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Abstract

In this study we will apply the Computerized Tomography (CT) technique on a single cells

system, in order to obtain three dimensional images of protein structures within bacteria.

An optical tweezers system will be used to trap a single bacterium, and to align it in different

orientations for the CT imaging. Fluorescence will be used to mark specific proteins of the

bacteria. This system setup will allow us visualize the spatial configuration of different

proteins in the cells and follow its dynamic and evolution.
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1. Scientific background

1.1 Optical tweezers

Optical tweezers can trap small objects ranging in size from few nanometers [1] to tens

of micrometers and exert forces of up to 100pN. These ranges are suitable for exerting

forces on biological and macromolecular objects and for measuring their responses. Since

their invention in 1986, optical traps have been used in a wide range of studies in biology

and physics, to trap dielectric spheres, viruses, bacteria, living cells, organelles, small metal

particles and DNA strands. In biology research, optical trapping is used to study the forces

exerted by molecular motors such as kinesin and dynein [2, 3], to manipulate live sperm

cells [4, 5], measure their swimming forces [6] and to examine the mechanical properties

of microtubules, actin filaments, and DNA bio-polymers [7–11]. On larger scales, optical

tweezers are used for selecting individual microbes from heterogeneous populations. Their

ability to transport cells have led to clinical applications as in vitro fertilization [12]. In

the physical sciences, optical tweezers are used in classical statistical mechanics research to

study the macromolecular interactions in solution [13], phase transitions and crystallization

of random 2D colloidal suspension to a colloidal crystal [14] and to measure the entropic

forces which control the motion of colloidal particles at passive surface microstructures [15].

Recent advances in physical optics enabled the broadening of the optical tweezers ap-

plications. For example a single rapidly scanned optical tweezer can simultaneously trap

multiple particles [16, 17]. Modifying the optical tweezers’ wavefront enables, among other

things, to apply a torque on a trapped object. A wide variety of methods have been devel-

oped to allow the rotation and alignment of trapped objects [18–25], some by wave front

modifications and others by scanned traps.

1.2 Three dimensional light microscopy imaging

Over the last decades, the development of powerful imaging techniques contributed sig-

nificantly to biological studies. In particular, new methods in light microscopy that provide

the potential to image the dynamics of biological events contributed significant tools for re-

searches. Optical sectioning techniques allow three dimensional information to be obtained

from living specimens noninvasively. Nomarski imaging is a relatively simple technique that

uses refractive index to produce contrast [26]. The development of Laser Scanning Confocal
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Microscopy (LSCM) provided a non destructive method for acquiring high contrast, three

dimensional data with high resolution. Recently, multiphoton microscopy, in which NIR

radiation is used to generate images without the use of a pinhole, restricts photobleaching

and is potentially less damaging to living specimen when compared to visible and UV light

[27]. An increasing number of biological and material science applications have been devel-

oped using LCSM . Optically transparent organic and inorganic materials are well suited for

LSCM structures characterization. Non transparent materials may be imaged in reflection

mode to create 3D surface images without the use of coating or other destructive sample

preparations. For biological samples, fluorescent antibodies and probes are applied to derive

specific chemical and biological information.

1.3 Protein structures associated with cell division

Most prokaryote cells, such as the rod shaped Escherichia coli (E. coli) bacteria, divide

by a process called binary fission. In this process one cell gives rise to two identical daughter

cells. During the growth of E. coli a septum forms at the center of the cell, which grad-

ually shrinks to perform the cell separation. This seemingly simple event involves spacial

and temporal controls that function to coordinate the physiological status of the cell, the

replication of the genetic information (chromosomes), and chromosomal segregation, with

cellular division.

Among dozens of different proteins that participate in the cell division process, at least

nine are known to be required for proper septation, and to localize at the division plane

during septation [28–30]. From this group, FtsZ is the first to assemble [31]. This tubulin-like

protein, is polymerized in the presence of GTP to form a ring-like structure at midcell which

is connected to the cytoplasmic membranee [28, 32]. Stricker et al. [33] used Fluorescence

Recovery After Photobleaching (FRAP) to show that the Z-ring is an extremely dynamic

structure, continually exchanging subunits with a cytoplasmic pool.

Following the assembly of FtsZ, additional division proteins are recruited into the Z-ring

in sequential order [34], to form the divisome structure which carries out the cell division

process. Unlike FtsZ, most of the division proteins are found in limited concentrations in

the cell. For some proteins, there are not enough molecules to cover the circumference of

the cell. Therefore, the divisome structure is believed to be divided into subunit assemblies,

positioned at equidistant locations along the Z-ring. Further study is needed to confirm this
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view of the divisome organization.

Another group of proteins involved in cell division is that of the Min proteins. The

MinCDE proteins of E. coli are required for proper placement of the division septum at

midcell. The site selection process requires rapid oscillations (with cycle period of a few

minuets) of the proteins distribution from pole to pole. Even though these proteins play no

apparent cytoskeletal role, they are organized into membrane-associated structures that coil

around the cell between the two cell poles [35]. It has been proposed that the Min proteins

configuration is part of the same coiled structure of the sytokeletal-like MreB protein, which

was found to be essential for maintaining the rod shape of E. coli [36]. However, whereas the

Min coils are observed in similar structures within different cells, the MreB seems to vary in

density, number of loops in the coil structure, and location along the cell. These observations

suggest that there is no common structure for Min and MreB proteins. Another suggestion is

that MreB and the MinCDE proteins might be associated with a common structural element

at some stage in their history. At the present, there is not enough experimental evidence to

confirm either of those suggestions and further study is needed.

Rothfield et al. [35] observed that when the majority of the Min proteins are found at

one pole, low concentration coiled Min structures are located in the other half of the cell, in

contrary to what has been expected. Since the structures on opposite sides were found to

be wound in opposite directions, it is likely that there are two separate helical constructions

rather then one coil that stretches from one pole of the cell to the other. It is believed that

the coil in the other half of the cell plays a role in the Min proteins dynamics. One suggested

scenario is that MinD molecules that are released from the disassembling polar zone directly

associate with a membrane associated helical framework at the opposite half of the cell to

form a new polar zone. Another possibility is that MinD molecules initiate nucleation of

coiled strands at the opposite pole, and the helical framework guides the growth of the new

structure.

By observing the creation of a new polar zone using time-lapse microscopy with sufficient

temporal resolution, it will be possible to distinguish between two possible scenarios: 1.

organized nucleation and 2. random association of the MinD molecules along the helical

framework.
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2. Experimental methods

The experimental setup is based upon an optical microscope (Olympus IX70), to which we

add an optical tweezers system and an intensified CCD camera (IPentaMAX). A laser beam

(IR laser diode λ=830nm) is focused through the microscope objective (Olympus 100X, 1.3

NA oil immersion) in order to generate an optical trap in the sample. Trap oscillations

are achieved via a galvanometric mirror located at a conjugate plane to the objective back

aperture. System setup is shown in Fig. 1. Fluorescence will be used to illuminate the

desired proteins in the bacteria. Image analysis requires high resolution tracking algorithms

developed in previous work [37].

2.1 Optical tweezers

The optical tweezers system commonly used today originally reffered as single beam gra-

dient force optical trap, was developed by Arthur Ashkin [38] in 1986. Such optical trap is

formed by a single laser beam, strongly focused via a microscope high NA objective lens.

A dielectric particle near the objective focal plane experiences trapping forces due to the

momentum transfer from photons scattered by the particle. Such force may be decomposed

into two components, namely scattering force and gradient force. The scattering force is

generated by the photon flux that is simply pushing the particle in the direction of light

propagation. While the scattered light goes in all directions, the incident light has a well

defined momentum vector. As a result the fraction of light which is absorbed by the par-

ticle, and the fraction that is scattered backward, will generate a net force acting on the

particle in the direction of light incidence. In order to understand the origin of the backward

gradient force, both radially and axially, it is more convenient to examine the extreme cases

of Mie particle (rÀ λ) and Raleigh particle (r¿ λ), where r is the particle dimension and

λ is the laser wavelength. In the Mie regime, Ashkin used ray optics to describe the optical

momentum transfer of the particle [39] . Qualitative description of the radial force is given

in Fig.2.

A sphere with index of refraction nH is placed off the beam axis, in a medium, e.g. water,

of lower index nL (nL < nH). Consider two rays, a and b, situated symmetrically about

the sphere axis B. The Gaussian profile of the beam causes the intensity of a to be larger

than that of b. Each beam undergoes reflection and refraction at both faces of the sphere,

which leads to forces acting on the photons by the sphere. The reaction force that acts on
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FIG. 1: System sketch

the sphere will be in the opposite direction, as illustrated in Fig. 2 by FD and FR. The

radial components of F i
D and F o

D are larger than that of F i
R and F o

R, which cancel each other

radially to first order. The z component of all forces are in the positive direction. The forces

exerted by the b ray will have positive Z components as well, and opposite and weaker radial

components. Thus the net force will be in the -r and +z directions for this situation.

The A’ beams that emerge from the opposite side of the sphere are refracted (as can be

seen from Fig. 3a), and thus generate a force on the particle. If we consider the direction of

the resulting forces FA, we see that there is a net backward force towards the beam focus.
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FIG. 2: A bead with high refraction index is placed off the axis of the TEM00 laser. FD and FR are

the forces due the refraction and reflection of the beams, respectively. The i index represents the

input point of the beam and o represents the output. The net force is in the -r and +z directions.

It is evident from the figure that this force is strongly dependent on the convergence of the

beam. Fig. 3a represents the axial gradient force achieved by strongly focusing the light

beam.

FIG. 3: a) A diagram showing the refraction of highly convergent rays by a bead positioned below

the focus. b) Photograph, taken in fluorescence, of a 10µm sphere trapped in water, showing the

paths of the incident and scattered light rays. The figure was taken from Ref. [39].

In the case of strong enough focusing, this backward gradient force will overcome the

scattering force to achieve axial trapping, which together with the radial trapping described
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above forms a three dimensional trap. In the Raleigh regime, the bead is treated as an

induced electrical dipole. The trapping forces are formed by the inhomogeneous electrical

field (the laser beam itself) applied on the particle. Such a non uniform field generates a

force acting on the dipole, which is proportional and pointed in the direction of field gradient.

For the wide range of objects that lie between the two extreme cases discussed above, such

as a cell that is few microns long, trapped in an IR laser (λ ' 0.8µm), there’s no simple

model that describes the trapping forces. A more complete electromagnetic theory is needed

in order to cover this range of particle sizes.

2.2 Optical alinement of a trapped cylindrical micro-object

In 1987 Arthur Ashkin et al. reported [40] that single living cells can be trapped and

manipulated by IR optical tweezers. He observed the reproduction of E. coli bacteria and

Yeast cells within a high power trap, indicating that no optical damage occurs under the

influence of the laser. While stiff traps were capable of moving the bacteria with high

velocities within the sample, its orientation was fixed along the laser propagation and could

not be manipulated by the single trap. A few years later, Visscher et al. managed to

control the orientation of elongated micro-objects [18]. By combining a Confocal Scanning

Laser Microscope with an XY galvanometric mirror, he stirred an optical trap in a cyclic

manner between a few fixed points in the microscope sample. A complete three dimensional

control of the trap points was achieved by simultaneously moving the galvanometric mirror

and one of the microscope objectives. When the scan repetition rate was higher then the

mechanical response cut-off frequency, each point acted as an independent optical trap [16].

This enabled the orientation of irregularly shaped and relatively large structures which could

not be oriented by just one trap. For example, an E. coli filament of ' 20µm was captured

by three traps of IR laser. This allowed a complete 3D control of the bacteria orientation.

Although the orientation of smaller filaments in a single optical trap was observed, it could

not be done in a controlled way.

R. C. Gauthier performed a ray optics theoretical investigation of the trapping force and

torque applied on cylindrical mirco-objects [41]. In his model, the incident beam consists of

a Gaussian intensity profile treated as a stream of photons that may transfer momentum to

the cylinder when they are refracted and reflected at the cylinder interface.

The momentum transferred to the cylinder from a single photon reflected (r) and refracted
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FIG. 4: A cylindrical micro-object of length L and radius R oriented along the x axis. The incident

laser beam is directed along the z axis and comes to a focus at a distance zw before passing the

plane containing the cylinder axis.

(t) at an interaction point is given by:

dPr = h̄
2π

λ
nin [(l0 − lr)x̂ + (m0 −mr)ŷ + (n0 − nr)ẑ] (1)

dPt = h̄
2π

λ
nin [(l0 − nrellt)x̂ + (m0 − nrelmt)ŷ + (n0 − nrelnt)ẑ] (2)

where (l0,m0, n0), (lr,mr, nr) and (lt, mt, nt) are the incident, the reflected and the refracted

photon direction cosines. nin is the index of refraction of the medium in which the incident

photon propagates and nrel is the relative index of refraction between the transmitted side

and the incident side of the interface.

The net force applied on the cylinder, by Newton second law, equals to the transferred

photon momentum, taken over time interval dt, and is given by:

F =
∑

i

dFi =
∑

i

Ni [RdPr + (1−R)dPt] (3)

where Ni is the photon flux, R is the reflection coefficient and dFi is the force element at

point i. The sum is over all the points of intersection. When the incident beam central axis

is not aligned with the symmetry axis of the cylinder, a torque is generated. The torque can

be obtained from:

τ =
∑

i

dτi =
∑

i

ri × dFi (4)

where ri is a position vector pointing from a reference point to the i ’th interaction point.
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The force acting on the cylinder was numerically estimated for various bacteria lengths.

The result exhibits 3D trapping forces, in agreement with previous experimental observa-

tions. Stable orientations were found by the requirement that the torque acting on the

cylinder is both zero and restoring (turns the cylinder back to the stable orientation if it

is turned to other direction). Stable trapping directions for various bacteria lengths are

presented in Fig. 5. Most of the cylinders are found to be oriented such that their longest

diagonal is closely aligned with the laser propagation axis.

FIG. 5: Stable alignment angle versus cylinder length L where R = 5µm. Diamonds represent

calculated points. The angle is between the z axis and the cylinder main axis

Experimental measurements of the cylindrical objects’ orientation angle found to be in good

agreement with the theoretical model [42].

In order to control the orientation of a trapped bacteria we developed a new method.

Although our technique resembles that of Visscher et al. [18], it is based upon a much

simpler setup.

We used a galvanometric mirror in the optical path of the trapping laser to oscillate a

single optical trap in a plane perpendicular to the laser beam propagation axis. When the

oscillations frequency was around 100Hz, the trap force was averaged along the oscillation

amplitude to form an effectively elongated trap. A trapped cell was then aligned in a

particular orientation. By varying the oscillations amplitude, we managed to control the

alignment of the bacteria, through the whole range from z (corresponding to zero amplitude)

to x (corresponding to bacterium length amplitude) axis alignment (θ = 90o and θ = 0o,

respectively). In order to determine the trapping angle for a certain orientation, we fixed a
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FIG. 6: An E. coli bacterium trapped in an oscillating optical tweezer. Left: Bacterium lies

horizontally along the x axis since the oscillations amplitude is similar to the length of the cell.

Right: Bacterium oriented at 500 with respect to the z axis. Oscillations amplitude is smaller than

the length of the cell.

bacterium to the glass surface of the sample. The microscope stage was then moved in steps

of 0.3µm in the z axis direction, from z = −1.2µm to z = +1.2µm, where z = 0 is the focal

plane of the objective. In each position the bacteria was imaged in phase contrast objective,

to form a height library, as shown in Fig. 7.

The intensity profile along the symmetry axis of the bacteria in each frame was calculated.

The intensity profile of the aligned bacteria was compared to the height library profiles. As

can be seen in Fig. 8, each side of the profile was examined independently, in order to

determine to which frame in the library it is most similar. Once this was determined, the

orientation angle of the bacteria was calculated by simple geometry.

2.3 Computerized tomography

Tomography refers to the cross sectional imaging by illuminating an object from many

different directions, followed by three dimensional reconstruction. This method was first

applied in medical applications and it enabled doctors to view high resolution 3D images

of internal organs with minor risk to the patients health. The first medical application

used x-ray to form images of tissues based on their x-ray attenuation coefficient. Additional

methods were invented later, using radioactive isotopes, ultrasound waves and magnetic

resonance.

In the following the mathematical basis of non-diffracting source Computerized Tomog-

raphy (CT) is introduced. In order to keep the arguments and calculations tractable, the
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FIG. 7: Height library frames of an E. coli bacterium. The first frame (No. 5) was taken far below

the focal plane of the objective. Each of the following frames were taken at a distance of 0.3µm in

the upward direction from the previous frame. The focal plane is estimated to lie between frames

13 and 14.

analysis is presented for a 2D object. Even though the generalization to 3D is geometrically

complex, the method fundamentals are similar to those in the 2D analysis.

When a two dimensional object is illuminated by parallel rays, the decay of the radiation

due to absorption by the object is given by:

Iθ(t) = I0exp

[
−

∫

(θ,t)line
µ(x, y)ds

]
(5)

where t is a coordinate along the detectors array, s is a coordinate along the axis of the ray

and the (θ, t) line definition is described in Fig. 9. The function µ(x,y) is the attenuation

coefficient which is assumed to be proportional to the mass density of the object.

We can now replace the line integral with a surface integral by introducing Dirac delta
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FIG. 8: Intensity profiles of the trapped bacterium shown in Fig. 6 (Black), library frame No. 9

(red) and library frame No. 18 (green). Note the matching of the trapped bacterium profile with

frame No. 18 on the left and with frame No. 9 on the right. The trapping angle was estimated to

be 50o.

function to obtain the Radon Transform formula:

Pθ(t) =
∫ ∞

−∞

∫ ∞

−∞
µ(x, y)δ(xcosθ + ysinθ − t)dxdy (6)

where the projection P is related to the intensity by the relation Pθ(t) ≡ log I0
Iθ(t)

. Given

the line projection data at different orientations θ, it is possible to reconstruct the original

image. This is done by first Fourier transforming the projections set into the frequency

domain. The Fourier Slice Theorem states that each 1D projection equals a slice of the

original object 2D Fourier transform, oriented at the corresponding angle, as described in

Fig. 10. It follows that in order to reconstruct the image, the next step is applying a 2D

inverse Fourier transform on the combined projections in the frequency domain.

Although in practice more complications are introduced in the reconstruction both math-

ematically and conceptually (in addition to the three dimensional analysis required), the

simple prescription described above represents the essence of tomography.
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FIG. 9: An arbitrary shaped object is illuminated by parallel beams positioned at distance t from

the object center, directed along the s axis which is tilted by angle θ with respect to the y axis. An

array of sensors is positioned along the t axis to probe the light intensity decay due to absorption.

2.4 Single Photon Emission Computerized Tomography

Among different tomography methods and setups which are available and in use, the most

relevant one for the current research is the Single Photon Emission Computerized Tomog-

raphy (SPECT). Whereas in conventional x-ray tomography the attenuation coefficient of

tissue is used to deduce information about biological objects, emission CT uses the decay of

radioactive isotopes to image its distribution. The isotopes may be either inhaled or injected

to the patient. Gamma-ray photons, which are a product of the nuclear decay, are collected

outside the patient body and used as an indicator of the isotopes distribution. Since the

emission process is assumed to be isotropic, in an ideal system where no absorption occurs,

the number of photons that will reach a collimated detector will be proportional to the

number of isotopes along a line pointing from the detector through the body in the direction

of the collimator. Such line is denoted by R2R1 in Fig. 11. Therefore by replacing the

attenuation coefficient with the mass distribution in the projection function definition, the
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FIG. 10: A schematic description of the projections 2D reconstruction. Left: A projection line

is probed at a certain tilting angle and its Fourier transform is then calculated. Center: The

projection is placed in the frequency domain at the same orientation as it was taken at. Right:

After a few iterations a two dimensional Fourier transform of the projections is formed. By the

Fourier Slice Theorem the 2D transform formed in that manner equals the attenuation functions

Fourier transform.

Radon Transform written in Eq. 6 is valid for photon emission tomography.

FIG. 11: In typical single emission tomography configuration a collimated detector is used for

imaging a distribution of gamma-rays distributed source

A major difficulty in tomographic imaging of an emitting source is caused by the attenu-
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ation that photons undergo during their travel from the emitting nuclei to the detector. The

absorption will cause a point source positioned near the detector (denoted by A in Fig. 11)

to have a stronger signal than a source that lies further away (such as point B in Fig. 11).

The effect on the reconstruction image is most easily seen for a uniform distributed object.

The peripheral areas of the object will appear to contain more isotopes than the center, as

shown in the simulation results of Fig. 12.

FIG. 12: Four reconstructions of Gamma-ray emitting disk for different values of the attenuation

coefficients, µ.

The effect of radiation decay therefore requires a modification to the Radon transform

of Eq. 6. Several methods were proposed [45–48] to handle attenuation compensation.

One way is to add to each point source a corresponding weighting term in the sum of the

contributions along each line:

Pθ(t) =
∫ ∞

−∞

∫ ∞

−∞
µ(x, y)exp [−µ(d− s)] δ(xcosθ + ysinθ − t)dxdy (7)

where d and s are described in Fig. 9. Tretiak and Metz have shown [49] that the attenuation

compensation reconstruction of µ(x, y) is given by:

µ̂(r, φ) =
∫ 2π

0

[∫ ∞

−∞
Sθ(rcos(θ − φ)− t)h(t)dt

]
exp [µrsin(θ − φ)] dθ (8)
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where Sθ(t) = Pθ(t)exp [µd] and provided h(t) fulfills certain conditions. An example of

attenuation compensation applied to a real object is presented in Fig. 13.

FIG. 13: On the left: Image reconstructed from real attenuated projections. On the right: Image

reconstructed from real projections with attenuation compensation. Images were taken from Ref.

45.

2.5 Sufficient data collection

One the main concerns in tomography is to collect a sufficient amount of data so that

the reconstruction would be of satisfying quality. We distinguish the spacial amount of data

in each projection (spacing between successive detectors), from the number of projections

captured at different orientations. For a given sensors array, the distance between two

successive sensors is denoted by d. This length, d, introduces a frequency cutoff in the

images frequency domain, denoted by fc. This cutoff is determined by the Nyquist-Shannon

sampling theorem [43, 44], and is given by: fc = 1
2d

. The space domain resolution is then

determined to be ' 2d. The second factor to limit the resolution is the angle spacing

between successive projections. In order to analyze the effect of this spacing let us refer to

the frequency domain reconstructed image presented in Fig. 14. Note that the disk radius,

fc, is the highest frequency attainable. Since the tangential spacing varies with the radius,

we shall focus on the worst case which is at the disk circumference. This spacing is given by

ft = 1
2d

π
Nproj

where Nproj is the number of projections. On the other hand, the radial spacing

is fr = 1
dNdetect

where Ndetect is the number of detectors (equals to the number of points along

a radius). The criterion for the angle spacing between consecutive projections should be

such that the tangential spacing will not exceed the fixed radial spacing. This provides the

following relation:
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Nproj

Ndetect

' π

2
(9)

FIG. 14: Sketch of the reconstructed image in the frequency domain

2.6 The effect of noise on the reconstructed image

A significant drawback of emission tomography is the reduction in the number of radiating

isotopes with time, which directly limits the measurement period. In SPECT measurements,

the amount of isotopes inserted into the body is limited by health restrictions. This limits

the exposure time of the images taken, which in turn reduces the signal. The signal is

further lowered by the collimators installed on the detectors. Such limited signal power

requires special attention to the noise. It can be shown that by adding white noise to the

projections, the standard deviation of the reconstructed image is given by:

σ2 = πS0

∫ ∞

−∞
|w|2|G(w)|2dw (10)

where S0 is the square of the noise amplitude and G(w) is a smoothing filter that has to

be chosen. A cutoff frequency will prevent the divergence of the integral. This relation

shows that in order to reduce the effect of the noise we should choose a filter such that the
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area under the function |w||G(w)| will be as small as possible. On the other hand, from

the reconstruction integral (not shown) it appears that |w||G(w)| should be as close to |w|
as possible, in order to avoid image distortions. This tradeoff between distortion and noise

has to be examined carefully while taking into account the noise amplitude and optical

abberations of the system.

2.7 Overview of particle tracking and discretizaiton errors

Microscopic particles are used in a wide range of experiments to monitor the dynamics of

objects that cannot be directly visualized. Such particles are also used as tracers in flows or

as microprobe for various environments. Quite often these particles are spherical beads of

sizes raging between 0.1µm to several µm. Quite a few tracking algorithms have been used in

experiments without a full understanding with regards to their accuracy. In video tracking

there are several sources of errors. It is customary to divide the errors in two categories:

random and systematic. Random errors (noise) are referred to as limiting the ’precision’

of the method while systematic ones (bias) affect the ’accuracy’. While each experimental

system has its own characteristics, there is one source of bias that is generic, namely, the

bias due to the digitization of the image, b.

In our work we described the behavior of the discretization bias and we have shown that

it can be significantly reduced (see section 4). For this purpose we developed an algorithm

that allows to track symmetric particles with sub-pixel accuracy, the Symmetry Algorithm.

This symmetry algorithm includes a new feature, namely, interpolation. We show that the

discretization bias, b, is composed of two parts that to a good approximation are additive.

That is, the bias due to the intensity discretization itself, bD, and that due to interpolation,

bI . Asymptotically, bD ∝ N−1N
1
2
1 , where N is the number of gray levels and N1 is the

number of pixels in half of the image of the symmetric particle (see Fig. 15). Moreover,

in the case of linear interpolation, bI ∝ N2
e g(ε) where Ne is the number of extrema of the

intensity function, ε is the displacement of the bead center with respect to the pixel center

and g(ε) is an antisymmetric function that is almost entirely independent on the intensity

function of the particle image, as shown in Fig. 16.
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FIG. 15: Variation of bD as a function of the number of grey levels, N , using either linear (circles)

or spline (squares) interpolation for a Gaussian with σ = 10. The straight line represents our

theoretical predictions.

3. Research proposal

This research proposal is focused on applying SPECT which is conventionally used on

macroscopic human organs to microscopical objects in order to observe protein 3D structures

and their dynamics within single E. coli cells. Several technical modifications of the SPECT

setup are necessary. First, a microscope is introduced into the system in order to observe

the micron sized objects that are being studied. Next, instead of radioactive isotopes, our

light source consists of specific fluorophores that are attached to particular proteins. The

molecular absorption of fluorophores triggers the emission of another photon with a longer

wavelength. The emitted radiation is collected by the microscope objective lens, and is then

imaged by a CCD camera. The small dimensions of cells presents an additional complication.

While in SPECT imaging the dimensions of the imaged object are usually larger by several

orders of magnitude than the wave length of the emitted photons, our objects will be close to

the optical resolution limit, as often happens in light microscopy. For example, the dimension

of a bacteria is ∼ 3µm while a typical fluorescent photon wavelength is ∼ 0.5µm. Thus

resolution has to be carefully examined and treated, as discussed in section 2.5. Another
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FIG. 16: Variation of bI as a function of ε, the displacement of the bead center with respect to

the pixel center, using linear interpolation for a Gaussian with σ = 10 (circles), a decaying cosine

(pluses) and a cosine (triangles). The value of bI for the decaying cosine and the cosine functions

have been normalized such that they are equal to those of the Gaussian at ε = 0.1. The reason

that only one kind of symbols (circles) is seen is that the others that are of the same size are almost

precisely covered by the circles.

fundamental difference between our microscopic SPECT and regular SPECT is that we can

not rotate the sensors array while the object remains static. Instead, we rotate the bacteria

while the imaging system remains fixed. For this purpose we developed a technique that

enables the control of trapped elongated objects orientation (see section 2.2). In addition

to the alignment of bacteria, in order to perform tomography reconstruction, the angle of

alignment has to be determined. A method was developed for this purpose and is described

in section 2.2. Our technique represents an alternative to current methods that provide three

dimensional images. The method we propose to obtain 3D images has some advantages over

other approaches that were discussed in section 1.2. First, no scanning of the XY plane is

needed, which should improve time resolution. Second, the trapped object is suspended in

solution, rather than being placed or tethered to the sample glass. This will help avoiding
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optical reflections from the cover glass and altering the bacteria natural growing conditions.

The objectives of this study are as follows:

1. To determine the number of division proteins subunits in the divisome.

2. To characterize the divisome proteins configuration and in particular the distribution of

the protein structures along the Z-ring.

3. To examine the relation between the MinD and MreB helical structures.

4. To characterize the MinD dynamic mechanism in the polar zone and in the opposite half

of the cell.

4. Appendix

Particle tracking and discretizaiton errors

4.1 Introduction

Microscopic particles are used in a wide range of experiments to monitor the dynamics

of objects that cannot be directly visualized. Such particles are also used as tracers in flows

or as microprobe for various environments. Quite often these particles are spherical beads

of sizes raging between 0.1µm up to several µm. For example, attaching a bead to a single

kinesin molecule Sheetz et al. [50] monitored its motion along a microtubule. For this

purpose, they have developed a sub-pixel video tracking method that uses the correlation

function between the images in the different frames. The precision was estimated to be of

about 2nm corresponding to about 1/40 of the pixel size.

An alternative approach relies on fluorescent particles or dyes. Tracking single fluo-

rophores has allowed to monitor the dynamics of biomolecules in the cell membrane [51–53],

in model membranes [54, 55], in solution [56] and inside cells [57]. This field was reviewed

in Refs. [58, 59]. Recently, the motion of myosin V on actin was studied using single fluo-

rophores bound to the kinesin molecules [60]. Special care was required in order to prevent

the fluorophore from bleaching and to optimize the signal to noise ratio (S/N). The tracking

was done using a Gaussian fit to the intensity profile leading to 1.5nm precision.

Quite a few tracking algorithms have been used in experiments without a full understand-

ing with regards to their accuracy. The performance of four different tracking algorithms

was compared by Cheezum et al. [61]. cross-correlation [50, 62, 63], sum-absolute difference

[64], centroid [53, 65] and direct Gaussian fit [55, 66] algorithms and have shown the way
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in which the various sources of error contribute to the accuracy of the different techniques.

The study of Ref. [61] was focused on finding the best way to monitor the dynamics of a

single fluorophore. It found that, due to the large S/N, the Gaussian fit is the most accurate

algorithm for such experiments. For the case of microscopic particles that are larger than

the point-spread function (PSF), they found that the cross-correlation method is the most

accurate.

In video tracking there are several sources of error. It is customary to divide the errors in

two categories: random and systematic. Random errors (noise) are referred to as limiting the

’precision’ of the method while systematic ones (bias) affect the ’accuracy’. Although noise

can be reduced by averaging, this limits the time resolution. Even in experiments where this

is not an issue, averaging is limited by the stability of the system. On the other hand, one

expects that a better understanding of the experimental system would allow to eliminate, or

at least reduce the bias. While each experimental system has its own characteristics, there

is one source of bias that is generic, namely, the bias due to the digitization of the image,

b. The purpose of this study is to describe the behavior of the discretization bias and to

show how it can be significantly reduced. For this we choose to use a simple algorithm that

allows to track symmetric particles with sub-pixel accuracy, the symmetry algorithm. We

show that the discretization bias, b, is composed of two parts that to a good approximation

are additive, namely, the bias due to the intensity discretization itself, bD, and that due to

interpolation, bI . Asymptotically, bD ∝ N−1N
1
2
1 , where N is the number of gray levels and

N1 is the number of pixels in half of the image of the symmetric particle. Moreover, in the

case of linear interpolation, bI ∝ N2
e g(ε) where Ne is the number of extrema of the intensity

function and g(ε) is an antisymmetric function that is almost entirely independent on the

intensity function of the particle image.

4.2 The symmetry algorithm

In the case of both microscopic beads that are larger than the PSF and point sources

the ideal image has circular symmetry. This symmetry can be used to find the center of

the particle using the lines of symmetry in both the x and y directions, Lx : y = y0 and

Ly : x = x0. The center of the particle lies at the intersection of the two symmetry lines,

(x0, y0). Each of the symmetry lines is found by searching for the minimum of the asymmetry

functions, Sy(εx) and Sx(εy), where εx and εy generate sub-pixel shifts of the symmetry center
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in the x and y direction respectively. For the case of Ly,

Sy(εx) =
N1∑

i=1

N1∑

j=−N1

|f(i, j, εx)− f(−i, j, εx)| , (11)

where i runs over the pixels to the right of Ly, excluding the i = 0 pixels, namely, the pixels

through which Ly passes, j runs along the columns of the entire image and f(i, j, εx) is the

intensity value at (i− εx, y). Since digital images only provide intensities of entire pixels, we

obtain the value of f(i, j, εx) by interpolation between the values of adjacent pixels. In this

work, two types of interpolation were used: linear and spline. While linear interpolation

is more analytically tractable, the spline interpolation leads to very small values of the

corresponding bias, bI . Sx is obtained by exchanging the roles of i and j and of x and y in

Eq. (11).

For a perfectly symmetric intensity function whose values are known at all (x, y) points

(no pixels), the minimum of Sx and Sy corresponds to the exact center. However, in actual

images the symmetry is weakly perturbed due to optical aberrations, noise and discretization

effects. Assuming an ideal optical system that preserves the circular symmetry and ignoring

the effect of experimental noise, we are left with the bias that is due to discretization, b. It

is defined as

b = ε1 − ε0 , (12)

where ε1 is the measured shift obtained from the minimization of the experimentally mea-

sured, discretized S’s and ε0 gives the position of the true symmetry center of the particle. In

the next section, we analyze the behavior of the bias for various types of intensity functions.

4.3 The one-dimensional case

In order to illustrate the behavior of the bias we use three symmetric functions, f1, f2,

and f3, where the first is a Gaussian, the second is an exponent that decays in an oscillatory

manner and the third is a cosine,

f1(x) = exp

(
− x2

2σ2

)
, (13)

f2(x) = exp

(
−|x|

a

)
cos

[
2πx(n + 1/2)

A

]
, (14)

f3(x) = cos

[
2πx(n + c/2)

A

]
. (15)
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While the Gaussian represents a good approximation to the PSF, f2 and f3 are reminiscent

of the images of defocused beads that display multiple interference fringes. We perform on

these functions a discretization similar to that of a noise-less one dimensional digital camera

with N gray levels and 2N1 + 1 pixels.

In a digital CCD the value of the intensity function in a given pixel results from integrating

the light intensity over the active area of the pixel. We simplify the process by taking the

value of the intensity function at the center of the pixel. The pixels are chosen to be of unit

length and centered on integers, such that, in the first digitization step, D1,

D1 : fl(x) → fl(i) , (16)

where l = 1, 2, 3 and −N1 ≤ i ≤ N1. The second digitization step, D2, approximates the

intensity of the pixel by the closest available gray level,

D2 : fl(i) → f̃l(i) , (17)

where f̃l(i) = fix[fl(i)] and the function fix rounds the value of fl(i) to the integer value after

the function has been stretched to cover the entire dynamical range between 0 and N . Since

the functions we study are symmetric and their symmetry center is at the middle of the

central pixel, i = 0, the symmetry is preserved under discretization, D, where D = D2 ·D1.

We shift the image by ε0 ≤ 1 from the origin, Tε0 : f(x) → f(x− ε0) and only then discretize

using the operator D, f̃l(i, ε0) = D · Tε0fl(x). Due to the mismatch between the pixel array

and the symmetry center, the discretization will perturb the symmetry of the function such

that f̃l(i, ε0) is only approximatively symmetric. As a consequence, searching for ε0 using

the symmetry algorithm of Sec. 4.2 will lead to a slightly different value, ε1. The bias is

defined as in Eq. 12, b = ε1 − ε0. In what follows, we study the behavior of the bias as

the various parameters of the problem change, namely, the number of gray levels, N , the

number of pixels, N1 and the various parameters of the intensity functions, fl(x).

4.4 Dependence of b on N

In what follows, we express all lengths in units of pixels. In Fig.17 and Fig.18 we show

the behavior of b for f1 and f2 as a function of N for a particular shift ε0 = 0.1 and

linear interpolation. For both functions the bias oscillates wildly. However, while for the

Gaussian it seems to oscillate around zero, in the case of f2 it clearly has a finite average

value. In fact, the average of b in Fig.17 is < b1,L >= 1.81 · 10−4 and in Fig.18 it is
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< b2,L >= 4.66 · 10−3. When the same calculation is made with spline interpolation the

oscillations appear to be quite similar in size but the corresponding averages are different,

namely, < b1,S >= −1.97 · 10−5 and < b2,S >= −2.08 · 10−4. This suggests that the

fluctuations in the bias are determined by the D2 operator which transforms the function into

its approximation in terms of N gray levels while the average bias is due to the interpolation.

To verify this assumption, we can, in our computation, turn off the D2 step to obtain a bias

that is due to the interpolation alone, bI . Indeed, for the case of the linear interpolation the

values of bI that we obtain are similar to those of the corresponding < b >. Specifically,

bI,1,L = 1.87·10−4, bI,2,L = 4.00·10−3, where the second index indicates for which function this

was calculated and the third which type of interpolation was used (L =linear, S =spline).

However, for the case of the spline interpolations, the values of bI that we find are completely

different than those of bI , that is, bI,1,S = 1.36 · 10−7 and bI,2,S = −1.18 · 10−6. The

discrepancies between < b > and bI are due to the finite size averaging of < b >. These are

relatively small for large bI as is the case for the linear interpolation, but become very large

for the spline case. Performing the average of b at large values of N we obtain values that are

closer to those of bI . In particular, when b is averaged over 107 ≤ N ≤ 1.0001 ·107 we obtain

< b1,L >= 1.87 ·10−4, < b2,L >= 4.01 ·10−4, < b1,S >= 1.87 ·10−7 and < b2,S >= −1.36 ·10−6

showing clear convergence towards the corresponding bI ’s. This indicates that the average

bias is due to the interpolation error while the fluctuations around this average are due to

the discretization error and that one can approximatively decompose b, such that,

b ∼= bI + bD , (18)

where bD is the bias that is due to the D2 operator. In our algorithm the interpolation

is performed after the discretization step and therefore its result depends on that of the

interpolation. This leads to some coupling between the bI and bD and to the approximate

equality sign in Eq. (18).

We notice that the magnitude of bD seems to behave similarly for both types of interpo-

lation.

4.5 Dependence of bD on N

Treating bD as an independent entity we show that its behavior can be statistically

described to a good approximation. The values of an arbitrary function are unrelated to

the gray levels imposed by the camera. It is therefore a reasonable assumption that, on
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FIG. 17: Variation of the bias as a function of the number of grey levels, N , using linear interpo-

lation for N1 = 40 Gaussian, f1, with σ = 10

0 5000 10000

-0.01

0.00

0.01

(b)

b

N

FIG. 18: Same as Fig.17 for a decaying exponent, f2, with a = 10, A = 40 and n = 2

average, these values are homogeneously distributed between each two adjacent gray levels.

One expects that this picture becomes more accurate as N increases. This assumption can

be used to obtain an estimate of the asymmetry function of Eq. (11) for a particular value of

N , SD(N). Using this asymmetry value, we approximate the behavior of the corresponding

bias. To estimate S, we use a further simplification of the asymmetry algorithm. Instead
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of shifting the intensity function, we assume that the discretization errors in the opposite

pixels, i-th and −i-th, are uncorrelated. Estimating the resulting asymmetry we then obtain

the shift required in order to reduce it to a minimal value.

Let ∆fi denote the error in the function due to discretization in pixel number i. Then,

if fi = f−i,

SD =
N1∑

i=1

| ∆fi −∆f−i | . (19)

If ∆fi are random variables uniformly distributed in (−a, a), where a = 1/2N , then

<| ∆fi −∆f−i |>=
2

3
a , (20)

and

< SD >=
2N1

3

f(0)

2N
. (21)

Similarly, we can calculate the standard deviation of SD, Std(SD). However, Std(SD) also

depends on the correlations between ∆fi and ∆fj. For the lowest order approximation, we

assume that < ∆fi∆fj >=< ∆fi >< ∆fj >. Then,

Std(SD) '
√

2N1

3

f(0)

2N
. (22)

We can now relate the estimated asymmetry value, SD, to a correspondingly approxi-

mated value of the discretization bias, bD. For this we calculate the degree of asymmetry,

S, resulting from translating a symmetric function, f . The asymmetry is measured with

respect to the original center of symmetry. For simplicity, we consider the continuous case

over the entire (−∞,∞) interval. Moreover, we approximate S by a simpler expression, S1,

which is the same as that of Eq. (11) only without the absolute value. Clearly, S1 ≤ S and

equality is obtained for functions monotonic in (0,∞). For small translations, Tε, where

ε → 0,

S1 = 2f(0)ε . (23)

Using this result in Eq. (22) we obtain

Std(bD) ∼
√

2N1

12N
, (24)

where ∼ indicates that due to the several approximations this should be regarded as no more

than an estimate. In Fig.19 and Fig.20 we test the validity of Eq. (24) for the case of f1

and f2. Here the value of bD is obtained from Eq. (18) where bI is computed by turning off

discretization and the approximate equality is assumed to be exact. The standard deviation
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of bD is computed by averaging over consecutive intervals of N of 102. Notice that for both

functions Std(bD) ' αN−1 where α is larger than the theoretical prediction of Eq. (24),

αT =
√

2N1

12
by a factor, Rα, that was found numerically to range between 1 and 2. One

reason for which Rα > 1 is that a positive quantity, namely, the correlations, were assumed

to vanish in the derivation of Eq. (24). Another source of discrepancy between theory and

numerics, that however works in the opposite direction, is due to the effective number of

pixels, N1, that is used in Eq. (24). This problem is particularly important for the case of

the Gaussian, f1. Since it is a rapidly decaying function, for σ = 10, the values of f1 in the

pixels | i |≥ 37 are small and will be discretized to zero for all the values of N shown in Fig.

1a. For smaller N ’s, the values of the function in these pixels are too small to produce a

significant contribution to the discretization error and therefore, the effective value of N1 is

both smaller than 40 and its size depends on N .
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FIG. 19: Variation of the bias as a function of the number of grey levels, N , using linear interpo-

lation for N1 = 40 Gaussian, f1, with σ = 10

On the other hand, computing the average of bD, < bD >, in the same way as Std(bD),

we find a different behavior from that predicted by Eq. (21). Specifically, < bD > simply

fluctuates around zero. This is due to the difference between the actual calculation required

by the symmetry algorithm and our simplified version used for deriving the analytical ap-

proximations of Eqs. (21) and (22). In the simplified algorithm, the finite < SD > is due

to averaging over a positive definite quantity. On the other hand, in the full symmetry
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FIG. 20: Same as Fig.19 for a decaying exponent, f2, with a = 10, A = 40 and n = 2

algorithm the restoring shift, ε1, will be such as to compensate a finite < SD >.

4.6 Dependence of bI on ε

For practical purposes, the most important fact concerning the interpolation bias, bI , is

that when using spline interpolation it becomes so small (see Sec. 4.4) that it is negligible.

For example, for the quite extreme case of f2 with the parameters of Fig.18, only CCD’s

with more than 19 bit/pixel would reach the range where bI,S,2 ∼ bD. Moreover, in most

applications such low levels of discretization errors are most likely negligible relative to

the other sources of error, e.g. noise. On the other hand, since spline interpolation is a

computationally expensive method it is worthwhile to understand the behavior of bI for the

case of the linear interpolation.

The interpolation bias, bI depends on the value of ε. In Fig.16 we show that bI ∝
g(ε) where g(ε) is practically independent of the form of the intensity function. From the

definition of the asymmetry function, Eq. (11), it can be shown that g(ε) is antisymmetric,

g(ε) = g(−ε).

It is important to point out that the minima of the asymmetry function, S(ε), of Eq.

(11), is of not the usual quadratic type when using linear interpolation. Instead, the minima

are non-differentiable corners that are due to the absolute value function in the definition

of S(ε). Each term in the sum of Eq. (11) reaches a minimal value at a particular value of
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ε, εi, where the corresponding pair of pixels, i and −i, contribute equally. On both sides

of εi, the i-th term depends linearly on ε. As a result, S(ε) is composed of linear segments

that change slope discontinuously at εi. It is one of the terms of the sum, im, which in

fact determines the position of the minimum, εim . Continuously modifying the intensity

function, f , for example, by changing one of its parameters, leads to points where the value

of im changes, that is, a new pair of pixels determines the position of the minimum. At such

points in parameter space, the value of bI changes discontinuously (see Fig.21). The

size of the discontinuity is determined by the difference between the adjacent εi’s. As the

number of pixels that contribute to S(ε) grows, the εi’s grow denser and the corresponding

jumps in bI get smaller. In the limit of small number of pixels however, the discontinuous

jumps will dominate the quantitative behavior of bI . Notice that the fact that jumps occur

at equidistant values of σ is particular to the case of the Gaussian. For the decaying cosine,

f2, the jumps appear in a complex pattern when the value of A is varied. Clearly, further

work is required in order to fully understand the relation between the intensity function and

the pattern of these discontinuities in bI . Another feature of the bI(σ) of Fig.21 is that,

overall, it decreases as σ grows. Qualitatively, this is due to improved averaging as more

pixels participate in determining the behavior of S(ε).
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FIG. 21: Variation of bI as a function of a parameter of the intensity function for the case of the

Gaussian, f1, where we change its width, σ, for linear interpolation, ε = 0.1 and N1 = 40.
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4.7 The two-dimensional case

Several aspects of the behavior of the bias have not been discussed in detail in Sec. 4.3.

The main issue is the extension of our analysis to the two-dimensional (2D) case. We find

that all our findings directly generalize to 2D for objects with circular symmetry. Each of

the components of b, bx and by, behave analogously to the one-dimensional b. The standard

deviation of the discretization bias, bD, is overestimated by Eq. (24) by a similar factor only

that now the number of pixels, N1, is significantly larger. Also in 2D, bI is negligible when

spline interpolation is used and behaves similarly to what was found in 1D as a function of

NE and ε.

4.8 Discussion and conclusions

An experimental verification of our predictions will require special care in order to sepa-

rate the bias due to discretization from the other sources of error. The system should have

low noise and drift levels such that using time-averaging one can reduce the effective noise to

a range that is significantly below the bias due to discretization, ‖b‖. In such a system and

if the sample can be rotated around the optical axis with an error, ∆R, such that ∆R ¿ ‖b‖,
one can separate the total bias, bT, from the random errors. This approach is standardly

used in mask alignment in lithography where bT is referred to as tool induced shift [67].

However, bT contains additional contributions from optical abberations and imperfections

of the CCD, e.g. banding, interlace, clock jitter, etc. On the other hand, our predictions

regarding the behavior of b can be used to estimate its size in a particular experiment when

the symmetry algorithm is used for position detection. Moreover, for a particular image one

can calculate b and use it to appropriately correct the experimentally measured position.

The symmetry algorithm is conceptually not very different from the other tracking algo-

rithms studied in Ref. [61]. It is therefore natural to expect that some of its features will

also manifest in the other algorithms.
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