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Abstract. We propose a novel mechanism for single spin detection based on the
1/f spin current noise. We postulate that the 1/f spin noise for the tunneling current is
similar to the ubiquitous 1/f noise in magnetic systems. Magnetic coupling between
tunneling electrons and localized spin S then leads to the peak at Larmor frequency
in the power spectrum of the electric current fluctuations I 2

ω. The elevated noise in
the current spectrum will be spatially localized near the magnetic site. The difference
in the power spectra taken at the Larmor frequency and elsewhere would reveal the
peak in the spectrum. We argue that the signal-to-noise ratio for this mechanism is
on the order of one. In addition, we discuss the asymmetric line shapes observed
regularly with this measurement. We show that such line shapes are in accordance
with the random sampling done with the tunneling electrons. Yet this predicts a line
width at least one order of magnitude larger than observed experimentally, which is
likely to be due to electrostatic repulsion between the tunneling electrons and
temporal correlations in the tunneling process.

1/f SPIN NOISE
The phenomenon of 1/f (flicker) noise has been known
for 80 years.1 It describes the deviation from the flat
spectral density expected from a current made of
uncorrelated charge carriers at low frequencies. In this
range, the spectral density was found to obey a power
law of the form 1/f α where f is the frequency, and
α = 0.5–1.5. Flicker noise appears in a multitude of
electronic devices, in music,2 in ocean streams,3,4 and in
many entirely different systems. This is one of the most
universal phenomena, yet one of the largest enigmas in
the physical sciences.

An early explanation for this phenomenon was that
the 1/f noise can arise from a superposition of relaxation
processes.5 In this model the noise is described as a
superposition of consecutive random events, each start-
ing at a certain time t0 and following a simple exponen-
tial relaxation law: N(t – t0) = N0e–(t – t0)/τ, where N is the
measured quantity and τ is the relaxation time. The
power spectrum of one such event is a Lorentzian. The
power spectrum of a large number of such consecutive
random events, all with the same τ, is also a Lorentzian.

If, on the other hand, there is a distribution of relaxation
times P(τ) ~ 1/τ, from τ1 to τ2, then the overall spectral
density will obey a power law ~1/f in the range between
τ1

–1 and τ2
–1. A common denominator of many mecha-

nisms proposed for different 1/f phenomena6,7 is a distri-
bution of relaxation times.

1/f noise is ubiquitous in scanning tunneling micro-
scopy (STM) tunneling current, although its origins are
not fully understood.8–11 Unlike the well-known shot
noise, 1/f noise is proportional to the square of the
current such that: 〈I2(ω)〉/I 2 = const. Where 〈I 2(ω)〉 is
the spectral density of current fluctuations (in units of
A2/Hz) and I is the current. Empirically, the current
fluctuations in 1/f noise are known to obey the Hooge
formula12 〈I 2(ω)〉/I 2 = a1/(fN), where N is the number of
current carriers in the sample and a is of the order of
0.01. The appearance of 1/f noise in the STM is a
surprising observation because the normal “explana-
tion” of this noise is a fluctuating defect with a wide
distribution of relaxation times. Such explanations are
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not suitable here because of the extremely local nature
of the measurement. The STM measurements of 1/f
noise (in a voltage of –0.5V) gives a peak at zero fre-
quency where the intensity of the current noise 〈I 2(ω)〉 is
20 times larger than the thermal (Nyquist) noise, which
will give the order of magnitude of the noise in higher
frequencies (at room temperature) and amounts to 41fA/

. The width of the observed 1/f noise peak at zero
frequency is of the order of 10–100 kHz.

A special case of 1/f noise relevant to the present
paper is the magnetic flicker noise. In this case the noise
is due to fluctuations in the magnetization. Normally, it
is assumed that these fluctuations constitute an addi-
tional noise source in any magnetic system. However,
low-frequency magnetic noise is hard to observe experi-
mentally, and sensitive detection techniques and special
systems are required. Such fluctuations were detected
for the first time in spin glasses with a SQUID magne-
tometer.13,14 They were detected with SQUID also in
antiferromagnetic thin films15 and on superparamag-
netic nanoparticles.16 Other ways to detect 1/f magnetic
noise is by following the resistance fluctuations close to
a certain ferromagnetic transition (colossal magnetore-
sistance),17 and to observe the electrical noise generated
in small Hall probe contacts.18 The 1/f noise generated in
the Hall contacts is much larger than the usual 1/f noise
measured in the same system that is unrelated to mag-
netic fluctuations. Despite the failure to measure spatial
correlations, it is obvious18 that there is a certain coher-
ence length such that two noise measurements done at a
distance smaller than this length will give the same
results.

Although we have no direct experimental evidence,
we claim that since conduction electrons in metals also
constitute a (special) magnetic system, there should be
1/f magnetic fluctuations also in the spins in such a
system that is also paramagnetic. Electron spin reso-
nance (ESR) of conduction electrons has been known
for many years.19,20 These spectra are known for their
special line shape21 and for the narrow lines (T1 and T2

are equal and large). We would like to emphasize that
the sequence of individual dephasing events that are
responsible for T2 relaxation of conduction electrons are
very similar to the sequence of relaxation events that are
responsible for 1/f noise in general. Therefore, there are
distributions of relaxation times that are expected to
give 1/f magnetic fluctuations in conduction electrons in
metals.

Such 1/f magnetic noise is expected to be of general
significance in spintronics applications. We discuss
here the implications of such 1/f magnetic noise (either
in the spins of the conduction electrons or in a regular
paramagnetic system) on single precessing spin detec-

tion with STM (ESR-STM). It will be shown below that
this 1/f spin noise explains the observation of the signal
from nonmagnetic tips and elucidates several aspects of
this technique. We find that the interaction of the tunnel-
ing electron spins with the local impurity spin simply
couples the 1/f magnetic noise with the noise of the local
spin S, thus creating a peak in the current noise at
Larmor frequency.

ESR-STM (Fig. 1) is a technique that is using the
extremely local nature of the STM measurement to de-
tect the precession of isolated spin centers on the sur-
face. When a tip of a scanning tunneling microscope is
located above a paramagnetic spin center (in the pres-
ence of an external magnetic field), the tunneling cur-
rent is modulated by the precession. It was shown22,23

that the AC current at the Larmor frequency is spatially
localized within 0.5–1 nm. It is the spatial localization
that indicates (though it must be proved) that this tech-
nique is capable of detecting a single spin. In addition, it
was proved that the frequency of the signal is dependent
in real time on the size of the magnetic field.24,25 Similar
experiments have been done on the paramagnetic
BDPA molecule.26 A very recent paper shows that ESR-
STM can be done also on a TEMPO molecule, revealing
the hyperfine spectrum.39 The interest in this technique
has risen sharply recently due to the possibility to ma-
nipulate and detect a single spin27,33 and due to the
possibility to use it for quantum computation.27,28 There
have been many proposals for the mechanism of this
phenomenon.29–36 However, an experimental verifica-
tion for any of the proposals is still required.

In our previous papers30,31 we discussed the following
question: What is the role of the Heisenberg exchange
interaction in ESR-STM? Under which circumstances
can a tip emitting tunneling electrons with a random
spin orientation create an elevated noise level at the
Larmor frequency through interaction with the single
precessing spin?

We argued30,31 that existence of long time correla-
tions in the temporal spin polarization of tunneling cur-
rent is sufficient to provide the elevated noise at the
Larmor frequency in the current noise. Here we further
build upon this idea and show that the 1/f noise in the
tunneling spin current is sufficient to produce the effect.
We stress that no correlations in the spin polarization of
the tunneling electrons within the precession period is
required to produce the elevated noise at Larmor fre-
quency in this approach.

We discuss the spin-dependent tunneling matrix
element:

(1)

s is a spin matrix with implicit spin indices that are given
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by conduction electron spin operator si=1/2σi
α,β , i =

x,y,z, S(t) is the local impurity spin. In an external
magnetic field it will have random dynamics, with a
remnant of the precession at the Larmor frequency. F is
the barrier height (typically 4 eV), J is the exchange
coupling, and F0 is the energy related to the distance d
between the tip and the surface: F0 = d 2/8md 2. In this
term, the tunneling probability depends on the relative
orientation between S and s (Fig. 1). We write:

(2)

Where n is a unit vector in the direction of S.
The Hamiltonian we consider describes a spin-de-

pendent tunnneling matrix element between the tip (L
electrode) and the surface (R electrode):

(3)

We assume that the magnetic field is along the z axis:
B||z with corresponding Larmor frequency ωL=gµBB.
The tunneling current operator will contain the spin-
independent part that we omit hereafter and the spin-
dependent part:

(4)

where G1 = G0 exp [–[(F/F0)sinh( )]], and Is(t) is a
spin current between tip and substrate. The dc current at
a given bias V is : I0 = g0V, g0 = G0 exp [–[(F/
F0)]cosh[JS/2F0]. The current–current correlator, nor-
malized to dc current, is then

(5)

More rigorous treatment, similar to the one done in
ref 37, where one takes into account the effect of the
local spin on the mass current in the ignored terms, will
lead to the contribution of the same order as the term we
are focusing on. Hence we use a simplified formula for
the current that gives the right order of magnitude esti-
mate.

The change in the tunneling conductance due to ex-
change interaction between the tunneling electrons and
the localized spin leads to eq 4: δ Î (t) ~ Is (t) ⋅ S(t). Only
the transverse components contribute to this term (Sx(t)
and Sy(t)). When the spins of the tunneling electrons are
completely uncorrelated we can say that the dispersion

of the tunneling current which is dependent on the spin
(over one precession period T) is: Σi〈δI 2〉 ~ ΣN

i=1 (sx(ti)
Is,x(ti))2 + (x → y) ~ <N>. Or, the relative dispersion
compared with the tunneling current will be: <I 2>/I 2 ~
1/<N>. To estimate the magnitude of the spin-depen-
dent dispersion, namely the size of the noise that is due
to the interaction with the precessing spin, we use:

(6)

If we take a typical value of J = 0.1 eV, F = 4 eV, F0 =
0.1 eV (for d = 4Å), and S = 1/2, we get a value of 0.01,
namely rf intensity of 10 picoamperes, which is within
the right order of magnitude.

The spectrum is detected at the frequency domain,
and by looking at the Fourier transform of the current
fluctuations. This means that the spectrum is a convolu-
tion of the power spectrum of the single spin fluctua-
tions: <S2

i(ω)> =  and the power spectrum
of the spin tunneling current: <Is,i(ω)Is,j(–ω)> = δij

<Is
2(ω)>. Here, to be specific, we assumed the spectrum

of a localized spin to be Lorentzian; however, the argu-
ment is applicable to the case of the general spectrum
<S2

i(ω)>.

(7)

Fig. 1. Schematics of the ESR-STM experiment is shown. The
fluctuations in the spin polarization of the tunneling electrons
at the timescale of the precession T will be nonzero and will
scale as . Once the tip is positioned close to the localized
spin, the exchange interaction between the localized spin and
the tunneling electrons will modulate the tunneling current.
The conditions in which this random modulation of the spin
tunneling current with 1/f spectrum will create a ωL peak are
discussed in the text.
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If the tunneling electron spins are completely un-
correlated, then the power spectrum is white noise, and
the expected signals will be scattered over the whole
frequency range. In order to get a peak at the Larmor
frequency, some correlation at zero frequency is re-
quired, namely the tunneling electron spins must have
some temporal spin polarization in the long time limit.35

To give an example, we consider the case where
several magnetic atoms are adsorbed on the tip. Then
the spins of the tunneling electrons will be under the
influence of slowly changing spins hi of magnetic atoms
due to exchange interaction Hint = ΣiJihi(t)σ(t) =
H(t)σ (t), where Ji are the exchange couplings to the ith
atom and we define H as a sum of random fluctuating
magnetic moments hi of individual magnetic impurities
adsorbed on the tip. Here we assume that only the
“field” value H at the end of the tip matters, as the
tunneling electrons are affected by this field the most
before tunneling out of the tip. This fluctuating ex-
change field will spin polarize the tunneling current.
The correlator is <H(t)H(t′)> = Σi <hi(t)hi(t′)>. The
correlation function from each impurity, assuming they
are independent, obeys <hi(t)hi(t′)> = e–(t–t′)/τi. Averag-
ing over distribution times ti, with probability distribu-
tion P(τ)~1/τ between τ1 and τ2, will yield the 1/f noise
for the field fluctuation power spectrum. This follows
directly from evaluating the Lorentzian in frequency
space , averaged over distribution of relaxation
time τ with P(τ); e.g., see ref 7:

(8)

Hence the tunneling current will acquire spin polariza-
tion fluctuations. It is natural to assume that the spin
fluctuations of the tunneling electrons will be propor-
tional to the fluctuating exchange field H. The degree of
spin polarization of the tunneling electron is propor-
tional to the Zeeman energy (gµBH)/W related to the
total bandwidth W ~ 1/N0. We get

(9)

Here we assumed that the effect is proportional to the
tunneling current I. Indeed, tunneling electrons will
sample the random field H at a rate at which they tunnel
and this rate is given by the electric current I.

We now consider the specific case when spin tunnel-
ing current has 1/f noise component.

(10)

for all components i = x,y,z. The magnitude of the 1/f
noise is to be given by I 2 up to an unknown numerical

factor a,12 where N is absorbed in a. 1/f noise is peaked
at zero frequency and will provide a peak at the Larmor
frequency in the convolved spectrum, eq 7. We also
remark here that in a similar fashion one can get the 1/f
noise in the spin current due to 1/f noise in the electronic
current in a presence of a constant polarizing field. We
will not consider this possibility here.

Spin tunneling current will have white noise asymp-
totic at high frequencies. At lower frequencies, similar
to the unpolarized electric current,8–11 the relaxation pro-
cesses that control spin relaxation in the current will
contribute. To give a physically plausible argument
about the origin of the 1/f noise consider relaxation time
of the tunneling spin current:

(11)

This correlation function leads to the Lorentzian for the
noise spectrum with the width γ = 1/τ: 〈I2

s,x (ω)〉 .
Now we assume that there is a distribution of relaxation
times with probability distribution P(τ)dτ. The possible
origins of the distribution of relaxation times in tunnel-
ing current can be the multiple other spins in the vicinity
and in the tip that produce spin relaxation with different
times. To obtain 1/f noise in the current correlator, one
has to assume that P(t)~1/τ in some window of relax-
ation times, as was mentioned earlier.

The power spectrum of the electric current, using
eq 10, is:

(12)

where we used the low-frequency asymptotics for spin
current eq 10 and assumed the Lorentzian for spin corre-
lation function. We get, finally,

 (13)

where we introduced the detuning parameter δω = ω –
ωL.

The signal-to-noise ratio is controlled by the param-
eter a and is

(14)

Without the microscopic model it is impossible to know
exactly what is the magnitude of a,N, . Self-consistent
treatment would give the scattering rate γ ~ 106 Hz,
which will be determined by the maximum of the intrin-
sic decay due to back action or the extrinsic decay due to
environment. As guidance we take available STM data
for the tunneling current noise.8–11 In these data the 1/f
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noise is clearly seen above the high-frequency noise
floor below 100 kHz. From the Hodge formula we
estimate a ~ 10–2. We take N ~ 10, similar to the mass
current case, as estimated in ref 11. It is convenient to
relate the power spectrum of the current fluctuation at
the peak at ω = ωL to the shot noise power spectrum
〈I 2

shot(ω)〉 = eI. S/N ratio in this case is bound from above
by the number on the order of unity

(15)

where we wrote explicitly the dependence of the current
fluctuation on N.

RANDOM SAMPLING
In the previous section we discussed the conditions in
which the random orientation of the spins of the tunnel-
ing electrons can, through interaction with a single pre-
cessing spin, give a signal at the Larmor frequency.
Nevertheless, this is only part of the picture. Since the
tunneling electrons are probing a periodic precessional
motion adiabatically, sequential tunneling and temporal
correlations are essential for getting a signal with a
narrow line width, as will be discussed below.

One of the most important characteristics of the sig-
nals detected with ESR-STM is their line width. The
line width might reflect both the lifetime of the spin
state and the back action effect of the tunneling elec-
trons on the precessing spin. However, it is necessary to
discuss an additional source of the line width that is
directly related to the way in which we probe the preces-
sion.

We claim here that the periodic precession of the spin
is sampled by the tunneling electrons. For each electron
the precessing spin looks static (adiabatic process). The
simplest case, which will be discussed here, is that in
which the tunneling times of the tunneling electrons are
uncorrelated. (As will be shown, this is not a realistic
assumption.) In this case we can say that the sampling
times obey an exponential distribution (Poisson pro-
cess). We show here, using the 1/f spin noise model
described above, that this is in accordance with the
asymmetric line shapes observed in the experiments.
Also, such a sampling process should lead to a rapid
increase in the line width when the magnetic field is
increased. The data published so far show such a trend.

We recall that in a tunneling current of 1 nA there are
6.25 × 109 electrons/s. The measurements were per-
formed in a frequency of 2 – 8 × 108. This implies a ratio
(Rt) of 0.033–0.13 of the average time between two
tunneling electrons and the precession time. According
to the Nyquist sampling theorem, it is impossible to

perform proper sampling of a periodic function if the
sampling dwell time is above half of the time that it
takes to complete one period. This is a fundamental
limitation because it makes no sense to increase the field
such that the precession frequency rises above 3 ×
109 Hz (for a current of one nanoampere). However, it is
anticipated that this should be important also in much
smaller frequencies. Due to the uncorrelated nature of
the tunneling current, it is expected that for a periodic
function that is sampled randomly (according to the
Poisson distribution), increasing the frequency means
that more and more sampling times (between two con-
secutive tunneling events) will be larger than half of the
period. This implies that at larger fields (or smaller
currents) we expect that the line width will increase.
Moreover, even in one peak we anticipate that the high
frequency side will be broader than the low frequency
side, which implies an asymmetric line shape that has a
larger slope on the low frequency side. This is precisely
the behavior that we see in the measurements.

Figures 2 and 3 show two spectra that were published
already. Figure 2 shows a frequency-modulated signal
that is taken from ref 24. The splitting in this signal was
used to prove that the frequency depends on real time on
the value of the magnetic field. However, it is easy to
see that the original spectrum is asymmetric and dis-
torted. A similar distortion is seen in the (already pub-
lished) spectrum (Fig. 3). This spectrum was taken from
ref 26. The shape of the spectrum is completely asym-

Fig. 2. A frequency modulated signal in a field of 150 G. The
field modulation parameters are ∆H = 27 mG and the modula-
tion frequency is 300 KHz. Two spectra are presented. The
upper spectrum is the data from the STM, the lower is a
simulation. It is clear that the original line shape is not sym-
metric. Taken from ref 24.
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metric and looks very similar to the Poisson distribution
function. As discussed in detail in ref 25, this asymmet-
ric line shape is the cause of getting an absorption line
shape when phase-sensitive detection is applied. The
asymmetry was explained there as a rapid passage phe-
nomenon. As will be shown here, we believe now that it
can be explained by the physical nature of the measure-
ment. It is important to emphasize that this is not always
the case. Namely, other line shapes were also observed
due to spectral diffusion. However, this represents the
majority of cases.

In order to explain this trend we have done a very
simple simulation. In this simulation we have estimated
the value represented by eq 8. We have taken a sinusoi-
dal function for S and a random function for Is, which
has a long time correlation (1/f peak). However, in this
simulation this function is sampled in times that are
determined by the exponential distribution. After that,
we estimated the power spectral density in the observed
signal using the Welch method of spectral estimation.38

This was done in a current of 1 nA and at the frequen-
cies relevant for the experiment. Each spectrum was
taken for a total acquisition time of 0.001 s. By changing
the frequency we changed the average number of elec-
trons for each period. For each such spectrum the power
spectrum was calculated. Figure 4 shows the result of
such a simulation for cases relevant to the experimental
situation. It is clear that the calculated line widths are
much larger than anticipated from lifetime consider-
ations. The asymmetric line shapes observed are very
similar to those observed from the experiment (compare
with Fig. 3). A rapid increase in the line width is pre-
dicted (Fig. 5). The data we have so far support this

prediction, but more experiments are required (Fig. 6).
Using longer lifetimes gives narrower line shapes but
the overall behavior is the same. We want to emphasize
that we do not take into account the back action effect of
the tunneling electrons on the precessing spin. A similar
behavior is expected when the tunneling current is re-
duced. However this may affect other things, and we
think that the dependence of the line width on the field is
a more informative measurement.

The line shape and line width that are shown in
Figs. 4 and 5 were calculated with the 1/f spin noise

Fig. 3. An asymmetric ESR-STM spectrum of a BDPA cluster
in a magnetic field of 210 G.26 Fig. 4. The simulated line shapes for a periodic function that is

accumulated with a Poisson distribution of sampling times. A
current of 1 nA was assumed. The line shape is clearly asym-
metric.

Fig. 5. The predicted line widths as a function of the magnetic
field.
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model, but the same results will be observed from other
models as well. Sampling of a sinusoidal function at
times given by an exponential distribution will give
similar results.

It is clear that the calculated line widths are at least
one order of magnitude larger than the experimental line
widths. This difference reveals that the exponential dis-
tribution of sampling times is totally unrealistic. Be-
cause of the small size of the tunneling region in the
STM tip, two electrons cannot tunnel at the same time
because of the strong electrostatic repulsion between
them. Thus the exponential distribution has to be modi-
fied such that some temporal correlations will be intro-
duced in the tunneling times. We are currently trying to
get more data on the line widths in different magnetic
fields, currents and bias voltages, with the hope that
ESR-STM line shapes and line widths will reveal details
on the temporal correlations in the tunneling process.

CONCLUSION
We have proposed a 1/f noise as a mechanism of the
coupling of tunneling current from the STM tip to local-
ized spin S. This mechanism allows one to detect a
signal from a single spin even in the case when there is
no dc spin polarization of the tunneling current. Instead,
we argue that the electric current will have a contribu-
tion coming from the coupling of spin fluctuating cur-
rent to the local spin. The best way to detect a single spin
in this approach is to perform a difference experiment
where the noise spectum is taken at the local spin site

and then at the nonmagnetic site elsewhere on the sur-
face. The difference of two noise spectra would reveal
the localized spin contribution. We find the signal-to-
noise ratio for this model to be on the order of ~ 1. We
discussed the affect of random sampling times on the
line widths. The results explain the asymmetric line
shapes commonly observed with ESR-STM. The results
predict a rapid increase of the line width with the field.
The line widths calculated are too broad, which indi-
cates that there must be correlations between the times of
the tunneling events due to Coulomb repulsion. We think
that line width measurements can provide a lot of informa-
tion on the temporal nature of the tunneling process.

Acknowledgments. We are grateful to Z. Nussinov, J.X. Zhu,
and A. Shnirman for useful discussions. This work was sup-
ported by a grant from the German-Israeli Foundation for
Scientific Research and Development (GIF) and from LDRD
at Los Alamos.

REFERENCES AND NOTES
(1) Johnson, J.B. Phys. Rev. 1925, 26, 71.
(2) Voss, R.F.; Clarke, J. Nature 1975, 258, 317.
(3) Taft, B.A.; Hickey, B.M.; Wunsch, C.; Baker, D.J.Jr.

Deep Sea Res. 1974, 21, 403.
(4) Wunsch, C. Rev. Geophys. Space Phys. 1972, 10, 1.
(5) Schottky, W. Phys. Rev. 1926, 28, 74.
(6) Dutta, P.; Dimon, P.; Horn, P.M. Phys. Rev. Lett. 1979,

43, 646.
(7) Dutta, P.; Horn, P.M. Rev. Mod. Phys. 1981, 53, 497.
(8) Möller, R.; Esslinger, A.; Koslowski, B. Appl. Phys.

Lett. 1989, 55, 2360.
(9) Möller, R.; Esslinger, A.; Koslowski, B. J. Vac. Sci.

Technol. 1990, A 8, 590.
(10) Möller, R.; Baur, C.; Esslinger, A.; Kü rz, P. J. Vac. Sci.

Technol. B 1991, 9, 609.
(11) Maeda, K.; Sugita, S.; Kurita, H.; Uota, M.; Uchida, S.;

Hinomuro, M.; Mera, Y. J. Vac. Sci. Technol. B 1994,
12, 2140.

(12) Hooge, F.N. Phys. Lett. A 1969, 29, 139.
(13) Ocio, M.; Bouchiat, M.; Monod, P. J. Magn. Magn.

Mater. 1986, 54–57, 11.
(14) Koch, R.H.; Reim, W.; Malozemoff, A.P.; Ketchen,

M.B. J. Appl. Phys. 1987, 61, 3678.
(15) Weissman, M.B.; Israeloff, N.E. J. Appl. Phys. 1990,

67, 4884.
(16) Woods, S.I.; Kirtley, J.R.; Sun, S.; Koch, R.H. Phys.

Rev. Lett. 2001, 87, 137205.
(17) Podzorov, V.; Vehara, M.; Gershenson, M.E.; Koo,

T.Y.; Cheong, S.-W. Phys. Rev. B 2000, 61, R3784.
(18) Raquet, B.; Viret, M.; Coster, M.; Baibich, M.;

Pannetier, M.; Blanco-Mantecon, M.; Rakoto, H.;
Maignan, A.; Lambert, S.; Fermon, C. J. Magn. Magn.
Mater. 2003, 258–259, 119.

(19) Griswold, T.W.; Kip, A.F.; Kittel, C. Phys. Rev. 1952,
88, 951.

Fig. 6. The line widths as a function of the magnetic field. The
upper curve is the line widths measured for Si Pb center,23

while the lower curve is for BDPA molecules.39

L
in

e 
w

id
th

 (
kH

z)

Magnetic field (Gauss)



Israel Journal of Chemistry 44 2004

408

(20) Feher, G.; Kip, A. Phys. Rev. 1955, 98, 337.
(21) Dyson, F.J. Phys. Rev. 1955, 98, 349.
(22) Manassen, Y.; Hamers, R.J.; Demuth, J.E.; Castellano,

A.J.Jr. Phys. Rev. Lett. 1989, 62, 2531.
(23) Manassen, Y.; Ter-Ovanesyan, E.; Shachal, D.; Rich-

ter, S. Phys. Rev. B 1993, 48, 4887.
(24) Manassen, Y. J. Magn. Reson. 1997, 126, 133.
(25) Manassen, Y.; Mukhopadhyay, I.; Ramesh Rao, N.

Phys. Rev. B 2000, 61, 16223.
(26) Durkan, C.; Welland, M.E. Appl. Phys. Lett. 2002, 80,

458.
(27) Manoharan, H.C. Nature 2002, 416, 24.
(28) Berman, G.P.; Brown, G.W.; Hawley, M.E.;

Tsifernovich, V.I. Phys. Rev. Lett. 2001, 87, 097902-1.
(29) Mozyrsky, D.; Fedichkin, F.; Gurvitz, S.A.; Berman,

G.P. Phys. Rev. B 2002, 66, 161313.
(30) Balatsky, A.V.; Manassen, Y.; Salem, R. Philos. Mag.

B 2002, 82, 1291.

(31) Balatsky, A.V.; Manassen, Y.; Salem, R. Phys. Rev. B
2002, 66, 195416.

(32) Zhu, J.X.; Balatsky, A.V. Phys. Rev. Lett. 2002, 89,
286802.

(33) Balatsky, A.V.; Martin, I.  cond-mat/01122407.
(34) Levitov, L.S.; Rashba, E.I. Phys. Rev. B 2003, 67,

115324.
(35) Nussinov, Z.; Crommie, M.F.; Balatsky, A.V. Phys.

Rev. 2003, B 68, 085402.
(36) Bulaevskii, L.; Hruska, M.; Ortiz, G. Phys. Rev. B

2003, 68, 125415.
(37) Shnirman, A.; Mozyrsky, D.; Martin, I. cond-mat/

0211618.
(38) Welch, P.D. “The Use of Fast Fourier Transform for the

Estimation of Power Spectra: A Method Based on Time
Averaging over Short, Modified Periodograms”. IEEE
Trans. Audio. Electroacoust 1967, AU-15, 70.

(39) Durkan, C. Contemp. Phys. 2004, 451.


