Chapter 3

Numerical differentiation

3.1 Introduction

Numerical integration and differentiation are some of thestrfrequently needed methods in compu-
tational physics. Quite often we are confronted with thednekevaluating eitherf’ or an integral
| f(z)dz. The aim of this chapter is to introduce some of these methittisa critical eye on numerical
accuracy, following the discussion in the previous chapter

The next section deals essentially with topics from nunatdferentiation. There we present also
the most commonly used formulae for computing first and sgdemivatives, formulae which in turn find
their most important applications in the numerical soltid ordinary and partial differential equations.
This section serves also the scope of introducing some ndwanaed C++-programming concepts, such
as call by reference and value, reading and writing to a fitktha use of dynamic memory allocation.

3.2 Numerical differentiation

The mathematical definition of the derivative of a functif(x) is
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whereh is the step size. If we use a Taylor expansionfor) we can write
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We can then set the computed derivatfyér) as

flz+h) - f(z)
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Assume now that we will employ two points to represent thefiom f by way of a straight line between
x andz + h. Fig.[31 illustrates this subdivision.
This means that we can represent the derivative with

i) = D ZIE o,
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Numerical differentiation

where the suffiX refers to the fact that we are using two points to define theatere and the dominating
error goes likeO(h). This is the forward derivative formula. Alternatively, weuld use the backward
derivative formula

f(x) = f(z—h)

fala) = A +O(h).

If the second derivative is close to zero, this simple twap&rmula can be used to approximate the
derivative. If we however have a function likéx) = a + bz?, we see that the approximated derivative
becomes

fo(x) = 2bx + bh,

while the exact answer &x. Unlessh is made very small, anilis not too large, we could approach the
exact answer by choosing smaller and smaller and valuégs fidowever, in this case, the subtraction in
the numeratorf (z + h) — f(x) can give rise to roundoff errors and eventually a loss ofipieg.

A better approach in case of a quadratic expressioryfey is to use a 3-step formula where we
evaluate the derivative on both sides of a chosen pginsing the above forward and backward two-step
formulae and taking the average afterward. We perform agasylor expansion but now around+ A,
namely

A P
flx=z0xh)= f(xo) £ hf + 5 + 5 + O(h%), (3.1)
which we rewrite as p2pr g
fen = foxhf + —— 5 iT+0(h4).
Calculating bothf.;, and subtracting we obtain that
[ s S KO

and we see now that the dominating error goes likéf we truncate at the scond derivative. We call
the termh? f”” /6 the truncation error. It is the error that arises becauseraesstage in the derivation,
a Taylor series has been truncated. As we will see belowcation errors and roundoff errors play an
important role in the numerical determination of derivasiv

For our expression with a quadratic functigiz) = a + bxz? we see that the three-point formula
4 for the derivative gives the exact ansvr:. Thus, if our function has a quadratic behaviorziin
a certain region of space, the three-point formula will kesureliable first derivatives in the interval
[—h, h]. Using the relation

fn=2fo + fon = B2 f" + O(hY),

we can define the second derivative as

"n_ fh 2f0 + f—h
2
We could also define five-points formulae by expanding to tteps on each side afy. Using a
Taylor expansion aroung, in a region[—2h, 2h] we have

+ O(h?).

3 f///

faon = fox 2hf + 202 f" I + O(hY). (3.2)

Using Egs.[[(311) and(3.2), multiplying, andf_, by a factor o8 and subtracting8f, — for,) — (8 f_1 —
f—on) we arrive at a first derivative given by

_ foon—8f n+8fn— fon

4
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3.2 — Numerical differentiation

xo9 — 2h zog—h Zo xo+ h xo + 2h T

Figure 3.1: Demonstration of the subdivision of thaxis into small steps. Each point corresponds to
a set of values, f(z). The value ofr is incremented by the step length If we use the points, and
xo + h we can draw a straight line and use the slope at this pointtermée an approximation to the
first derivative. See text for further discussion.
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Numerical differentiation

with a dominating error of the order af* at the price of only two additional function evaluations.isTh
formula can be useful in case our function is representedfbyréh-order polynomial irx in the region
[—2h, 2h]. Note however that this function includes two additionaidtion evaluations, implying a more
time-consuming algorithm. Furthermore, the two additicnuétraction can lead to a larger risk of loss of
numerical precision wheh becomes small. Solving for example a differential equatitich involves
the first derivative, one needs always to strike a balancgd®st numerical accurary and the time needed
to achieve a given result.

It is possible to show that the widely used formulae for thet find second derivatives of a function
can be written as

fo— fon oo p(25+1) s
5 —fo+22+1) : (3.3)
and (2j+2)
o —=2fo+ fn — fy” 9
STk 5’+2thﬂ, (3.4)
j=1

and we note that in both cases the error goesdikg®/). These expressions will also be used when we
evaluate integrals.
To show this for the first and second derivatives startindnlie three pointsf_, = f(z¢ — h),
fo = f(xo) andf, = f(zo + h), we have that the Taylor expansion aroung- x, gives
.) f |
a_pf-n+aofo+anfn=a— hz +a0f0+ahz =0 (hy, (3.5)

JO' j=0

wherea_y, ag anda;, are unknown constants to be chosen so thatf_; + agfo + ayf1, is the best
possible approximation fof, and 1. Eq. [33) can be rewritten as

a—nf-n +aofo+ anfn = [a—p + ao + ax) fo
2 1 0o .(j)

+ lan — a—p] hf§ + [a—p + an) hTO + Z %(h)j (-1 a_p +ap] .
j=3 7

To determinef/, we require in the last equation that

a_p+apg+ap =0,

1
—Q_p tap = 7

and
a_p+ap =0.

These equations have the solution

1
a—p = —ap = N
and
ap = 07
yielding
Jn—=J-n X0 Ty
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3.2 — Numerical differentiation

To determinef/, we require in the last equation that
a_p+ag+ap =0,

—a_p +ap =0,

and
2
a_p +ap = jEx
These equations have the solution
a_p = —ap = _ﬁ7
and
2
ap = _ﬁa

yielding

fh - 2f0 + f—h _ gl + 2§: f(gzj+2) hzj

h2 0 e (25 4+2)!

3.2.1 The second derivative &f

As an example, let us calculate the second derivativesfz) for various values of.. Furthermore, we
will use this section to introduce three important C++-pemgming features, namely reading and writing
to a file, call by reference and call by value, and dynamic nrgratbocation. We are also going to split
the tasks performed by the program into subtasks. We defiméumation which reads in the input data,
one which calculates the second derivative and a final fonetihich writes the results to file.

Let us look at a simple case first, the useppihtf andscant If we wish to print a variable defined as
double speed_of_soundye could for example writeorintf (*“speed_of _sound = %If\n ", speed_of sound);

In this case we say that we transfer the value of this spedifiable to the functionprintf. The
function printf can however not change the value of this variaftiheere is no need to do so in this case).
Such a call of a specific function is calledll by value The crucial aspect to keep in mind is that the
value of this specific variable does not change in the calledtfon.

When do we use call by value? And why care at all? We do actaaly, because if a called function
has the possibility to change the value of a variable whemnishnot desired, calling another function with
this variable may lead to totally wrong results. In the waeses you may even not be able to spot where
the program goes wrong.

We do however use call by value when a called function simgrgives the value of the given variable
without changing it.

If we however wish to update the value of say an array in a ddllaction, we refer to this call as
call by reference What is transferred then is the address of the first elenfeéhearray, and the called
function has now access to where that specific variables’limad can thereafter change its value.

The functionscanfis then an example of a function which receives the addressvafiable and is
allowed to modify it. Afterall, when callingcanfwe are expecting a new value for a variable. A typical

call could bescanf(“%lf\n”, &speed_of sound);
Consider now the following program

//

// This program module
// demonstrates memory allocation and data transfer in
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Numerical differentiation

// between functions in C++

//

#include <stdio.h> // Standard ANSI-C++ include files
#include <stdlib.h>

int main(nt argc,char sxargvl[])

{

int a: // line 1
int xb; // line 2
a=10; // line 3
b =new int[10]; // line 4
for(i=0;i < 10; i++) {

bli]=1i; // line 5
}
func(a,b); // line 6
return O;

} // End: function main()

void func(int x, int xy) // line 7
{
X+=7; // line 8
xy += 10; // line 9
y[6] += 10; // line 10
return; // line 11

} // End: function func()

There are several features to be noted.

— Lines 1,2: Declaration of two variables a and b. The comp#serves two locations in memory.
The size of the location depends on the type of variable. Twepegrties are important for these
locations — the address in memory and the content in the

— Line 3: The value of ais now 10.

— Line 4: Memory to store 10 integers is reserved. The addeetbeetfirst location is stored in b. The
address of element number 6 is given by the expression (b + 6).

— Line 5: All 10 elements of b are given values: b[0] =0, b[1] =.1,, b[9] = 9;

— Line 6: The main() function calls the function func() and gregram counter transfers to the first
statement in func(). With respect to data the following leaypp The content of a (= 10) and the
content of b (a memory address) are copied to a stack (new ngdotation) associated with the
function func()

— Line 7: The variable x and y are local variables in func(). ¥ihave the values — x = 10, y =
address of the first element in b in the main() program.

— Line 8: The local variable x stored in the stack memory is geaihto 17. Nothing happens with
the value a in main().
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3.2 — Numerical differentiation

— Line 9: The value of y is an address and the symbol *y standthioposition in memory which
has this address. The value in this location is now increagetD. This means that the value of
b[0] in the main program is equal to 10. Thus func() has madlifiezalue in main().

— Line 10: This statement has the same effect as line 9 excaft thodifies element b[6] in main()
by adding a value of 10 to what was there originally, namely 6.

— Line 11: The program counter returns to main(), the nextesgion afterfunc(a,b); All data on
the stack associated with func() are destroyed.

— The value of a is transferred to func() and stored in a new nnghogation called x. Any modi-
fication of x in func() does not affect in any way the value ofamain(). This is calledransfer
of data by value On the other hand the next argument in func() is an addreghvstransferred
to func(). This address can be used to modify the correspgndilue in main(). In the program-
ming language C it is expressed as a modification of the vahiehay points to, namely the first
element of b. This is callettansfer of data by referenceand is a method to transfer data back to
the calling function, in this case main().

C++ allows however the programmer to use solely call by ezfee (note that call by reference is
implemented as pointers). To see the difference betweendCCa+, consider the following simple
examples. In C we would write

int n; n =8;
func(&n); /*x & is a pointer to n x/
void func(int xi)
{
x1 = 10; /« n is changed to 10x/

}

whereas in C++ we would write

int n; n =8;
func(n); // just transfer n itself
void func(int& i)
{
i = 10; // n is changed to 10

}

Note well that the way wex have defined the input to the fumctimc(int & i) or func(int i) decides
how we transfer variables to a specific function. The reasby wie emphasize the difference between
call by value and call by reference is that it allows the pangmer to avoid pitfalls like unwanted changes
of variables. However, many people feel that this reducesdhdability of the code. It is more or less
common in C++ to use call by reference, since it gives a muehngr code. Recall also that behind the
curtain references are usually implemented as pointereene transfer large objects such a matrices
and vectors one should always use call by reference. Cosying objects to a called function slows
down considerably the execution. If you need to keep theevafia call by reference object, you should
use theconstdeclaration.
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Numerical differentiation

In programming languages like Fortran one uses only calldbgrence, but you can flag whether
a called function or subroutine is allowed or not to changewhlue by declaring for example an in-
teger value atNTEGER, INTENT(IN):: i. The local function cannot change the valuei.oDeclaring a
transferred values dNTEGER, INTENT(OUT):: i allows the local function to change the variahle

Initialisations and main program

In every program we have to define the functions employed. style chosen here is to declare these
functions at the beginning, followed thereafter by the maimgram and the detailed task performed by
each function. Another possibility is to include these timits and their statements before the main
program, meaning that the main program appears at the vdry &nd this programming style less read-
able however since | prefer to read a code from top to bottorfurther option, specially in connection
with larger projects, is to include these function defimiidn a user defined header file. The following
program shows also (although it is rather unnecessary sncése due to few tasks) how one can split
different tasks into specialized functions. Such a divig®very useful for larger projects and programs.
In the first version of this program we use a more C-like stglewriting and reading to file. At the

end of this section we include also the corresponding C++-amtfan files.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/cpp/programl . cpp

[ *

* % Program to compute the second derivative of exp(x).

* % Three calling functions are included

* % in this version. In one function we read in the data from scmee
* % the next function computes the second derivative

* % while the last function prints out data to screen.

*/

using namespacestd ;
# include <iostream>

void initialise (double x, double *, int x);
void second_derivative (int , double, double, double %, double x);
void output( double %, double %, double, int);

int main()
{
I/l declarations of variables
int number_of_steps;
double x, initial_step;
double xh_step, xcomputed_derivative;
/I read in input data from screen
initialise (&initial_step , &, &number_of_steps);
I/l allocate space in memory for the ondimensional arrays
/I h_step and computed_derivative
h_step = new double[number_of_steps];
computed_derivative =mmew double[number_of steps];
/' compute the second derivative of exp(x)
second_derivative ( number_of_steps, x, initial_step ,step,
computed_derivative);
/I Then we print the results to file
output(h_step, computed_derivative, x, number_of_stéeps
/I free memory
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3.2 — Numerical differentiation

delete [] h_step;
delete [] computed_derivative;
return O;

} /!l end main program

We have defined three additional functions, one which reaffein screen the value af, the initial step

lengthh and the number of divisions by 2 af This function is calledinitialise . To calculate the second

derivatives we define the functiosecond_derivativeFinally, we have a function which writes our results

together with a comparison with the exact value to a given Tilee results are stored in two arrays, one

which contains the given step lengitand another one which contains the computed derivative.
These arrays are defined as pointers through the statement

double xh_step, xcomputed _derivative;

A call in the main function to the functiosecond_derivativdooks then like this

second_derivative ( number_of_steps, x, intial_step , teps,
computed_derivative);

while the called function is declared in the following way

void second_derivativeint number_of_steps ,double x, double xh_step double
xcomputed_derivative);

indicating thatdouble xh_step, double xcomputed_derivativeare pointers and that we transfer the address
of the first elements. The other variables number_of_stepsjouble x; are transferred by value and are
not changed in the called function.

Another aspect to observe is the possibility of dynamickdcakion of memory through theew
function. In the included program we reserve space in mefionthese three arrays in the following way
h_step =new doubldnumber_of stepshndcomputed_derivative smew doubldnumber_of stepsiVhen we
no longer need the space occupied by these arrays, we freemnémough the declarationgelete []
h_step;anddelete [] computed_derivative;

The function initialise

/1 Read in from screen the initial step, the number of steps
/11 and the value of x

void initialise (double xinitial_step , double xx, int xnumber_of_steps)

{
printf ("Read in from screen initial step, x and number of steps\n");
scanf("%1f %1f %d",initial_step , x, number_of_steps);
return ;

} // end of function initialise

This function receives the addresses of the three varialleisie « initial_step , double xx, int x
number_of_stepgind returns updated values by reading from screen.

The function second_derivative
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Numerical differentiation

[/l This function computes the second derivative

void second_derivative (int number_of_steps ,double x,
double initial_step , double xh_step,
double xcomputed_derivative)

{
int counter;
double h;
/1l calculate the step size
/1l initialise the derivative, y and x (in minutes)
/1 and iteration counter
h = initial_step;

/I start computing for different step sizes
for (counter=0; counter < number_of_steps; counter++ )

{
/I setup arrays with derivatives and step sizes
h_step[counter] = h;
computed_derivative[counter] =

(exp(xth)—2.xexp (x)+exp (¥xh))/(hxh);

h = hx0.5;

} // end of do loop

return ;

} /l end of function second derivative

The loop over the number of steps serves to compute the setmivétive for different values of.

In this function the step is halved for every iteration (yoaulkl obviously change this to larger or
smaller step variations). The step values and the derastive stored in the arrays stepanddouble
computed_derivative

The output function

This function computes the relative error and writes to asehdile the results.

The last function here illustrates how to open a file, writd a@ad possible data and then close it.
In this case we have fixed the name of file. Another possitiitybviously to read the name of this file
together with other input parameters. The way the progrgeneisented here is slightly unpractical since
we need to recompile the program if we wish to change the ndrihe @utput file.

An alternative is represented by the following program Cgpam. This program reads from screen
the names of the input and output files.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/cpp/program?.cpp

1 #include <stdio.h>
2 #include <stdlib.h>
3 int col:

int main(int argc, char xargv/[])
{
FILE xin, xout;
int c;
if ( argc < 3) {
printf("You have to read in :\n");
printf("in_file and out_file \n");

PR O00~NO UM

= O

54


http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/cpp/program2.cpp
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12 exit(1);

13 in = fopen( argv[1l],"r");} /l returns pointer to the in_file

14 if ( inn == NULL ) { /I can’t find in_file

15 printf("Can’t find the input file %s\n", argv[1l]);

16 exit(1);

17 }

18 out = fopen( argv[2],"w"); /l returns a pointer to the out_file
19 if ( ut == NULL ) { /Il can’t find out_file

20 printf("Can’t find the output file %s\n", argv[2]);

21 exit(1);

22 }

program statements

23 fclose (in);

24 fclose (out);
25 return O;
}
This program has several interesting features.
Line Program comments
5 e main () takes three arguments, given by argc. argv points to theviail:

the name of the program, the first and second arguments sircdisie file
names to be read from screen.

7 e C++ has alata type calledFILE. The pointersan andout point to spe-
cific files. They must be of the ty[®ILE.

10 e The command line has to contain 2 filenames as parameters.
13-17 e The input file has to exit, else the pointer returns NULL. I¢ lomly read
permission.

18-22 e Same for the output file, but now with write permission only.
23-24 e Both files are closed before the main program ends.

The above represents a standard procedure in C for readingafihes. C++ has its own class for
such operations.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/cpp/program3. cpp

[

* % Program to compute the second derivative of exp(x).

* % In this version we use C++ options for reading and

* % writing files and data. The rest of the code is as in

*ok programs/chapter3/programl.cpp

* % Three calling functions are included

* in this version. In one function we read in the data from scmee
*% the next function computes the second derivative

*% while the last function prints out data to screen.

x/

using namespacestd;

# include <iostream>

# include <fstream>

# include <iomanip>

# include <cmath>

void initialise (double x, double *, int x);
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void second_derivative (int , double, double, double %, double x);
void output( double x, double %, double, int);

ofstream ofile;

int main(int argc, charx argv([])
{
/Il declarations of variables
char xoutfilename;
int number_of_steps;
double x, initial_step;
double xh_step, xcomputed_derivative;
/I Read in output file, abort if there are too few commatihe
arguments
if ( argc <=1 ){
Ccout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
else{

outfilename=argv[1];

ofile .open(outfilename);
/I read in input data from screen
initialise (&initial_step , &, &number_of_steps);
/I allocate space in memory for the ondimensional arrays
/I h_step and computed_derivative
h_step = new double[number_of_steps];
computed_derivative =mew double[number_of steps];
/I compute the second derivative of exp(x)
second_derivative ( number_of_steps, x, initial_step ,step,
computed_derivative);
/I Then we print the results to file
output(h_step, computed_derivative, x, number_of_steps
/I free memory
delete [] h_step;
delete [] computed_derivative;
/I close output file
ofile .close ();
return O;
} /!l end main program

The main part of the code includes now an object declaratistream ofilewhich is included in C++ and
allows the programmer to open and declare files. This is danthe statemenbfile . open(outfilename);
We close the file at the end of the main program by writiofge . close (); There is a corresponding
object for reading inputfiles. In this case we declare pathe main function, or in an evantual header
file, ifstream ifile and use the corresponding statemeiiite .open(infilename)and ifile . close () ;for
opening and closing an input file. Note that we have declasmedcharacter variableshars outfilename
; andcharx infilename ; In order to use these options we need to include a corregmptiirary of
functions usingt include <fstream=

One of the problems with C++ is that formatted output is not@sy to use as the printf and scanf
functions in C. The output function using the C++ style iduiled below.
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/1 function to write out the final results
void output(double xh_step, double xcomputed_derivative ,double x,
int number_of_steps )

{ . .
int i;
ofile << "RESULTS:" << endl;
ofile << setiosflags(ios::showpoint | ios::uppercase);
for( i=0; i < number_of_steps; i++)
{

ofile << setw(15) << setprecision(8) << logl0(h_step][i]);
ofile << setw(15) << setprecision(8) <<
loglO(fabs(computed_derivative [+lexp(x))/exp(x))) << endl;
}

} // end of function output

The functionsetw(15)reserves an output of 15 spaces for a given variable wiglrecision (8yields
eight leading digits. To use these options you have to usddblaration# include <iomanip>

Before we discuss the results of our calculations we list liee corresponding Fortran program. The
corresponding Fortran example is

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/£90/programl .f90

! Program to compute the second derivative of exp(x).

! Only one calling function is included.

! It computes the second derivative and is included in the
! MODULE functions as a separate method
I

I

I

The variable h is the step size. We also fix the total number
of divisions by 2 of h. The total number of steps is read from
screen
MODULE constants
I definition of variables for double precisions and complexariables
INTEGER, PARAMETER :: dp = KIND (1.0DO)
INTEGER , PARAMETER :: dpc = KIND ((1.0D0,1.0D0))
END MODULE constants

I Here you can include specific functions which can be used by
I many subroutines or functions

MODULE functions
USE constants
IMPLICIT NONE
CONTAINS
SUBROUTINE derivative (number_of_steps, x, initial_step , h_step, &
computed_derivative)
USE constants
INTEGER , INTENT (IN) :: number_of_steps
INTEGER :: loop
REAL (DP) , DIMENSION (number_of_steps) INTENT (INOUT) :: &
computed_derivative, h_step
REAL (DP) , INTENT (IN) :: initial_step , X
REAL (DP) :: h
! calculate the step size
! initialise the derivative, y and x (in minutes)
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! and iteration counter

h = initial_step

I start computing for different step sizes

DO loop=1, number_of_steps
I setup arrays with derivatives and step sizes
h_step(loop) = h
computed_derivative (loop) = (EXP(x+m)2.«EXP(x)+EXP(x-h))/(hxh)
h = hx0.5

ENDDO

END SUBROUTINE derivative

END MODULE functions
PROGRAM second_derivative

USE constants
USE functions

IMPLICIT NONE

I declarations of variables

INTEGER :: number_of_ steps, loop

REAL (DP) :: x, initial_step

REAL (DP) , ALLOCATABLE , DIMENSION (:) :: h_step, computed_derivative

I read in input data from screen

WRITE (% ,*) 'Read in initial step, x value andnumber of steps’
READ(*,*) initial_step , x, number_of_steps

I open file to write results on

OPEN(UNIT =7 ,FILE =’ out . dat )

I allocate space in memory for the ondimensional arrays

I h_step and computed_derivative

ALLOCATE (h_step(number_of steps),computed_derivative (numloér steps))
I compute the second derivative of exp(x)

I initialize the arrays

h_step = 0.0_dp; computed_derivative = 0.0_dp

CALL derivative (number_of_steps ,x,initial_step ,h_step myputed_derivative

)

' Then we print the results to file

DO loop=1, number_of_steps
WRITE (7, (E16.10,2X,E16.10) ') LOG10(h_step(loop)),&
LOG10 ( ABS ( (computed_derivative (loopEXP(x))/EXP(x)))

ENDDO

I free memory

DEALLOCATE ( h_step, computed_derivative)

I close the output file

CLOSE(7)

END PROGRAM second_derivative

TheMODULE declaration in Fortran allows one to place functions like éime which calculates second
derivatives in a module. Since this is a general method, onddcextend its functionality by simply
transfering the name of the function to differentiate. It case we use explicitely the exponential
function, but there is nothing which hinders us from definatger functions. Note the usage of the
moduleconstantswhere we define double and complex variables. If one wishesvitch to another
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precision, one just needs to change the declaration in ahefale program only. This hinders possible
errors which arise if one has to change variable declamfiorevery function and subroutine. Finally,
dynamic memory allocation and deallocation is in Fortranedwith the keywords\LLOCATE ( array(
size) andDEALLOCATE (array) Although most compilers deallocate and thereby free sagemory
when leaving a function, you should always deallocate aayamhen it is no longer needed. In case
your arrays are very large, this may block unnecessarilyeldractions of the memory. Furthermore,
you should always initialise arrays. In the example abowenete that Fortran allows us to simply write
h_step =0.0_dp; computed_derivative = 0.0_dpvhich means that all elements of these two arrays are
set to zero. Coding arrays in this manner brings us much rctosthe way we deal with mathematics.
In Fortran it is irrelevant whether this is a one-dimensiaranulti-dimensional array. In the next next
chapter, where we deal with allocation of matrices, we willaduce the numerical library Blitz++ which

allows for similar treatments of arrays in C++. By defaultinawer, these features are not included in the
ANSI C++ standard.

Results

In Table[31 we present the results afamerical evaluationfor various step sizes for the second deriva-
tive of exp (z) using the approximatiorfy = f’_sz# The results are compared with the exact ones
for variousz values. Note well that as the step is decreased we get ctofiee exact value. However, if

x h=0.1 h=0.01 h=0.001 h=0.0001 h=0.0000001 Exact
0.0 1.000834 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.720548 2.718304 2.718282 2.718282 2.753353 2.718282
2.0 7.395216 7.389118 7.389057 7.389056 7.283063 7.389056
3.0 20.102280 20.085704  20.085539  20.085537 20.250467 082887
4.0 54643664 54.598605 54.598155  54.598151 54.711789 598450

5.0 148.536878 148.414396 148.413172 148.413161 15(0635048.413159

Table 3.1: Result for numerically calculated second déviea ofexp (z) as functions of the chosen step
sizeh. A comparison is made with the exact value.

it is further decreased, we run into problems of loss of gieni This is clearly seen fdgr = 0.0000001.
This means that even though we could let the computer runsmidller and smaller values of the step,
there is a limit for how small the step can be made before wed@uoecision.

3.2.2 Error analysis

Let us analyze these results in order to see whether we cam fimdimal step length which does not
lead to loss of precision. Furthermore In Higl3.2 we havétedo

€ = logio (

as function oflogio(h). We used an intial step length bf= 0.01 and fixedz = 10. For large values of
h, that is—4 < logio(h) < —2 we see a straight line with a slope close to 2. Closkie(h) ~ —4
the relative error starts increasing and our computed akdrév with a step sizéngio(h) < —4, may no
longer be reliable.

" ey
computed exact

"
exact
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T T
Relative error
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|Oglo(h)

Figure 3.2: Log-log plot of the relative error of the secordivhtive ofe” as function of decreasing step
lengthsh. The second derivative was computed for 10 in the program discussed above. See text for
further details

Can we understand this behavior in terms of the discuss@an the previous chapter? In chadiér 2
we assumed that the total error could be approximated wighterm arising from the loss of numerical
precision and another due to the truncation or approximatiade, that is

€tot = €approx T €ro-

For the computed second derivative, Eq.1(3.4), we have

w_ Jn=2fo+ f-n 2502 féQjJrz) 1,2
(27 +2) 7

0 — 2
h =
and the truncation or approximation error goes like
(4)
€ R~ —fo h?
approx 12 .

If we were not to worry about loss of precision, we could innpiple makeh as small as possible.
However, due to the computed expression in the above progrkample

w fn=2fc+ fon  (fn—fo)+ (f=n — fo)

0 — h2 - h2 )
we reach fairly quickly a limit for where loss of precisionalto the subtraction of two nearly equal
numbers becomes crucial. (If v, — fo) are very close, we haugfr, — fo) =~ ey, where|ey| < 1077
for single ande,;| < 1071 for double precision, respectively.

We have then
| U= fo) + (f=n — fo)| _ 2em
| = <=L
h? h?

|fo
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Our total error becomes

(4)

2ens fo o

< — 4+ 2 he 3.6

|€tot| < 2 + 12 (3.6)

It is then natural to ask which value bfyields the smallest total error. Taking the derivativeegf;| with
respect toh results in

With double precision and = 10 we obtain
h~10"%

Beyond this value, it is essentially the loss of numericaicfgion which takes over. We note also that
the above qualitative argument agrees seemingly well \mighrésults plotted in Fig._3.2 and Tablel3.1.
The turning point for the relative error at approximatély: x 10~ reflects most likely the point where
roundoff errors take over. If we had used single precisiaaywsuld get ~ 10~2. Due to the subtractive
cancellation in the expression f@f' there is a pronounced detoriation in accuracy: @& made smaller
and smaller.

It is instructive in this analysis to rewrite the numeratbti®e computed derivative as

(fn = fo) + (fon — fo) = (" —€") + (" =€),
as
(fn = fo) + (f-n — fo) = " (" + e = 2),
since it is the differencée” 4 e~ — 2) which causes the loss of precision. The results, stilbfer 10
are shown in the Tab[e3.2. We note from this table thatat x 10~® we have essentially lost all leading

h e e et +eh—2

10~  2.0100083361116070 1.0008336111607280 2
10-2  2.0001000008333358 1.00000833336055681 *
10~3  2.0000010000000836 1.000000083406504@ 6
10~%  2.0000000099999999 1.000000005024 7593 8
10~  2.0000000001000000 9.9999897251734687 1
10~6  2.0000000000010001 9.9997787827987850 13
10~7  2.0000000000000098 9.9920072216264089 15
10~8  2.0000000000000000 0.0000000000000000°
109  2.0000000000000000 1.110223024625156% 6
1010 2.0000000000000000 0.0000000000000000°

Table 3.2: Result for the numerically calculated numerafdine second derivative as function of the step
sizeh. The calculations have been made with double precision.

digits.

From Fig[3:2 we can read off the slope of the curve and thedelsrmine empirically how truncation
errors and roundoff errors propagate. We saw thatfor< logio(h) < —2, we could extract a slope
close to2, in agreement with the mathematical expression for thection error.

We can repeat this for 10 < logio(h) < —4 and extract a slopes —2. This agrees again with our
simple expression in EJ.(3.6).

61



Numerical differentiation

3.3 Exercises and projects

Exercise 3.1: Computing derivatives numerically

We want you to compute the first derivative of

f(@) = tan™" ()

for z = /2 with step lengths:. The exact answer i&/3. We want you to code the derivative using the
following two formulae

ey = EIZIE o), @7

and
I

foe = T + O(1?), (3:8)

with £, = f(z £ h).

(&) Find mathematical expressions for the total error dueg® of precision and due to the numerical
approximation made. Find the step length which gives thdleastavalue. Perform the analysis
with both double and single precision.

(b) Make thereafter a program which computes the first divevaising Eqs[{317) anfl{3.8) as function
of various step lengths and leth — 0. Compare with the exact answer.
Your program should contain the following elements:

— A vector (array) which contains the step lengths. Use dynam@mory allocation.

— Vectors for the computed derivatives of E4S.13.7) (®Blpoth single and double preci-
sion.

— A function which computes the derivative and contains calvélue and reference (for C++
— Add a function which writes the results to file.

users only).
€ = logio ( ) ;

as function ofog;(h) for Egs. [3¥) and{318) for both single and double precisRint the results
and see if you can determine empirically the behavior of ¢ted error as function of.

(c) Compute thereafter
! /
computed ~ Jexact

/
exact
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