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Abstract – The steady-state morphology of submonolayer Si/Si(111)7× 7 islands is characterized
by a size-dependent transition from compact through ramified to 1D-like forms. The transition
is described by the linear-chain model (LCM), which explains this shape transition in strained
heteroepitaxial layers, as a mechanism for strain relaxation without dislocations. We found that
above the percolation coverage θc, the entire structure adopts new steady-state morphology and
reduces its typical width by a factor of e, to its optimal-energy value. The LCM predicts this value
as the asymptotic behavior for infinite elongated islands. Our experimental results, which are
supported by energy calculations, confirm the LCM predictions for the first time in homoepitaxy.
These results are explained by a size-dependent mesoscopic mismatch between the islands and the
substrate.
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Percolation is a mathematical model, describing a
geometrical phase transition, in infinite disordered
systems. By randomly filling sites on an infinite 2D
lattice, the site percolation threshold pc is defined as
the site occupation probability where for the first time
an infinite island spans the entire system. Percolation
was extensively investigated, both theoretically and
experimentally (see [1] for introduction) and was imple-
mented in many fields of research. It is defined for
many characteristics like; different connectivity rules and
lattice symmetries, from 1 to n dimensions, for discrete
or continuous systems and for random or correlated
occupation probabilities. In percolation, a correlation
or pair-connectivity function is defined as the proba-
bility that a site a distance r apart from an occupied
site belongs to the same cluster. A geometrical typical
length, called the correlation or connectivity length ξ
is than defined, for 2D, as some average distance of
two sites belonging to the same island. Thus, as the
critical occupation probability pc is being approached,
ξ is expected to experience geometrical phase transition
and to diverge. ξ itself and statistical quantities defined
by it are also subject to scaling laws when p→ pc, but,
the morphology of the percolating islands has not been
predicted or observed previously to be affected by this

phase transition. In this letter, we present experimental
results showing a strain-driven morphological transition
associated with the geometrical critical point of perco-
lation. The transition is characterized by a reduction of
the typical island width w by a factor of e above the
percolation threshold. The characterization of percolative
and ramified geometries in surface overlayer systems is
a well-established field of research (see [2] for report).
Specifically, in this work, the appearance of the factor e,
led us to the linear chain model (LCM) first introduced
by Tersoff and Tromp (TT) [3]. The LCM describes
island formation in strained heteroepitaxial layers, as
a mechanism for strain relaxation without dislocations.
TT described the strained islands by applying elastic
monopoles at the border of the deposit. By minimizing
the total energy with respect to the island geometry, they
found an optimal island size α20 at the optimal tradeoff
between extra surface and interface energy and the energy
gained due to elastic relaxation. They also showed that
compact islands are stable as long as their linear size
� eα0. However, once an island grows beyond its optimal
area α20 by a factor of e

2, a morphological transition to
rectangular shape is observed. The LCM also predicts
an asymptotic convergence to the optimal width α0 as
the island length grows to infinity. This is a fundamental
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feature that connects the LCM to percolation. On the
one hand, percolation is defined as the coverage where an
infinite island is formed. On the other hand, the LCM
predicts the asymptotic island width value as the island
length grows to infinity. Thus, when a percolating island
system can be described by the LCM, the asymptotic
value is expected to be found when the percolation
threshold is being approached. Our data taken from both
sides of the percolation threshold, (i.e., before and after
an infinite island is formed), are consistent with this
prediction. We also demonstrate, for the first time known
to us, the validity of this model for homoepitexial islands.
By growing nanoscale Si/Si(111)7× 7 islands, we argue
that a finite-size misfit, now long recognized (theoretically
and experimentally) [4–8] as effective also in homoepitaxy,
is responsible for the presence of strain forces. Strain
forces are essential in justifying the existence of the shape
transition predicted by the LCM.
In this letter, we will first present the experimental

results showing the morphological modification of the
typical island width. The analysis will start by calculat-
ing the site-occupation correlation function gθ(r) (differ
from the pair-connectivity function). The determination
of gθ(r) vs. r will yield expected and unexpected results.
The expected result is that above a typical length, the
island system can be regarded as uncorrelated or random.
The unexpected result is that the typical island width
reduces dramatically after the percolation threshold is
being crossed. We will continue by verifying that the
large scale morphology can be modeled by percolation.
The expected transition from compact to fractal behav-
ior will be presented here along with estimation of two
critical exponents, the fractal dimension D and the clus-
ter number exponent τ . In the main part we will address
the new steady-state morphology found above θc. By
using an adapted LCM version for 2D ramified islands,
the transition from compact through ramified to linear-
chain islands will be presented and the typical values
of these transitions will be estimated. Following that,
the reduction of the typical island width by a factor of
e will be introduced. We shall also discuss the connec-
tion to percolation via the formation of infinite island
and the appearance of two characteristic lengths which
are the correlation/connectivity length ξ for the large
scale morphology and the typical width w for the small
scale morphology. To further support our finding, we
include an energy calculation relevant for Si homoepitaxy.
Finally, since it is the first time that the LCM is being
applied in homoepitaxy, we shall conclude by introducing
the finite-size misfit in strain mesoscopic islands in our
explanation.
In the experiment, silicon atoms were evaporated on top

of a Si(111)7× 7 surface at room temperature. After solid
phase epitaxy, the substrate was annealed to 550 ◦C and
a system of 2D islands was formed. In less than 3 minutes
the system reached a steady state and further heating,
even to temperatures up to 700 ◦C, did not change

the morphology. Images from different submonolayer
coverages were collected by a custom made UHV-STM
applying a sample bias of +2V and at a constant current
of approx 1 nA. The images were digitized to a binary
contrast with 1 and 0 for occupied (white) and vacant
(black) sites, respectively, and so, we could analyze the
STM images in analogy to site percolation problem. Since
the Si(111) surface can show domains of different recon-
structions with formed islands, the results are presented
using the Si(111) lattice units (LU), for the sake of unifor-
mity. To demonstrate our findings, data of three different
coverages (θ= 0.446, 0.534 and 0.566) at a total of 3459
islands were analyzed. The images (see fig. 1) show that
percolation sets in between 0.534 and 0.566, and that a
transition to a significant narrower island width occurs
while crossing this threshold. We shall start the analysis
by calculating gθ(r) for the percolating island system.
The site percolation problem can be defined by the

site occupation variable θi at the sites {i}. θi take on
the values 1 and 0 corresponding to occupied or vacant
sites, respectively. Thus, the site occupation probability is
defined by the statistical average θ= 〈θi〉 on realizations
of {θi}. One way to characterize island morphology and
estimate the typical width is to calculate the site occupa-
tion correlation function gθ(r):

gθ(r) = 〈θ, θj〉− 〈θi〉〈θj〉 . (1)

By considering an homogenous and isotropic system, gθ(r)
is a scalar function of the distance r= |ri− rj | alone,
where 〈θ, θj〉 measure the average probability that if
site i is occupied so is site j (a distance r apart),
and 〈θi〉〈θj〉 ≡ θ2. In random percolation (RP), gθ(r) =
θ(1− θ)δij , and so, gθ(r)≡ 0 unless r= 0. When correla-
tions do exist, gθ(r) is a circularly average measurement
of the correlation changes with the distance r.
Figure 2 shows gθ(r) calculated from our data at

θ= 0.446, 0.534< θc and θ= 0.566> θc. We see that
beyond the first secondary maximum, which estimates
the distance between to adjusting trench centers, gθ(r)
exhibit sinusoidal fluctuations near 0. Hence, as expected,
it is already after one cycle of the oscillatory island-trench
morphology that the system shows no correlations and
can be regarded as random. For the first zero, which
is one estimation of the typical island width w, we
see an unexpected jump towards a smaller value when
moving from θ < θc to θ > θc. This finding means that
on the nanoscale, the typical island width experiences a
morphological transition when crossing the percolation
threshold. We shall go on and verify that percolation can
model the large scale morphology.
Since the morphology is driven by postdeposition

dynamics, correlated percolation models, (for example
annealed percolation [9]), can be applied in order to
characterize the critical behavior of the system (proven
to be in the same universality class of RP). Nevertheless,
in this letter we do not focus on the percolation char-
acteristics of our system, and since the formation of an
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θ = 0.446  0.534  0.566 θ = θ =

Fig. 1: STM images of silicon island on Si(111) 7× 7 and their B&W matrix (white = occupied). The images are 313× 313
lattice units. Both the transition to percolation between θ= 0.534 and θ= 0.566, and the transition to lower typical width are
evident to the eye. The calculated w2t from fig. 5 is displayed via white squares at the upper right corner of the STM images.
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Fig. 2: The site-occupation correlation function. gθ(r) calcu-
lated for θ= 0.446, 0.534< θc and θ= 0.556> θc. Beyond the
second zero crossing, gθ(r) is no longer correlated. The first zero
gives some evaluation of the typical width w for the ramified
islands and it exhibit dramatic reduction above θc.

infinite island is a fact, we merely want to verify that the
overall large-scale morphology can be characterized by
percolation.
In RP the structure of the percolating islands is

described by the fractal concept and the fractal dimen-
sionality D of the infinite island at θc also represents the
fractal dimension of the finite islands as long as their linear
size is smaller than the correlation length ξ. For 2D islands

S ∝RDs , 1� s� sξ = ξD, (2)

where s is the islands’ area and Rs is the radius of
gyration. The statistical distribution of the islands at
percolation is described by the cluster number exponent τ :

ns(θc) = s
−τ , p = pc (3)

where the cluster number ns is the probability per lattice
site that a randomly chosen site belongs to a cluster of
size s. In 2D RP D = 1.895 and τ = 2.05.

The power laws (2) and (3) are asymptotic for
s→∞, hence, for finite s, corrections to the asymp-
totic behavior are needed and it is custom [1] to
use: s∝ARDs (1+ aR−Ωs +smaller corrections). For
the first correction term, if we plot the local slope:
d log(s)/d log(Rs) =Deff vs. ΩaR

−Ω
s /(1+ aR

−Ω
s ), the

asymptotic value of D is approached when R−Ωs → 0.
The exponent Ω can be derived from the data, and
previous works (for example [10]) found 0.5<Ω< 1.
Figure 3 (top) is an averaged log-log plot of s/R2s vs. Rs
with a guide line for s∝R2s. It is apparent that the fractal
behavior is restricted to islands above a crossover value,
and we found it at the transition from compact to ramified
islands, also indicated in fig. 5. A linear fit of the data at
the fractal zone gives higher Deff values with increasing θ
as can be seen from fig. 3 (top). Using Ω= 0.55 results in a
linear data collapse, leading to the intersection at D∼ 1.9
for Rs→∞ (fig. 3 (bottom)). Figure 4 is an averaged
log-log plot of ns vs. s. It is evident that for large s the
exponent τ is being approached asymptotically. Thus,
since in 2D there are only two independent exponents,
we found that the large-scale behavior belongs to the
universality class of RP.
In the remainder of this letter we will give a detailed

analysis and discuss our main finding, that the typical
island width is scaled by a factor of e above θc. We
shall begin by introducing the LCM version for monolayer
high 2D ramified islands.
In order to analyze the driving force leading to the

width reduction above percolation, we used the LCM
calculations for a simple 3D pyramid islands with
width w, length t and height h, experiencing shape
transition above a critical area of e2α20. We represent
this transition by wt = eα0 and st =w

2
t for the transition

values of the width and the area, respectively, and define
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Fig. 3: The fractal dimension. Top: log(s/R2s) vs. log(Rs) shows
a transition from compact (s∝R2s) to fractal (s∝R2s) zones
(D here is the effective dimension). The transition values were
aligned to emphasize the increase of Deff with the coverage.
Bottom: Evaluation of the asymptotic value by plotting of
Deff vs. ΩaR
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Fig. 4: The cluster number exponent τ . log(ns) vs. log(s) shows
a convergence of ns towards s

τ for s→∞.

w0 ≡ α0. The first experimental verification of this shape
transition in the growth of monolayer high 2D islands
was obtained by Müller et al. [11]. For heteroepitaxy of
Cu/Ni(100), they were able to characterize the transition
from compact to ramified islands by only one parameter:
the arm width of the ramified islands. In this letter
we shall follow their modified LCM model designed
for monolayer high 2D ramified islands. For h= 1 they
used the following expression for the total normalized
energy E :

E = b(w + t) − wln(t) − tln(w), (4)

where the first term represents the elastic energy (b is
a constant consisting of elastic constants) and the other

terms represent the surface energy. Since s=wt, (4) can
be rewritten as

E = b(w + s/w) − wln(s/w) − (s/w)ln(w). (5)

Minimizing the energy in (5) with respect to w, gives
two identical solutions up to the transition value st =
exp(4b+2), and two different solutions when s exceeds
this value. Above st the width w shrinks from wt = exp(b+
2) to w∞ = exp(b+1) or wt/w∞ = e. It is customary to
use a two-point correlation function [12] to characterize
the microgeometry of two-phase systems. By applying it to
our images, we could estimate w in agreement with fig. 2,
but, here we followed the footsteps of Müller et al., and
introduced the parameter p vs. the island size s, because it
predicts w when the islands grow to infinity. By replacing
w with p in (5) the dependence of p on s within the LCM
can be obtained [11]:

P = 2s/w + 2w. (6)

Müller et al. were able to measure wt, but they found
it insensitive to the s range above the transition. They
proved the validity of the Tersoff and Tromp model in 2D,
but, could not see the asymptotic value being approached
for growing islands. This behavior had been reported later
for the growth of Ag on Si(111) [13]. The value of w from
our data will be presented next.
Figure 5 (Top) introduces (averaged) log(p/s0.5) vs.

log(s) for our three data sets: θ= 0.446, 0.534< θc and
θ= 0.566> θc. The data shows a first transition from
compact (s∝ p2) to ramified islands. Beyond an inter-
mediate zone the data align parallel to s∝ p and this
behavior can be modeled by the growth of linear chains
with a typical arm width w. Guide lines for s∝ p2 and
s∝ p were added to emphasize these transitions. The
linear dependence of s on p is a familiar characteristic
of the infinite island above θc, and therefore, also of the
finite but large islands that forms as θ approaches θc.
Thus, we are able to support our previous finding that
on the large scales the islands can be described within the
framework of RP. In our experiment for θ < θc the data
fall on similar curves and the transitions to compact and
LC islands occur approximately at the same w. For θ > θc
the transition occurs much earlier and we receive a parallel
curve at the linear chains zone, indicating the existence of
a scale factor.
Figure 5 (bottom) displays p vs. s in the s∝ p zone

for θ= 0.534 and θ= 0.566. From this plot we calculated
the linear chain coefficients (for s) 2/w, and define these
values at the LC zones by wt, since, the lowest w at the
beginning of these zones marks exactly the transition
value. We found 2/w= 0.062 or wt = 32.258LU for θ < θc,
and 2/w= 0.169 or wt = 11.834LU for θ > θc. Thus,
wt(θ < θc)/wt(θ > θc) = 2.72 and a factor of e distinguishes
the typical island widths, at the LC zone, from both sides
of θc. White squares with an area of w

2
t were put in the

STM images (fig. 1) to demonstrate that these typical
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Fig. 5: The typical island width w. Top: log(p/s0.5) vs. log(s)
shows a transition from compact (s∝ p2) to LC (s∝ p) islands.
The real 2D transitions at log (w) = 2.48, 3.35 and the 1D
theoretical one at log(w) = 3.02 are displayed. Bottom: p vs. s
for the s ∝ p zone. The coefficients 2/w for θ= 0.534 and
θ= 0.566 are displayed.

widths are realistically estimated. We shall look more
carefully into these results and discuss their connotation.
Using the value of 32.258 for wt when (θ < θc), we found

log(w2t ) = 3.02, however, from fig. 5 (top) it is apparent
that the transition to LC occurs only when log(w2t ) = 3.35
or at wt = 47.315LU. At the same time, if we mark the
transition from compact to ramified islands for θ < θc,
by wR, we find log(w

2
R) = 2.48 or wR = 17.378LU and

thus, wR =wLC/e≡w0. This means that the stability
of the compact island shape below θc begins to brake
at a critical width w0 = 17.378LU, but, it is only where
wt ≡ ew0 = 47.315LU, that the islands can be described as
linear chains. Instead of the sharp square-to-rectangular
transition found for the 1D elongation, here, the evolution
in 2D from compactness to linear chains is characterized
by a transient ramified zone between s∝ p2 and s∝ p.
The value wt = 32.258LU calculated from the linear

chain coefficient 2/w at s∝ p can also be found if we
extrapolate the linear trend line from the LC zone
down to the intersection with the compact s∝ p2 line at
log(w2) = 3.02. We suggest that this value might refer
to the theoretical value expected for 1D growth without
a transition zone. The value wt = 47.315 found at the
transition from ramified to LC islands, refers to the real
2D value. The same 2D effect repeat itself for θ > θc
were the real 2D value seems to be in the vicinity of
the θ < θc transition value from compact to ramified

islands: log(w2) = 2.48 or wt = 17.378LU and the theo-
retical 1D value for θ > θc at wt = 11.834LU. It is
remarkable to see that, for wt(θ < θc)/wt(θ > θc), the
theoretical 1D ratio equals the real 2D ratio where
32.258/11.834 = 47.315/17.378 = 2.72≈ e. Together with
the w behavior below θc, the general characteristics of the
1D LCM; the appearance of optimal α20 island, the shape
transition above a critical e2α20 value and the convergence
back to α20 for t→∞ are reproduced for 2D ramified
islands. It means that p/s for 2D ramified structure
constitutes of similar arms is equivalent to p/s for 1D
island with the same p and s.
The most significant finding is that the transition to

LC islands, or wt for θ > θc occurs at the same point
where the transition from compact to ramified islands,
or w0, occurs for θ < θc. Since for θ < θc this transition
occurs where w0 =wt/e, a factor of e separates the
transitions to the LC zone across θc. Thus, analyzing
the percolating island morphology by the LCM ends up
with two morphological transitions. The first transition
is related to the optimal tradeoff between surface energy
and strain, and it appears in a gradual transition from
compact to LC islands. (This optimal tradeoff freezes
the structure detected, at certain coverage, even if the
sample is further heated.) The second transition is
related to the geometrical phase transition of percolation.
Once the percolation threshold is being crossed and an
infinite island is formed, wt for θ > θc equals the infinite
w∞ =wt/e=w0 value for θ < θc, and this infinite value
becomes the typical length also for finite islands.
The above nanoscale morphology characterization also

suggests the existence of two typical length scales. A
geometric typical length ξ, defined by RP, describes the
morphology on the large scales as θ→ θc. An energetic
typical length w, defined by the LCM, describes the
effect of strain on small scale morphology. Unfortunately,
experimental data with high accuracy very close to the
percolation threshold are very hard to attain. Thus, the
measurement to answer the interesting question of how
sharp the transition of w is and how it depends on |θ− θc|
might be a very difficult one. In the next paragraph we will
backup the above result for w0 with energy calculation.
To confirm the validity of the above results we made an

energy calculation in order to estimate the LCM prediction
for the optimal island width [3]:

α0 = e
−1/2cotφ heΓ/ch. (7)

According to TT, the extra surface energy is just
2(w+ t)hΓ and thus Γ is just the step energy per surface
area. We used Γ= 0.14 eV/atom [13] and so, for an atom

area of ∼= 10−19m2, Γ∼= 0.22 J/m2; h∼= 3 Å is the islands
height and c= σ2b (1− ν)/2πµ, where σb is the xx or yy
components of the bulk stress and ν and µ are the Poisson
ratio and the shear modulus of the substrate. These three
values are known to be σ= 2.96 J/m

2
[14] and so

σb = 0.95 · 10−10 J/m3, ν = 0.26 and µ= 5.2 · 10−10N/m2.
φ is the contact angle and for the monolayer high islands
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we used the half tetrahedral angle of 54.5◦ expected for
monatomic steps on silicon. The above parameters give
α0 ∼= 12LU, within 2% of our experimental value. To
conclude, we shall explain how finite-size misfit makes the
LCM works for homoepitaxy.
Our results confirm, for the first time, the validity

of the LCM in homoepitaxy. The ability to model the
formation of homoepitaxial silicon islands on Si(111)7× 7
with a mechanism for strain relaxation, originates from
the dimension dependence of these forces. Massies and
Grandjean [15] were the first ones to discover this size
dependence, measuring in-plane lattice spacing oscilla-
tions (IPLSOs) by using reflection high-energy electron
diffraction (RHEED). Since then, the validity of this finite
size phenomenon was established, both theoretically [4–6]
and experimentally [4,7,8], for heteroepitaxy as well as for
homoepitaxy. Following the footsteps of Müller et al. [4],
in heteroepitaxy, a natural misfit for semi-infinite cubic
phases, an adlayer A and a substrate B, differ by their
crystallographic parameters a0 and b0 is defined by:
m0 = (b0− a0)/a0. However, because of its broken bonds,
a small piece of A may relax to equilibrium showing an
effective lattice parameter of a= a0[1+ ε(h,w, t)] where
ε(h,w, t) is the size-dependent strain, referred to as
the finite-size misfit or mesoscopic mismatch. Thus, a
finite crystal grown on a semi-infinite substrate, has an
effective misfit m, distinguished from the natural one as:
m≈m0− ε(h,w, t). The finite-size misfit can be dominant
also in heteroepitaxy for tiny islands and/or if m0 is suffi-
ciently small. More important for our discussion, owing
to their mesoscopic mismatch, finite size 2D coherent
nano homoepitexial islands for m0 = 0, has to be strained
by ε(h,w, t) to be accommodated on their own substrate.
ε(h,w, t) depends only on the surface stress of the lateral
and basal faces of the island, that during relaxation drags
the atoms at the contact area to produce a strain field
in the substrate. Müller et al. modeled this strain by
point forces located at the edges of the islands on
the substrate surface. This method is consistent with the
LCM routine where TT modeled this relaxation by elastic
point force monopoles acting at the islands periphery.
TT also assumed a coherent Stranski-Krastanov growth
with a wetting layer and so the energy of the substrate
and of the islands top was considered to be equal. The
homoepitaxial case is a perfect study case within the
framework of this assumption.
The Si(111)7× 7 is familiar for possessing a

reconstruction-induced stress surface [14], thus, our
last remark has to do with the meaning of our results to
the study of stressed surfaces. It is commonly accepted
that at the steps on these surfaces one finds dipole forces,
thus, strain relaxation arguments were never before
applied in the study of their steps morphology. However,
our results imply that for a periodic set of finite width
steps, or islands, strain relaxation has to be considered.
Owing to their finite size misfit and free basal surfaces
we showed that strain relaxation of these islands is

possible. The terraces between the islands do not have
that privilege, due to their lack of the above free surfaces,
and thus, elastic monopoles can emerge at the interface.
To summarize, we presented here experimental evidence

for a size-dependent morphological transition with respect
to the percolation threshold. Our data exhibit a reduced
islands width by a factor of e after the critical concentra-
tion is being crossed. This phenomenon was explained by
the LCM as an asymptotic behavior when the islands grow
to infinity. The asymptotic value was found at the optimal
tradeoff between surface energy and strain as predicted
by the LCM, hence, crossing the geometrical critical point
of percolation results in a new steady-state morphology,
characterized by the optimal energy width. We assert that
this transition, explained for the first time using strain
arguments in homoepitaxy, is a result of size-dependent
mesoscopic mismatch.
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