics (n = 10) for AC
losses as function of higher harmonics a) second current harmonics b) second field harmonics;
Black line — critical state model; cyan line - normal metal; red, green, and blue lines — power

law voltage-current characteristics with n = 25, 10, and 4, respectively.
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Fig. 25 Relative contribution of the higher current harmonic to the total losses in a coated

conductor described by a power law voltage-current characteristic a) the second harmonics; b)

- the third harmonics;

green line-h, = 0.25 hy, red line- h, = 0.15 hy, black line- h,=0.05 h;
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Fig. 26 Relative contribution of the higher current harmonic to the total losses in a coated

conductor described by a power law voltage-current characteristic a) the second harmonics; b)

- the third harmonics;

green line-h3= 0.1 hy, red line- h3=10.05 hy, black line- h3=10.02 h;
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5.5 Summary

The adopted algorithm for numerical calculation of AC losses in coated conductors gives well
agreement with the analytical results obtained in the framework of the critical state model at
the step number of 400 through the conductor width. As is expected for a high power index
(n = 25) the analytical approach using CSM and numerical calculation within the power-law
approximation give close results. The relative contribution of the third 10% harmonic can
achieve up to 110% of losses caused by the main harmonic that is about ten times larger than
losses caused by the same higher harmonic in the normal-metal conductor of the same form.
Even at low power index (n = 4) the predicted losses are substantially higher than AC losses
in normal metals: relative contribution can be 4 times higher and achieves 44% of main
harmonic losses replace of 11%.

The relative contribution increases with the higher magnetic field and current harmonics as
well as with the main current harmonics while decreases when the main field harmonics

increase.
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6. Conclusion

The behaviour of superconductors under non-sinusoidal conditions was investigated
describing a superconductor by a nonlinear voltage-current characteristic. The main attention
was given to analysis of the contribution of higher harmonics to AC losses in
superconductors.

Analytical expressions were obtained for various configurations of superconductors such as:
slab, thin strip, coated conductors in the framework the of critical state model as well as in the
high magnetic field approximation for a power law superconductor. Analysis of losses in
power law superconductors was carried out using MatLab software performing numerical
solution of the integral equation.

The analysis shows that in devices with bulk superconductors, higher harmonics can
substantially change losses. Thus, the 5% second harmonic can cause the loss increase by
20% in superconductors while by 1% in a normal metal. Moreover, the contribution of the
higher harmonics depends on their phases: in a certain range of phases, the odd harmonics can
even reduce AC losses. These peculiarities distinguish the behavior of superconducting
devices from that of conventional ones. The increase of the amplitude of higher harmonics
leads to the violation of the monotonic character of the waveform change from the minimum
(maximum) to the maximum (minimum). Non-monotonic character of the waveforms of a
current or a magnetic field influences AC losses only at very high amplitudes of higher
harmonics.

Influence of higher harmonics losses in coated conductors is markedly stronger. Thus, the 5%
third current harmonic causes loss increase by 45% in the superconducting part of a coated
conductor and by 80% in the normal-metal parts at a current close to the critical value.
Numerical calculation of the total losses (sum of losses in superconducting and normal metal
parts) in a coated conductor within the power-law approximation gives close results to ones
obtained using the analytical approach for CSM at a high power index (n = 25), as is

expected. The relative contribution increases with the higher magnetic field and current
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harmonics as well as with the main current harmonics while decreases when the main

field harmonics increase. The relative contribution of the third 10% harmonic to the total
losses can achieve up to 110% of the losses caused by the main harmonic that is about ten
times larger than losses caused by the same higher harmonic in the normal-metal conductor of
the same form. Even at low power index (n = 4) the predicted losses are substantially higher
than AC losses in normal metals: relative contribution can be 4 times higher and achieves

44% of main harmonic losses replace of 11%.
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