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9 Abstract

10 Fractal islands are normally observed when the growth is a result of many random coalescence events of small islands

11 or atoms with the growing cluster. In this paper, we show that fractalization can be observed also for growing islands at

12 a coverage which is close to 0.5 monolayers. This was shown for a Si(1 1 1) surface covered by 0.53 monolayer of silicon.

13 This fractalization is explained by the simple conservative Ising model, where the diffusion of a single atom is simulated

14 by a single spin flip. In this model, fractal islands are observed over a finite scaling range where smaller islands have a

15 dimension of 2 and larger ones are fractal. The fractal dimension and the scaling range are dependent on the fraction

16 (equivalent to coverage) p of spin up (or down). Both the dimension and range increase as p approaches 0.5. We show

17 that the growth of the clusters is in agreement with a classical t0:33 law [Phys. Rev. B 34 (1986) 7845].

18 � 2002 Published by Elsevier Science B.V.
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20 1. Introduction

21 The diffusion of atoms or clusters and their co-
22 alescence may sometimes give ramified islands
23 with distinct fractal dimension. These ramified
24 fractal islands were investigated many times with
25 scanning probe microscopy on different surfaces
26 [2–6]. This normally happens when the growth of
27 the islands happens according to the scenario de-
28 scribed by the diffusion limited aggregation (DLA)

29and related models. In the past the possibility of
30getting domains of fractal structure in systems
31where a dynamic phase separation of a mixture of
32two phases occurs (Ostwald ripening) was dis-
33cussed. It was claimed that in the case where the
34two phases are comparable, the early stage mor-
35phology is fractal [7].
36Ostwald ripening [8–10] is the non-equilibrium
37dynamics of a two phase system after a quench to
38a state in which it is no longer at equilibrium. The
39nucleation starts with a creation of small clusters
40and their on-going non-equilibrium dynamics is
41the issue which is under consideration. This is one
42of the classical problems in condensed matter
43physics. If the coarsening is dominated by atomic
44diffusion between islands the driving force to do-
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45 main growth is the surface tension. The classical
46 mean field theory of Lifshitz, Slyozov [11] and
47 Wagner [12] (LSW) would hold. This theory as-
48 sumes a small coverage (in two dimensions). For
49 higher coverages one can observe correlations be-
50 tween the clusters [13]. Other possible models for
51 coarsening are conservative surface models where
52 coarsening occurs through the migration of atoms
53 between neighboring sites. The simplest model of
54 this type is the conservative Ising model (CIM). At
55 higher coverages, the clusters are no longer com-
56 pact. In this case, the shortest distance between the
57 boundaries of different clusters, their minimal
58 scale, is used to characterize their dynamics. It was
59 argued by Huse [1] and confirmed in more exten-
60 sive simulations that the minimal scale in such a
61 process should be proportional to t0:33 [19]. Ren-
62 ormalization group arguments lead to the same
63 results [10,14]. In a later paper there was an initial
64 attempt to simulate the scales of realistic clusters
65 in the problem [15].
66 We are interested in the characteristics of larger
67 islands. We have studied this point experimentally
68 by looking at the morphological evolution of a
69 surface covered by half a monolayer. In this case,
70 the two phases that separate are atoms and va-
71 cancies. We have studied the problem theoretically
72 by using the CIM to simulate coverages close to
73 half a monolayer.
74 We find that silicon clusters at a coverage close
75 to 0.5 monolayer are fractal with a well defined
76 fractal dimension. In the experiment, the islands
77 were fractal up to a system scale which is deter-
78 mined by the scan range of the STM. Although we
79 could see a negligible number of larger islands at
80 larger images, the resolution in this case did not
81 permit any analysis.
82 We also find that clusters in the CIM case have a
83 fractal dimension over a limited range, which
84 seems to diverge at p ¼ 0:5. There are two char-
85 acteristic scales which define the behavior of the
86 system at long times. These are the lower and
87 upper scales of the fractal range. The upper scale,
88 initially much smaller than the system size (lattice
89 taken for the simulation), grows until it reaches
90 this size. The ratio between the upper and the
91 lower scale becomes a constant as a function of
92 time. Clusters in the CIM case have a changing

93fractal dimension which is a function of the cov-
94erage p.
95We find that at initial stages all the clusters do
96not show any fractality. At later stages, clusters
97with dimension of 2, appear at the smaller scaling
98range and at the larger scaling ranges the clusters
99are fractal over a limited fractal range. As the
100clusters grow in time the ratio between the upper
101and the lower scales in this range is constant. As p
102is enlarged, the fractal dimension and the fractal
103range grow. This is an indication that as p ap-
104proaches 0.5 the fractal range grows to infinity. In
105addition we show that the dynamics of growth of
106these clusters is in agreement to the one observed
107by Huse.
108In the first section we discuss the STM images of
109Si islands. The shape of these islands is not com-
110pact and they have a self-affine configuration. Such
111islands indicate a dynamics which is dominated by
112coalescence and were observed before in a cover-
113age close to 0.5 [16]. We get that the islands are
114fractal over a limited scaling range. In the second
115section we discuss the CIM. In the last section we
116draw some general conclusions from these two
117observations.

1182. STM of silicon fractal islands

119A Si(1 1 1)7� 7 surface with a coverage of silicon
120atoms close to a half was chosen in order to dem-
121onstrate this phenomenon. Our experiments were
122performed with a custom––made STM. The ex-
123periment begins by deposition of silicon from an
124electron gun evaporator on a clean Si(1 1 1)7� 7
125surface––at room temperature. The coverage was
126monitored by a quartz crystal monitor with an
127accuracy of approximately �5%. After the depo-
128sition which created half a mono-layer of silicon on
129the Si(1 1 1)7� 7, the surface was annealed for 5
130min for 550 �C. This induces crystallization of the
131adsorbed layer and afterwards, starts the coarsen-
132ing process. In previous studies [17,18] this was
133used for studying the low coverage (of voids) case.
134STM images of this surface show that the sur-
135face is covered by ramified islands that were lo-
136cated very close to each other. Fig. 1 shows two
137typical STM images with fractal atomic islands
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138 formed after a deposition of 0.53 monolayer. One
139 can see a significant number of large clusters which
140 are truncated by the boundary of the image.
141 We find that there is a continuous void back-
142 ground even when the coverage of voids is only
143 0.47. In order to analyze quantitatively the islands
144 within this background one can calculate the ra-
145 dius of gyration Rg of the clusters or the boundary
146 length b. We find scaling of the area (S) with the
147 radius of gyration Rg and the boundary of the
148 clusters b of the type:

S ¼ RD
g ð1Þ

S ¼ bDb ð2Þ

151Note that these exponents are different from the
152well known Hausdorff dimension of the perimeter
153A careful analysis of the shape of the islands was
154done to eliminate the area (defined as the number
155of pixels) of the clusters S, the radius of gyration
156of the clusters Rg, and the length of the boundary
157of the clusters b. In Fig. 2 we show log–log plots of
158S as a function of Rg. 500 islands were analyzed to
159observe these plots. According to the fit to the
160power law, D ¼ 1:58� 0:04. We also found that
161Db ¼ 1:36� 0:04 (defined at Eq. (2)). The limited
162range of the fractal dimension is a result of the
163finite size of the images. This suggests that fractal
164islands exist also beyond this size, and that the
165range of fractal dimension is larger. The islands
166are fractal over the whole scaling range although

Fig. 2. The area of clusters observed in the experiment as a

function of the radius of gyration of the cluster (top). Fitting

the results to a power law we get D ¼ 1:58. The area of the same

clusters as a function of the their boundary (bottom). Here we

get Db ¼ 1:36.Fig. 1. Two STM images of a Si substrate after deposition of

0.53 monolayers of silicon and heating. The size of the STM

images is 180� 180 nm2.
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167 we see that the smallest islands have a higher di-
168 mension. The reason for this will be explained la-
169 ter.
170 Another experiment was performed at a cover-
171 age of 0.76 (namely coverage of voids of 0.24) (Fig.
172 3). Fitting a power law to the experimental results
173 gives an exponent of 1.56. However, a closer look
174 at Fig. 3-center reveals that the smaller islands
175 have a better fit to a power law of 2, while the
176 larger islands, to a power law of 1.4. It seems that,
177 at this coverage, the fractal dimension is smaller,
178 that a larger number of (smaller) compact islands
179 (with D ¼ 2) exists, and that the range of island
180 sizes in which the islands are fractal is smaller than
181 in the previous case (Fig. 2).

182 3. Simulations on the CIM

183 A model that will explain these observations in a
184 simple way, must take into account the following
185 characteristics of the process: The motion of atoms
186 is a simple diffusive motion, and when an atom
187 migrates to a neighboring site, it can be viewed as
188 an exchange process between an atom and a next
189 nearest neighbour vacancy (when there are no next
190 nearest neighbour vacancies the atom can not
191 diffuse). Also, the growth process is driven by the
192 interaction between atoms that make clusters of
193 atoms more stable than isolated atoms. The sim-
194 plest point of view that can be adopted is that the
195 diffusion of an atom depends only on the local
196 configuration. It was recognized long ago that the
197 CIM is an appropriate description of this scenario
198 [1].
199 The CIM is defined by two kinds of spins si(up/
200 down) which interact through coupling:
201 H ¼

P
Jsisj. When the model is conservative, spins

202 switch places through the previous interaction.
203 Like Huse we discuss the two dimensional case. The
204 spins are our way of modeling atoms on a lattice.
205 I.e. vacancies can be represented by the down spins
206 while adatoms are represented by the up spins. We
207 used a square lattice. This is different from the tri-
208 angular structure of the Si(1 1 1) surface. Note that
209 this is a somewhat naive representation of crystal-
210 line lattices since it is symmetric and does not
211 contain more complicated interactions.

212We performed Monte-Carlo simulations on the
213CIM with a Kawasaki dynamics where neighbor-
214ing spins are exchanged according to their energy.
215The temperature is measured in units of the in-

Fig. 3. Top: an STM image of a Si substrate after deposition of

0.76 monolayers of silicon and heating. The image is 180� 100

nm2. Center: the area of the cluster as a function of the radius of

gyration or this coverage for 1000 islands. As a guide to the eye

the curves y ¼ x2 and y ¼ x1:4 were added. Bottom: the points in

the previous graph after averaging the points within the bin

size. The curves y ¼ x2 and y ¼ x were added for clarity.
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216 teraction constant J. We performed a simple sim-
217 ulation of the exchange. We choose a temperature
218 of T ¼ 0:6J for most of our simulations, but the
219 results reported here are not dependent on the
220 temperature. Our simulation times varied accord-
221 ing to the coverage. For larger coverages we sim-
222 ulated till the clusters reached the scale of the
223 system. This causes smaller running times in such
224 coverages. We used periodic boundary conditions
225 in all the simulations. We used lattices that con-
226 sisted of up to 5000� 5000 points. The cluster si-
227 zes are given in units of number of points. The
228 number of steps in the simulation was up to
229 1 000 000.
230 We display two simulated lattices in Fig. 4 at
231 p ¼ 0:25 and 0.45. In the first case we observe
232 clusters with a limited size range. Some of the
233 clusters were formed by a merger of two clusters.
234 In the second case (p ¼ 0:45) one observes
235 elongated islands with a very large variation in the
236 cluster scale and structure in the background of
237 the voids. In the simulations although the islands
238 had a ramified shape at early stages, they did not
239 have a uniform and well defined fractal dimension
240 at early stages as was proposed earlier [7].
241 In contrast at later stages we find that at the
242 scaling ranges of the small islands the dimension is
243 two, but at the scaling ranges of the larger islands
244 a different dimension appears (Figs. 5 and 6). the
245 fractal range increases as the coverage approaches
246 to 0.5 This is largely due to the increase in the
247 maximum island size.
248 In our simulations clusters are defined by the
249 connectivities of the points on them. This always
250 creates problems in smaller times but after the
251 minimal scale grows to a significant range they
252 become well defined. One can calculate the radius
253 of gyration Rg of the clusters or the boundary
254 length b. We find scaling of the area of the clusters
255 S as a function of the radius of gyration Rg and the
256 boundary b as was done for the experimental is-
257 lands (Eqs. (1) and (2)).
258 Previous studies on similar systems [1,19] were
259 largely focussed on the minimal scale of the
260 structures. The main conclusion of these papers
261 was that it grows according to the classical tem-
262 poral power law t0:33. In contrast, here one has to
263 discuss the larger scale features of the structure.

264We present the scaling observed in the simulations
265for the coverages p ¼ 0:4, 0.25 for different times.
266The first graph (Fig. 5) is constructed from a
267simulation of a lattice with a scale of 2000, while
268the second graph (Fig. 6) is from a lattice with a
269scale of 500.
270One can clearly see that gradually a function
271which is composed of two regions is observed for
272the lower scaling ranges the dimension is two as
273can be seen in Figs. 5 and 6. For the upper scaling
274ranges it is 1:0� 0:05 for the 0.25 case while it is
2751:40� 0:05 for the 0.4 case. This was calculated by

Fig. 4. Top: a lattice generated through a numerical simulation

at p ¼ 0:45. The total size of the simulation is 2000� 2000

points, of which 250� 250 lattice units are shown. Black is the

void background. Later we calculate the fractal dimensionality

of the islands. Bottom: a similar lattice generated through a

numerical simulation at p ¼ 0:25.
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276 fitting a line to the data in the log–log plot. The
277 errors were estimated from the variance of this fit.
278 An associated scaling by t0:33 and t0:66 of the late
279 stage curves in Fig. 5a gives an overlap which is
280 given in Fig. 5b. This overlap shows that both the
281 smaller (compact) islands, as well as the cross over
282 scale from compact to fractal islands grow ac-
283 cording to the usual t0:33 law.
284 The data in Fig. 6 were taken in shorter times
285 than that of Fig. 5. It is well known that due to
286 finite size effects, the dynamic exponent in shorter
287 times is smaller than 0.33, and it reaches 0.33 only

288at very long time [1]. Indeed, we see that the ex-
289ponent that is suitable here is 0.29 (Fig. 6b). Note,
290however, that an overlap is observed.
291The results of the simulations indicate that the
292ratio between the largest fractal island and the
293smallest one (the upper scaling range in Rg) be-
294comes time independent. The errors written in
295Table 1 were estimated from the variability of the
296fractal dimension and range in successive simula-
297tions.
298A scan over other coverages shows that there is
299a continuous dependence of the fractal dimension
300and the scaling range in the cluster size on the

Fig. 6. (a) The area S as a function of the radius of gyration Rg

for p ¼ 0:25 at different times (2j, j ¼ 5–16). (b) Right: a plot of

the last two curves in Fig. 5a when they are rescaled (divided)

by t0:29 in the radial dimension and t0:58 in the area. Notice

again, that curves overlap. Left: the curves y ¼ x2 and y ¼ x are
added for clarity. It is possible, again, to identify two scaling

regions.

Fig. 5. (a) The area of the clusters (S) as a function of the ra-

dius of gyration (Rg) for p ¼ 0:4 for different times (2j,

j ¼ 5–19). (b) Right: a plot of the last four curves shown in Fig.

2a when they are rescaled (divided) by t0:33 in the radial di-

mension and by t0:66 in the area. Notice that these last curves

overlap. Left: the curves y ¼ x2 and y ¼ x1:4 are added for

clarity. Note the clear cut existence of two scaling regions.
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301 coverage p. This is summarized in Table 1 and Fig.
302 7. The fractal dimensions change from 1.5 to 1 at
303 lower coverages, while the range (in which the
304 clusters are fractal) drops to 2.7 for p ¼ 0:25. The
305 ranges in Table 1 were calculated from successive
306 plots of the type of Figs. 5 and 6. The scales were
307 estimated by a comparison between successive
308 dynamical ranges in the long time limit. Because of
309 this reason we do not observe significant cross-
310 over behavior. The simulations are completely
311 symmetric with respect to an interchange of voids
312 and islands, so the results for p > 0:5 can always
313 be constructed from those for p < 0:5 by taking
314 p0 ¼ 1� p.
315 The result of the simulation, that there will be a
316 reduction of the fractal dimension and the fractal
317 range in coverages much smaller (or larger) than
318 0.5 is supported, to some extent, by the experi-
319 mental results that were presented in Fig. 3. It
320 seems that, indeed, at this small coverage, the
321 fractal dimension and range are smaller in cover-
322 ages far from 0.5.

3234. Discussion

324With all the differences there is a basic similarity
325between the experimental results and the simula-
326tions. Despite its simplicity, the clusters observed
327in the CIM are fractal, as the silicon islands ob-
328served in the STM experiment.
329To provide further insight to why these fractal
330islands are observed, one has to start from the low
331coverage limit: It is well known that for Lifshitz
332Slyozov growth in small coverages the fractal di-
333mension is two. However, if p grows the first
334phenomenon that will be observed is the effect of a
335merger of pairs of clusters. The smaller island will
336have an obvious dimension of 2 but few larger
337ones will have a fractal dimension As the coverage
338gets closer to 0.5, the clusters (islands) are re-
339stricted within a more and more complex labyrinth
340of the other type of spins (voids). Small clusters
341can still relax to a dimension of two without a
342collision. But larger ones will collide with the
343boundaries of other clusters in the labyrinth as a
344result of the relaxation process and will necessarily
345create larger clusters with a more complicated
346structure. This is a robust mechanism for the cre-
347ation of larger (and more fractalized) clusters. The
348increase in the number of such collisions as p
349grows, will widen the range of fractality by creat-
350ing more fractal islands.
351The diffusive relaxation of the clusters is re-
352sponsible for the increase of the minimal scale in
353the structure as t0:33 [1]. As was discussed above, at
354lower scales compact islands are observed (with
355unhindered relaxation), while at the larger scales
356the islands are fractal as shown in Figs. 2, 4, 5 and
3577. Since the minimal scales grow as t0:33 the cross
358over scale between D ¼ 2 and D < 2 grows with
359the same temporal power law, as shown in Figs. 4
360and 5.
361Comparing the experimental results with the
362simulations reveals some contradiction between
363the fractal dimension which is observed by the
364experiment, and what is observed from the simu-
365lation. The fractal dimension of the silicon islands,
366is the same as the fractal dimension of the clusters
367with a coverage of 0.46 of islands in the CIM (not
368included in Table 1). In the CIM in this coverage,
369the infinite background is formed by voids which

Table 1

The fractal exponents in the upper scaling range

Coverage Upper scaling range in Rg D

0.45 12.7� 1 1.5� 0.05

0.44 12.0� 1 1.5� 0.05

0.4 7.3� 1 1.4� 0.05

0.375 6.0� 1 1.2� 0.05

0.35 4.5� 1 1.2� 0.05

0.3 3.6� 0.5 1.0� 0.05

0.25 2.7� 0.3 1.0� 0.05

The scaling range for the upper exponent is given by the ratio

between the upper cutoff and the lower one in the upper scaling

range.

Fig. 7. The upper (fractal) dynamic range as a function of the

coverage p. The divergence of the dynamic range as p ap-

proaches 0.5 is clearly seen.

Z. Olami et al. / Surface Science xxx (2002) xxx–xxx 7

SUSC 13064 No. of Pages 8, DTD=4.3.1

20 September 2002 Disk used SPS-N, Chennai
ARTICLE IN PRESS



UNCORRECTED
PROOF

370 are in a coverage of 0.53 and are in majority. In the
371 experiment, the infinite background is also formed
372 by voids, but they are in a coverage of 0.47 and in
373 minority. Nevertheless, the fractal dimensions are
374 similar in both cases. The reason for this shift is,
375 most likely, the difference in tension between is-
376 lands and voids. The curvature of islands and
377 voids of the same size is opposite in sign, and this
378 is expected to have a significant influence on the
379 tension in the boundary and on the growth pro-
380 cess. In the CIM, the curvature of the cluster is the
381 same, whether it is an island or a void. This
382 question is currently investigated.
383 Another difference between the experimental
384 results and the simulations, is the appearance of a
385 range of dimension of two in the lower scales––in
386 the simulation. Nevertheless one can see bending
387 of the scaling curves (Figs. 2 and 3) of the exper-
388 imental islands at lower scales.
389 In this paper we showed that in the CIM the
390 fractal dimension of clusters is observed over a
391 finite range for growth in coverages which are
392 smaller than p ¼ 0:46. Our results show that the
393 fractal range grows as the coverage is increased
394 and they strongly indicate that there is a phase
395 transition at p ¼ 0:5 where the fractal range di-
396 verges. We present STM images on Silicon sur-
397 faces where the same phenomenon is observed.
398 Current experimental and theoretical work is being
399 dedicated to what happens when p approaches
400 closer to 0.5.
401 It is clear that the STM experiments described in
402 this paper are just one example for the possibilities
403 of studying many correlation and fractalization
404 phenomena when atoms, detected by STM, are
405 used as diffusing units on the surface at high cov-
406 erage. Also, there are many questions of general
407 interest that are connected to this experiment
408 ranging from the electronic structure of confined
409 electrons in such islands in systems that form two
410 dimensional electron gas [20] to the possibility of
411 investigating lateral tunneling between neighbor-
412 ing islands in such systems.
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