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Anomalous coarsening process of voids, steps, and denuded zones on@8I)7x 7 surface
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Annealing a silicon surface covered with a submonolayea-&i at 600 °C gives a surface with voids that
undergo a ripening process. If the uncovered surface has steps, the deposition of the growing and diffusing
voids at this high temperature on the step creates a coarsening of the step. The coalescence of the voids with
the step creates a denuded zdimewhich the density of voids is below the averaggeth at the upper and the
lower terraces. It is shown here that both the exact morphology and the scaling of the step width on one hand,
and the density of voids near the step on the other hand, can be analyzed quantitatively. The scaling relations
of the step width, the dynamic scaling of the voids, the denuded zones, and the scaling of the diffusion constant
with size are shown to be interconnected. Using all these relations, it is possible to get a complete picture of
all the characteristics of this anomalous diffusive coarsening phenomenon. So we prove that the void coars-
ening process is dominated by void diffusion and coalescence and that void diffusion is dominated by bound-
ary vacancy diffusion. Thus the diffusive models of coarseriggscribed in the mean field by Lifshitz-
Slyozov[l. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solid$, 35(1961); C. Wagner, Z. Elektrochem.

65, 581(1961)]) are nonrelevant in this cages1063-651X99)02503-9

PACS numbd(s): 68.35.Fx, 61.16.Ch, 61.46w, 82.65.Dp

I. INTRODUCTION graphite according to the pair distribution functifi. In a
different work, the pair distribution functions were used to

The growth of the scale of dynamical structures is anreach conclusions regarding the crystallization of amorphous
effect which is common to the evolution of surfaces, crackssilicon on Si(111)% 7 [7]. A slightly different example is
and islands in condensed matter and nonlinear physics. Usthe STM studies which characterized the disordered structure
ally such processes are induced by driving forces of variousf elecrodeposited columnar gold filnga two-dimensional
kinds, such as flux of particles, atomic diffusion, externalinterface [8] and a step in $901) under continuous deposi-
forces, or chemical potentials. The morphology of the struction of silicon (a one-dimensional interfageln both cases,
tures formed by such processes can be analyzed in detail the interface correlations could provide much information on
provide quantitative information on these stochastic kineticthe kinetics of roughening. Another example is STM of den-
processes. A real-space picture of such structures is of gredtitic islands[9]. The fractal dimension of these islands was
advantage for the study of those mechanisms. found to be as expected from islands grown as a result of

The invention of the scanning probe microscd®PM  collisions with atoms that perform a random walk according
techniqueq3—-5] with atomic resolution stimulated a great to the diffusion-limited aggregation modéLA).
revolution in the field of surface science. The exact informa- In this work we focus on the phenomenon of the ripening
tion on the positions of the atoms in the surface was used tof voids. There are several mechanisms for coarsening, i.e.,
verify surface structures which were observed from diffrac-the growth of the characteristic scale of domains of a minor-
tion techniques. In complicated structures, this complemernity phase within a majority phase. The most common one is
tary information was essential. In the case of partly disorknown as Ostwald ripeninglLQ]. It results from the tendency
dered surface structures, the information from SPM imagesf islands to reduce the surface tension at their boundaries by
is not complementary, but is unique. No alternative tech-growing, and is driven by diffusion of atoms between the
nigue can provide detailed and local information on theislands. Examples of this type of coarsening are phase sepa-
structure and the dynamics of steps, defects, islands, vacaneations in a solid solution or in a solid liquid mixture, mor-
islands(voids), locally disordered regions of the surface, andphological changes in a solid such as the growth of pores in
other structural features of the surface that lack translational porous solidsintering, and separation of two immiscible
periodicity. For example, one can study the process ofiquids both in three and in two dimensions. All these pro-
growth and coarsening of islands and voids on crystallineesses coarsen according to this mechanism. The basic ex-
surfaces and follow the island/void dynamics and coarseninglanation of this phenomenon is given by a simple mean-
in detail. field theory[1,2]. Extensions of this theory were successful

Several scanning tunneling microscaf®I'M) studies on  in explaining the measured spatial correlations, deviations
disordered structural features were performed. For examplésom circular shapes, and other features of the ripening pro-
the STM tip was used to convert a fullerene molecule to arcess that could not be explained with the mean-field theory
amorphous carbon phase, which was found to be turbostat[d1]. Two-dimensional measurements of coarsening using

STM, where Ostwald ripening was observed, were reported

in[12].
*Present address: Department of Physics, Ben-Gurion University Coarsening of islands or voids on two-dimensional sur-
of the Negev, P.O. Box 653, Beer Sheva 84105, Israel. faces can be a realization of such Ostwald ripening. How-
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ever, processes such as island/void coagulation resultingidth, which is the fluctuation of the step coordinates from
from islands/voids diffusion might be the dominant coarsenthe straight mean direction. In Si(111X7, which is pre-
ing mechanisni13]. In this case the growth of islands/voids pared at elevated temperatures, the steps are usually straight
will occur mainly by coagulation of smaller ones. In such and oriented in the (1,0) direction[20], although some-
cases, the void/island diffusion constant which can be relateimes unit-cell-sized kinks can be obsenjéd]. Generally,
to the cluster radiu® asD~R™', will cause a coarsening one can detect almost no step width in such systems. A third
process that depends on timeRs t?, whereB=(2+1)"1  exceptional feature is the existence of a denuded zone of
[14]. The exponent is dependent on the mechanism of dif- voids near the step. This denuded zone grows in time and has
fusion: If the void movement is caused by adatom emissiorsome nonsymmetric aspects in its structure.
and absorptionevaporation condensatipnthe effect of a All these three features are consistent with a phenomeno-
single diffusive event on the shift of the cluster center oflogical description of diffusion of clusters in our system at a
mass is6R.~ 1/R (which is the ratio between the radius of rate which is dependent on the size and the coalescence of
the missing atom and the cluster greldence the diffusion these clusters with each other or with the step. We show in
constant should bB~R~1. However, if diffusion is related this paper how all the experimental details fit together.
to diffusion of atoms along the void boundary, moving atoms Furthermore, using this information we can show that
will remain in the cluster. A movement of an atom along thecoarsening in this problem is dominated by diffusion-driven
boundary will move the center of mass by a smaller amountprocesses, and the dominant coarsening mechanism is coa-
Since the movement is orthogonal to the direction to thdescence.
center of mass, we will gebR,,~1/R > and D~R 3 We start our discussion in Sec. Il with a description of the
[14,15. STM measurement of the diffusion of large two- experiment and the measurement of step correlations and
dimensional Ag clusters on A§00) [16] confirmed that in  their basic explanation. In Sec. Ill we analyze the width of
this case, the scaling of the diffusion constant with the sizéhe denuded zone and derive the relevant growth exponents
of the cluster is in agreement with the evaporation-fromit. In Sec. IV the shape correlations are explained theo-
condensation mechanism. On the other hand, measuremetigsically and discussed from the experimental point of view.
on coarsening of islands on metallic surfaces yield exponent Sec. V the denuded zone densities are analyzed in more
which are closer to the diffusion along island boundariesdetail, and in the final section we make final conclusions
[17]. about this problem.

In our case we discuss void motion. The diffusion con-
stant of vacancies_ is expected to be much_ smaller than that of Il. THE EXPERIMENT
adatoms at a particular temperature. In Si(124y7surface,
the activation energy for silicon adatom diffusion is 1.3 eV  Several STM studies on vacancy islands were performed
[18] while for vacancy diffusion it is 3 e\f19]. Since the [22—-24. Our experiments were performed with a custom-
diffusion of a single vacancy is so much slower, there is anade STM with a level motion demagnifig25]. It begins
larger chance to observe coarsening through void migratiowith a Si(111)7<7 surface on which amorphous silicon is
and coalescence. We have showni], both by looking at  deposited at room temperature to an extent that forms a cov-
the morphology of many voids and by looking at the timeerage of 94%. After annealing the surface, 94% of it is cov-
evolution of the pair correlation function of the position of ered by a crystalline layer while 6% is voids in this crystal-
the voids, that they are attracted to each other and grow bljne layer. In the beginning of the process, there are many
coagulation. Nevertheless, it was still not clear to what extentandomly distributed small voids, which undergo a coarsen-
the coagulations are dominant in the coarsening process. ing process as the sample is annealed. Figure 1 shows an

If such a situation occurs, then during the annealing proimage of an experiment in which the sample was annealed
cess voids will diffuse toward the step and coalesce with itfor 8 min to 600 °C. Most of the surface is in thex?
As a result of such a process, we will be left with a denudedeconstruction, but it includes>5 reconstruction domains
zone with fewer voids around the step. One can use thiprobably due to the release of strain in the surface as a result
width to get an estimate for the scale of all the diffusive of the presence of the voids. Four voids with variable shapes
scaling exponents of the clusters. We got much better resul@nd sizes are seen. A step edge is seen in the upper left part
here than in the previous papgk3] for those values. One of the image. Several grain boundarigsarked by the ar-
can also understand in some detail the difference between thiews) connect the voids.
upper and lower terrace relative to a step and the changes in All these structural features may complicate the coarsen-
the void densities there. One can also study the effect of hiting dynamics. Grain boundary diffusion can affect the coars-
of voids on the steps. The changing size of the voids willening, in a similar way to what happens in the process of
tend to create a more complicated scaling relation in the stegintering [26—28. Grain boundaries may act as diffusion
correlations. sinks or diffusion pipes. In addition, the grains undergo an

We experiment with a Si(111)77 surface with incom- independent coarsening process. An additional complication
plete coverage that includes steps with an average distance wfay arise due to the presence of different reconstructions in
about 200 nm between them. Voids were formed on the terthe surface. For example, in Fig. 1 there is a domain with a
races between the steps. When the sample is annealed, th& 5 reconstruction between three voids. It is clear that the
following changes occur in the surface. The first one is theeduced stability of this reconstruction will affect the coars-
growth of the voids, which was already discussefilis] and  ening dynamics. In this case, these voids will attract each
on which we will elaborate further as we continue in this other, just because of the presence of theS5domain be-
paper. The second change is a dramatic growth in the steveen them. The X5 boundary of the void will emit more
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FIG. 1. An STM image of a Si(111)¥7 substrate after depo- g 2003— —

sition of amorphous silicon at room temperature followed by an- 2 F 3

nealing to 600 °C for 8 min. Area is 8080 nnt. ° . ]

100F- ]

adatoms into the void than thex77 boundary. As a result, F ]

the void will migrate in the direction of the>85 boundary. F -

In our ongoing theoretical discussion, we ignore these pos- Ob b b b3
sible complications. 0 100 200 300 400

The steps that were observed in the experiments are much Distance (nm)

rougher than the steps normally observed in the Si(111)

7x7 surface. Moreover, it was easy to notice that the steps FIG- 2. An STM image of crystallized amorphous silicon after
also become wider and more correlated as time goes on. ! annealing period of 60 min at 600°C. The area is 180
order to quantify the step coarsening, we have made a quaﬁ<-180 nnf. The multiple voidsA and B are marked in the images.
titative analysis of the roughness of the steps. In Fig. 2 we ] o )

show an image which was observed after annealing a sampl@ larger scales ig=0.5+0.02, which is the classical expo-
of 0.94 coverage o&-Si on Si(111)7% 7 in 600°C for 60 hent for one-dimensional deposition of partic{esids in our
min. The image shows two terraces with many voids in eact§asé [29,30.

one (but more voids in the upper oneAlso, the step looks

much rougher than a normal step in Si(11X)7. The accu- IIl. INTERFACE DYNAMICS AND DENUDED ZONE
rate coordinates of the step can be measured and the results . )
are plotted in the graph below the imagehgg,t), whereh The only reasonable explanation for the connection be-

is the height andk is a coordinate in the mean direction of tween the coarsening of voids and the scaling of the rough-
the interface. Using such a result, we can analyze the stepess of the steps is that the lower scale is related to a depo-

width and correlations. Interface correlations are defined agsition of voids on the step. So the range with the high
exponent is related to the morphology of the voids and the

standard scaling is on higher scales where a usual roughen-
c(y)=([h(x)—h(x+y)]?) =y, (1)  ing process is activated. This is also in accord with the fact

that the characteristic cutoff scale is very close to the average

void scale.
where the() sign is an average axand y is the roughness As discussed earlier in the context of void coarsening
exponent. Figure 3 shows the curves calculated from steps i13], voids diffuse in this system and can hit the step and
three times. An average of several steps is required in ordeoughen it. A hit from the upper terrace direction creates a
to get meaningful data. The roughness curves for annealingrater in the step which will relax in time. However, when a
times at 600 °C of 1, 30, and 60 min are shown from top tovoid will hit from the lower terrace direction, a different
bottom, respectively. A clear biexponential behavior is ob-scenario will occur. Since the dominant dynamical effect is
served. The roughness exponents for the lower scale are ohdatom release, adatoms from the step will move into the
served below a certain crossover scakel.,, and isy  void, destroying it and again creating a crater in the $tep
=0.8+0.05. The values of the average void radius, for an-exactly in the same shape but in the same $cafeboth
nealing times 1, 30, and 60 min, are 9, 11.5, and 13.5 nniases the step velocity will be in the direction of the upper
respectively, while the corresponding crossover scales arerrace.
5.8, 10.5, and 15 nm, respectively. The roughness exponent So the basic dynamics on the interface is the addition of
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] A(t)=tc~t9"1, 2)
1 min
The physically reasonable model for void diffusion would

be thatc is related to the cluster diffusion exponent.Df
~R™!, the diffusion constant scales in time &s~t"'#,
where 8=(2+1) ! [14]. The denuded zone is the voidless
area in which most of the voids have already reached the
step. It has a characteristic scalg, in the upper and lower
terrace, which is determined by the simple diffusion equation
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d=0.51-1p). (4)

As stressed before, the void current exponent is propor-
tional tod—1, so we get=—0.5(1+18). cis negative and
c<—0.5(c=—0.5is the result of a simple diffusive modglel
Note that sinceg is related tol, the exponent depends only
onl. So, in principle, by measuring the width of the denuded
zones one can estimate the values ahd g.

We now come back to the experiment to find those scales.
The void area near the step was measured as a function of
time and distance. We have separated the area in the upper
and the lower terraces to stripes parallel to the steps, each
stripe having a width of 20 nm, and we calculated the total
area of voids in this stripe. The bin size of 20 nm is an
optimal compromise between the better spatial resolution
and the smaller relative errors. The error in the experiment
was estimated as follows: Since the density of vdieig. 4)
is defined as the ratio between the area of the voids within
each stripe and the total area of the stripe=A, /At
~N,a/A,:, whereN, is the number of voids in the stripe and
a is the average void area, the errorgp is estimated as
0 . 5 8p,~(N,)%N, . The results are shown in Fig. 4 for three

log 10 (L[fi]) annealing times. It is |mpor§ar)t to remark that the errors far
from the step are larger. This is due to the fact that the steps

FIG. 3. Roughening curves from the steps in the images ob@PPear diagonal in our images, aAgy of stripes far from
served after annealing of 1, 30, and 60 min, respectively. The numiN€ Steps is, on the average, smaller. This is a result of the
ber of steps which were used for the calculation in these times wafct that the maximum scan range in our microscope is 360

7, 4, and 7, respectively. X 360 nnf.
There are some exceptional features in these results. The

voids. These voids hit the interface with a rate which is dedirst is that we see a clear widening of the area without voids,
fined mainly by void diffusion and growth. Consider first a but it is nonlinear in time. The second is the asymmetry in
dynamical process in which voids of uniform sighit a  the distribution of voids in the upper and in the lower terrace
step. Below the scalR one would observe the scaling of the near the step. This asymmetry is manifested in two effects.
voids which is linear at low values. At larger scales oneThe first is a much larger width of the denuded zone in the
would observe a global scaling belonging to the equation thaower terrace, and the second is a completely voidless area
controls the interface dynamid®9]. In these scales the near the step in the lower terrace. These structural features
roughening exponent ig=0.5. Furthermore, if there is a Will be studied in detail in Sec. V of this paper.

distribution of sizes irR, the lower part will be modified. A We first discuss the denuded zone growth exponent. Mea-
growth in the characteristic size of the hitting voiRs-t#  suring the width of the denuded area in the three tigfég.

will shift the crossoverL o between the scalings to higher 4), we get the estimatey~t>2*%% Using Eq.(4) we get

values ofy.
Obviously the diffusion of voids towards the interface 1=3.0+0.4. ®)

will create denuded zones in the upper and lower terracegyq .o yse this value to calculate the void growth exponent,
The rate at which voids hit the step is related to the growth o

those denuded domains. For the sake of the scaling argument £=0.2+0.03, (6)

that is given here, we will assume that both scalexas

~19. Since the integrated missing void area is proportionaknd this coarsening is controlled by coalescence. The accu-
to X4, the rate of hitting of voids on the step is racy of this estimate is limited because of the fact that factors

2.0

[

log 10 {W (L)A]}

1.0

T Trrrp oy rr o rr T e 1
Y DU Y TS O T N SO T A S A O

I T O T I T T T T T O T O O O O O M I

60 min

2.0

oy = 0.74

1.0
o, = 0.54

LN S S R S B D B B D S B B

O T T T S O Y T N T S T 0 Y 10 O 0 N G B Y

8 -G I T S O TN N N U N Y [T N NN NN SN (O OO O M



2668 Y. MANASSEN et al. PRE 59

0.1 — T T T T
Time=1min.
0.05 e -
O 1 1 ] 1
-150 -100 -50 0 50 100 150
0.1 T T T T T
Time=30min.
0.05 - =
0 i ] 1 1
-150 -100 -50 0 50 100 150
0.1 T T T T T
Time=60min.
0.05 o -
0 1 1 ] [l 1
-150 -100 -50 0 50 100 150

Distance from the step (nm)

FIG. 4. Density of voids in the uppéleft) and the lowel(right) terraces as a function of the distance from the steps analyzed in Fig. 3.
This is expressed as a fraction of the area that is covered with voids. The errors in these values were determined as described in the text.

between relative widths in different times should scale likeThe correlation at a scale larger than some maximal time-
the time ratios to the power af. This is a rather small dependent cluster siZe vanishes. Since the average radius

number for reasonable experimental times. grows, we can assume.
As we speculated in the previous paper, indeed the coars-
ening process in this system is not the standard diffusive (((r)p(r')?~tP=%f((r—r'IR)), ©

Ostwald ripening. This is clearly seen by the nonstandard
diffusive exponent, which scales like the periphery diffusionwhere forr —r’>R the correlation decays to zero. Gener-
exponent(D~R ™2 [14—16). So the coarsening in our case ally, one can expané(r)=1—r? for smallr. Since the EW
is driven by a diffusive coalescence mechanism. equation is "near, it is convenient to write this type of cor-
relation in Fourier space:
IV. ANALYSIS OF INTERFACE DYNAMICS
AND CORRELATIONS

We wish to consider a 1D step which is driven by additive We get the general expression
noise, which is supposed to represent the hitting of voids
with the predefined rates. Since the average void size goes up (h2> = exp(K2T) fT exp(— K2t Sg(kR(1))dt. (11)
in time, we can assume that the noise correlation increases k 0 '
accordingly. We will assume the simplest step dynamics,

(k) n(k")=tF~°s(k+k")g(kR). (10

which is the Edward Wilkinson dynami¢&W) [29], If B<0.5(as in our casg there are three dynamical regions
in this problem: The first one is in scales above a large-scale
dh(x,t) d2h(x,t) cutoff, which is trivially defined in the EW equation as
dt " g +7(x,1). (") 1k,~Ry=TO5. In this range one would get a constant scal-
ing,

The noise termy(x,t) is supposed to represent the hitting
of voids on the step. This noise term contains information
about the void growth and the rate of the hitting of the step

by the voids. At a certain time the probability to have a hit at' "€ Width andC(y) will be proportional to this number.
a site ist_ A, To get the site correlations one has to mul- In an intermediate region2/R(t)<ki<ko. The result
tiply by R, so of the hy integration is simply

(h2y=TF"ct1, (12

(n(r)p(r))=tFc. (8) (hgy=tF=ct1/K2, (13)
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The final region where k<R is more complicated. To ana-
lyze it, we assume that the final correlatigfr/R.) is domi-
nant there. By fitting the scale &t to the scale in the pre-
vious equation, we get

C(y)=T¥2¢y? (14

if f((r—r")/R)—1~(r—r")2
We performed a simulation of the EW equations with an
assumption ofc=0, 8=0.2, and measured the correlation
function C(y,t) as a function of time and position. Indeed
one observes three dynamical domains as are indeed found in
the experiment. 5000 00 1000 2000
From these results one can see that wifenc+1<0, X
there will be a decay of the total width. A second obvious  FG. 5. we show a result of a simulation using the equations for
Cl’itical Value |SC:05 AbOVe th|S Value the Correlations at the void density without interaction. In the ﬁgure we show the
the scaleR. will decay. So if the model becomes nonconser-density in the uppefleft part and the botton{right) terraces as a
vative, the total step scaling can even decrease as is inde@ghction of time at five consecutive timés=2', i=1,5), where
observed in simulations. D=1.0 andp(«)=1 for the models. The fraction between the first
This indicates the existence of a critical exponent whereavidth and the second is close to 2.
the width will start going down. One can consider models
with different dynamics and different relaxation rules like step. In the upper terrace we get a diffusion equation for the
the Kardar-Parisi-Zhan@KPZ) equation. In those cases we void density,
expect that the critical exponents will be smaller.

bu:Dpu,yya (18)

where “y" is a sign for differentiation, while in the lower
We refer again to the measurement of the correlations ierrace we will get

the experiment. We have three experimental points from

which we can derive a set of values for the coarsening. We p1=Dpyyy, (19

choose the following scales and estimate their relevant expo-

nents: FirstW,, the width at the scalg=1.0; second, the Where we assign the signl for the upper and lower terraces,

scaleLco; and third, the scal®Vcg at the crossover scale. and theD’s should be the same. For the sake of this discus-

We now give their values at the times given in the precedingion, which is focused on the understanding of the zone

A. The experimental correlations

section. We find that asymmetry, we ignore the radius dependenceDofThe
boundary conditions for both void densities are
W1~t0'0+0'1, (15)
p(ys)=0.0, (20)
LcowtO.ZtO.ll (16)

whereys is the moving position of the boundary, and

__40.15x0.15
Weo~ 72 (a7 p(=)=po. (21)

We should note that our ability to get more precise values iRemoval of atoms from the step results in a step velocity
limited due to the small amount of voids that hit the inter-\which can be estimated as

face.

An analysis ofc using the denuded zone valjesing Eq. vs=D[pu(ys) —pi(¥s)]y. (22)
(2) and the values ofl we derived from the experiment
yields ¢c=—0.75£0.05. This indicates according to the wherey, is the step positiony,=y,+ fvdt. The interface
equation of the EW predictions thwéo~t‘ﬁ‘°“. So the moves in the direction of the upper terrace. The asymmetry
prediction is within our very limited experimental accuracy. between the lower and upper terrace is obvious, so it is clear
The same thing applies to the scaling exponent8Vpfand  that the lower terrace should be wider. Since the interface
Lco- can only move because of voids that hit it, in long tinsgs
=t~%5since the width of the deluded zone cannot grow in a
faster rate than'2,

One can solve these equations. In Fig. 5 we present the

To understand the evolution in time of the denuded zonesesults of a simulation. One can clearly observe that the re-
and the steps, let us discuss the equations of motion for th&ults are similar to the experimental results. The width in the
voids in the upper terrace and in the lower one. For the sakapper terrace regiofthe place where(x)=0.5] is half of
of this discussion we will assume a completely diffusivethe width in the lower terrace region, as is observed in the
mechanism with no cluster growth. We define a void areaxperiment. We think that this result lends strong support to
densityp(y,t) as the average void area in distaydeom the  our analysis.

V. THE GROWTH OF THE DENUDED ZONES
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To understand the dip in the density in the lower terrace, 10
one has to consider another effect: the dynamics of the step.
The merging of voids with the step creates a lot of sites
where adatoms can easily be emitted. So the step emits ada-
toms as it relaxes. The details of this process can be quite
elaborated since the detailed dynamics and interaction of the
step are complicated. o

We make a mean-field assumption that the step emits ada-
toms in an amount which is proportional to its velocity.
These adatoms can be absorbed again in voids near the step
or diffuse away. The mean-field effect of absorption in voids
is a smaller density of matter of voids. Rewriting the previ-
ous equations, we have an additional adatom depsity,t)
in the lower terrace. The equations of motion in the lower 00
terrace ardthe equations in the upper terrace are the 3ame

X

FIG. 6. Denuded zones with an interaction with adatoms. We
©—D A 23 give only the lower terrace. The flattening of the curve at early
Pa=FaPayy™ APapP 23 fimesis clearly seen. This feature disappears at long times.

and forp, itis VI. CONCLUSIONS

In this paper we showed that one can understand the
coarsening of voids on a Si surface at 600 °C in a very de-
tailed manner. The first point that we made here is that by
The boundary conditions for the void densities are the samgsing the measurement of the denuded zone, one can mea-
as before, and fop, it is p,(*)=0 andp,(ys)y,=Cvs. We  sure the scaling exponents of the diffusion constants and the
have two additional interaction constants. The first is thegrowth of voids. As guessed if13], voids indeed diffuse
adatom diffusion constarid, and the second ié. In prin-  and coalesce and we were able to prove that this coarsening
ciple, A can depend on both densities and diffusion con-is dominated by this with a reasonable accuracy.

p1=Dpiyy—Apapi - (24)

stants. Since we cannot estimatevery well, we will just Furthermore, we were able to explain the shape of the
assume some value féx andD, and show how the distri- denuded zone density by a simple model of interaction be-
bution is modified. tween voids and the step and we were even able to explain

To capture some of the ingredients of the experiment, wénore complications using interactions with adatoms. The
assume thaD,=4D and A=20.0. The resulting densities St€P morphology is defined by hits of the voids.
are given in Fig. 6. A first almost trivial result is that we
observe a flattening of the lower density. A second result is
that in time as distances become larger, the densities con- This work was supported by the Minerva Foundation,
verge into the densities of the model without interactions. AnMunich, Germany and the Basic Research Foundation ad-
estimate of a detailed picture of interaction and a more deministered by the Israeli Academy of Sciences and Humani-
tailed theoretical analysis of the two previous models will beties. One of us(Y.M.) is an incumbent of the Lilian and
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