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Abstract

In this work we calculate the growth rates of plasma instabilities

that occur in counter - streaming plasma, during the linear stage.

Although our formalism can detect several kinds of instabilities,

we are particularly interested in instabilities that cause current

�lamentation and generates magnetic �elds. Such instabilities

plasy a key role in particle acceleration in collisionless shocks

and generation of powerful magnetic �elds in astrophysical

phenomena. Most of these phenomena are currently not fully

understood, so a detailed study of the instabilities may shed

light on some of them. Also, the Fast Ignition Scheme for

Interial Con�nement Fusionm, where deutrium - tritium plasma

is ignited by an electron beam, is susceptible to such

instabilities. When they occur, they tend to disperse the energy

and thwart thermonuclear ignition. Thus, a better understand of

the instabilities can improve the design of FIS systems.

In this work we will focus on instabilities that arise in GRB after-

glows. Current theory suggests that the instability erupts when

ultrarelativistic jets emitted from the explosion of the GRB pro-

genitor collide with interstellar plasma. The evolution of the sys-

tem can be divided into two stages. In the �rst stage, only the
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electrons respond to the instability, because they are much lighter

than protons. In the second stage, the protons begin to respond to

the instability, but by that time the electrons have already reached

thermal equilibrium.

The �rst stage has been thoroughly studied in the past few decades,

both experimentally and theoretically. The second stage, however,

is less understood, mainly due to the fact it involves two species

with large mass ratio (which means that the problem contains two

very di�erent time scales).

As was mentioned before, we study only the linear stage of the

instabilities. One must be careful when drawing conclusions from

the linear stage, due to nonlinear e�ects which may alter some

properties of the instability. One example is the thickness current

�laments, which di�ers from the wavelength of the dominant mode

because the �lament tend to coalesce after the linear stage. How-

ever, some properties are preserved even in the nonlinear stage,

like the direction of the wavenumber of the dominant mode, which

determines the pattern of the �laments.

We show that the best condition for magnetic �eld generation is a
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symmetric collision. When the collision is asymmetric, When the

asymmetry is large enough, the dominant mode becomes electro-

static and no magnetic �elds are generated. However, the second

stage can still generate magnetic �elds, even in the case of an

asymmetric collision.

Moreover, the results can be used to direct the attention of com-

puter simulations to the relevant areas in parameter space. Plasma

simulations track trajectories of millions of particles, so even sim-

ple calculations pose a daunting computational task for mod-

ern computes. In order to reduce run times, programmers make

simplifying assumptions on the directions of the electromagnetic

�elds, the wavevector of the instability. Others run simulations

with lower electron - proton mass ratio. Obviously, making a

wrong assumption will cause the simulation to return wrong re-

sults. Therefore, the results of this work can be used to verify

assumptions made in the past, and help choose the assumptions

to be used in the future.

4



Contents

1 Introduction 7

1.1 plasma instabilities . . . . . . . . . . . . . . . . . 7
1.1.1 Two stream instability . . . . . . . . . . . . 8
1.1.2 Weibel instability . . . . . . . . . . . . . . 10
1.1.3 Oblique instability . . . . . . . . . . . . . . 11

1.2 Particle in Cell simulations . . . . . . . . . . . . . 15

2 Motivation 18

2.1 Astrophysics . . . . . . . . . . . . . . . . . . . . . 18
2.2 Fast Ignition Scenario for Inertial Con�nement Fusion 23

3 Methodology 25

3.1 Governing equations . . . . . . . . . . . . . . . . . 25
3.2 Linear stability analysis . . . . . . . . . . . . . . . 27
3.3 Solution of the dispersion equation . . . . . . . . . 30

4 Numerical Analysis 35

4.1 Immobile background . . . . . . . . . . . . . . . . 35
4.1.1 Cold beams of equal densities . . . . . . . . 36
4.1.2 Cold Beams of di�erent densities . . . . . . 40
4.1.3 Warm Beams of equal densities . . . . . . . 44

4.2 Background e�ect . . . . . . . . . . . . . . . . . . 46
4.2.1 Cold beams, cold background . . . . . . . . 47
4.2.2 Cold beams with warm background . . . . 49
4.2.3 Warm beams of equal densities, hot back-

ground . . . . . . . . . . . . . . . . . . . . 50
4.2.4 Warm beams of di�erent densities, hot back-

ground . . . . . . . . . . . . . . . . . . . . 53

5



5 Conclusions 55

5.1 First stage . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Second stage . . . . . . . . . . . . . . . . . . . . 56

A Dispersion equation for cold counter - streaming

beams of equal densities 58

6



1 Introduction

1.1 plasma instabilities

According to the equipartition theorem [1], in a state of equi-

librium, the total energy divides equally between all degrees of

freedom. A corollary of that law is that in the absence of ex-

ternal forces, the equilibrium momentum distribution of an en-

semble of particles is isotropic. Hence, a system of particles with

anisotropic distribution function is unstable, and tends to relax

into an isotropic distribution with the same energy and momen-

tum. In non ionized �uids, equilibrium is attained by collisions be-

tween molecules. Plasmas can also reach equilibrium through pro-

cesses called plama instabilities. Plasma instabilities cause rapid

growth of long range electromagnetic �elds (in contrast to the

short range �elds in the case of collisions). Collisions and plasma

instabilities are competing relaxation processes, so the latter oc-

curs only in collisionless plasmas, i.e. plasmas so tenuous that

collisions seldom occur.

A system of two beams of counter - streaming, collisionless
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plasmas gives rise to several types of plasma instabilities. These

instabilities di�er by the direction of the electric �eld, and the

direction in which it varies. Authors distinguish three major

types of instabilities:

1.1.1 Two stream instability

Bohm and Gross [2] discovered an unstable mode that attacks

counter - streaming plasmas, in which the growing electric �eld

points parallel to the beam, and oscillates in that direction. Bune-

man [3] extended the analysis to take into account beams of com-

posed of di�erent particles (such instability is often referred to as

the Buneman instability). Since all the variables vary and point

along the same direction, this instability is the simplest to analyse

and simulate by a computer programme. This instability is said

to be electrostatic because the wavenumber and the electric �eld

are aligned. According to Faraday's law in k space representation

k× E =
ω

c
B (1)
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one can see that this instability does not generate magnetic �elds.

In order to understand this instability on a microscopic level, one

has to consider a beam of cold particles moving in the presence

of a spatially oscillating electric potential. The potential pro�le

in this case resembles an alternating pattern of hills and troughs.

Particles slow down when they climb up a potential hill, and ac-

celerate when they tubmle into a trough. Therefore, the charge

density near hills should increase, while the charge density near

troughs should decrease. Such charge distribution would gener-

ate an electric �eld that reinforces the initial perturbation, and

this closes the feedback loop. Obviously, this instability cannot

grow inde�nitely, so at some point another mechanism must kick

in and stop the instability. This is called saturation. The satura-

tion mechanism in the two stream instability is particle trapping

in potential troughs; when the peak of the electric potential is

greater than the kinetic energy of the particles, then they become

trapped between two adjacent peaks and the instability stops [7].
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1.1.2 Weibel instability

Weibel [4] and Fried [5] discovered a mode in which the growing

electric �eld points in the direction of the beam, but varies perpen-

dicular to the beam. This instability is said to be electromagnetic

because the electric �eld is perpendicular to the wavenumber, so

according to Faraday's law 1, magnetic �eld generation is maxi-

mal, for a given length of E,k. In order to understand this in-

stability on a microscopic level, one has to consider two beams of

charged particles moving parallel and anti parallel to the z axis

(see �gure 1). Suppose now that we add a small magnetic �eld

bx̂ cos (ky) (i.e. points along the x axis, and varies along the y

axis). Particles moving in the positive z direction will be scat-

tered away from the odd nodes, and concentrate around the even

nodes, while particles moving in the negative z direction will be

scattered away from even nodes, and concentrate around the odd

nodes. As a result, there will be a nonzero net current near nodes.

The current will induce a magnetic �eld that will reinforce the ini-

tial disturbance, and that, in turn will amplify the current and so
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on [25]. The instability generates electromagnetic �elds and cre-

ates current �laments [26]. This is the reason why the Weibel

instabilty is sometimes called �lamentation instability. The satu-

ration mechanism in the Weibel instability is magnetic trapping

of particles in �laments [8]; when the magnetic �elds are so strong

that the Larmor radius becomes smaller than the thickness of the

�lament, particles entering the �lament will move in closed orbits.

A more detailed study of the saturation mechanisms is given in

[19]. Another phenomenon that occurs during saturation is the

coalescence of current �laments [9], due to the fact that like cur-

rents attract and opposite repel each other [18,19]. This means

that the initial wavelength of the disturbance may be di�erent

from the �nal wavelength of the �laments.

1.1.3 Oblique instability

Bludman, Watson and Rosenbluth [6] have shown that in some

cases the dominant instability might be of a third type: an oblique

mode, where the electric �eld points and varies in acute angles to
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Figure 1: Sinudoidal curve describes intensity of the magnetic �eld. The horizontal

arrows describe the original direction direction of the charged beams. The dashed

lines describe the direction under the in�uence of the magnetic �eld (taken from

ref [25])

the beam. This instability is the hardest to analyse, and therefore

very little is known about it. It recieved attention only recently

[42,43] due to its possible role in the Fast Ignition Scheme for

Interial Con�nement Fusion.

The density patterns that form during each of the three instabil-

ities are shown in �gure 2.The Weibel instability creates current
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Figure 2: Simulations preformed in [33] demonstrate the particle density
patterns that form during each of the instabilities. In the Filementation
instability, the particles concentrate in pipe-like structures paralell to the
direction of the �ow. In the two stream instability, the particles concentrate
in planes perpendicular to the direction of the �ow. In the oblique instability,
the particles concentrate in a zig zag pattern. Original �ow direction is along
the y axis.
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�laments parallel to the direction of the original beam. In the

two stream instability, the density varies only along the original

direction of motion, so the particles concentrate in sheets perpen-

dicular to the beam. In the oblique instability the electric �eld

and the wavevector are at an acute angle to the beam, so the

particles tend to concentrate in a zig zag pattern, such that every

linear section is at an obtuse angle to the beam.

This document focuses on the initial stage of the instabilities. In

the initial stage, each mode grows exponentially with time, in-

dependent of the other modes. In this stage, the equations are

greatly simpli�ed by the assumption that the unstable modes

are very small, so we can use perturbation theory (see below).

However, �nding the unstable spectrum in the general case poses

a daunting task. Many previous calculations were mitigated by

simplifying assumptions on the direction of the electric �eld, the

direction in which it varies, the particle distribution function and

density ratio [10, 11,12]. In this document we will �nd the unstable

spectrum without mitigating assumptions, and use this solution

to analyse plasma instabilities that occur in astrophysics.
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1.2 Particle in Cell simulations

A computer could, in principle, follow the trajectory of each parti-

cle and compute the force due to the others. However, since it has

to cycle through all pairs, the complexity of such algorithm would

be O
(
n2
)
(where n is the number of particles). Since this algo-

rithm turned out to be too slow to be practical, a faster algorithm,

the Particle In Cell method, was developed.

In the PIC method, space is divided into a discrete grid, and the

average charge density and current are evaluated at each vertex.

Afterwards, The �elds are expanded in Fourier series, and the

programme solves Maxwell's equation for the coe�cients. Finally,

the programme solves the equation of motion for the velocities and

advances the particles in time and space.

The complexity of such algorithm is O (n), but the discrete grid

introduces numerical artifacts to the results. One of the these

artifacts is aliasing, which occurs because the distance between

particles is smaller than the cell size. Another is the Courant -
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Friedrich restriction

k c∆t < 2 (2)

Where k is the wavenumber, c is the speed of light and ∆t is the

time step. When this condition is violated, the algorithm becomes

numerically unstable. This means that the time step limits the

maximum k of the modes the programme can reliably simulate.

Another di�culty in PIC simulations arises when considering mul-

tispecies plasma, escpecially when the particle mass ratio is large

(as in electron - proton plasma). Each species introduces its own

timescale to the problem (namely, the inverse of the plasma fre-

quency). The time step is determined by the timescale of the

lighter species, while the relaxation processes can take as long as

dozen time scales of the heavier species [22]. Because of these

constraints, a 3D simulation of electron - proton plasma is cur-

rently too intensive to be practical. Instead, simulations either

examine two species plasma with smaller mass ratio [23] or with

less dimensions [22],[30].

We presented here a brief description of the PIC method. A more
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detailed discussion is given in [24]
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2 Motivation

In this section we will describe two physical phenomena in which

plasma instabilities play a key role. The purpose of this section is

to elucidate the motivation for studying these instabilities. The

two phenomena are GRB afterglow in astrophysics, and the second

is the Fast Ignition Scheme in Inertial Con�nement fusion. In the

�rst, the Weibel instability is an essential ingredient, while in the

latter it is an undesired side e�ect. Although we will later on focus

solely on the astrophysical context, we wish to mention the other

application in order to show that this discussion may also have a

practical use.

2.1 Astrophysics

Gamma ray bursts are intense �ashes of gamma radiation from

outer space that last for a fraction of a second. They have been

extensively studied since their serendipitous discovery in 1967 [13].

They are believed to be caused by powerful explosions [14] (the

entity that explodes when a GRB occurs is referred to as its pro-
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genitor) that accelerate particles to γ ∼ 102−103 [31,32] (γ being

the Lorentz factor).

Some GRBs are followed by a longer wavelength, longer lived, de-

caying afterglow. According to a model proposed in [15], GRB af-

terglow radiation eminates from ultrarelativistic electrons which

meander in a magnetic �eld. They distinguish two types of ra-

diation. The �rst is synchrotron radiation [16]. This radiation

emerges from particles which move in a helical trajectory in a

constant magnetic �eld, or at least, varies on a length scale much

larger than the Larmor radius. The second kind is jitter radia-

tion [17]. This radiation emerges from particles meandering in

a spatially oscillating magnetic �eld. This model assumes the

magnetic �eld changes on a length scale much smaller than the

Larmor radius, so each particle experiences many random small

angle de�ection during its �ight, so on average it keeps moving in

its original trajectory.

These two types of radiation are in fact two extreme cases of the

same problem, namely, motion of a charged partilce in a magnetic

�eld. Synchrotron radiation corresponds to the assumption that
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Figure 3: The trajectory and beaming angle in synchrotron and jitter radia-
tion (taken from [15])

the beaming angle is much smaller than the de�ection angle, and

jitter radiation to the assumption that the beaming angle is much

larger than the de�ection angle (see �gure 3). It has been shown

that a combination of synchrotron and jitter radiation �ts the

spectrum of a GRB afterglow [15] (see �gure 4).

Over the years, several possible mechanisms for magnetic �eld gen-

eration were examined, but they all turned out to be wither too

weak or too slow, except the Weibel instability [25]. We believe

today that the Weibel instability is responsible for the magnetic

�eld required for jitter and synchrotron radiation in GRB after-
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Figure 4: Comparison of the theoretical and measured afterglow spectrum
(taken from [15])

glows.

The contemporary model for GRB afterglow can be summarised

as follows:

1. The progenitor explodes

2. Dense relativistic jets shoot out

3. The jet collides with interstellar plasma

4. Plasma particles re�ect from the jet front

5. In the jet frame, particles that haven't yet collided with the
jet move toward it, while those that have collided with it
move away from it. Thus, a counter - streaming pro�le is
formed
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Figure 5: Electrostatic energy as a function of time. First rise is due to
electron instability, and second rise due to proton instability. Taken from
[22]

6. The Weibel instability developes. At early times, only the
electrons respond to it because they are much lighter than
protons.

7. The electrons reach a state of thermal equilibirum

8. The protons begin to respond to the instability, in the pres-
ence of the thermalised electron background [18,19]. (see
�gure 5).

9. Magnetic �elds are generated

10. Particles scatter from the magnetic �eld and emit radiation
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One of the standing questions regarding these instabilities is whether

the dominant mode (that which grows fastest in the linear stage)

occurs when the wave vector is perpendicular or oblique to the

beams (if the wave vector is parallel to the beam, then the two

stream instability occurs, and it is of no interest to us in this con-

text because it does not generate magnetic �elds). Many authors

([20] for example) assumed that the dominant mode is perpen-

dicular to the beam. Later on, we will check whether (or more

precise, under what conditions) this assumption is valid.

2.2 Fast Ignition Scenario for Inertial Con�nement Fu-

sion

The purpose of ICF is to ignite and control thermonuclear burn.

In 1994, Tabak et al [21] proposed an ignition technique called

�Fast Ignition Scheme�. Their idea is illustrated in �gure 6

The initial con�guration is a fuel pellet impaled on a gold cone.

At �rst, the laser beams irrdiate the outer shell of the pellet and

compresses the interior by thermal ablation. When the the pellet
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Figure 6: Three stages of FIS (left to right): Lser irradiation, ablative com-
pression and heating by an electron beam

reaches a certain density, another laser beam is �red into the gold

cone, which causes the gold atoms to eject a beam of electrons

into the fuel pellet. The electron beam heats up the fuel, and

thermonuclear burn begins. One of the di�culties in this scheme

is that during the stage when the electron beam from the gold cone

interact with the plasma inside the fuel pellet, plasma instabilities

might develope. Those instabilities tend to disperse the energy

and lower the burn e�ciency. Hence, a better understanding of

those instabilities might help improve the FIS design.
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3 Methodology

In this section we will present the governing equations that de-

termine the time evolution of plasmas. Then, we will present

two ways by which these equations are analysed, and comment

on their advantages and disadvantes, overlap, and the ways they

complement each other.

3.1 Governing equations

Since the phenomenon we study are electromagnetic in nature, so

the governing equatiosn must include Maxwell equations: Fara-

day's law

∇× E = −1

c

∂B

∂t
(3)

Ampère's law

∇×B =
1

c

∂E

∂t
+

4π

c
J (4)

We also assume that there are no collisions, so the particle dy-
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namics are determined by the collisionless Boltzmann equation

∂fσ
∂t

+ v · ∂fσ
∂r

+ q
[
E +

v

c
×B

] ∂fσ
∂p

= 0 (5)

Which is sometimes called the Vlasov equation. σ in eq. 5 denotes

species index. According to this equations, there is no direct inter-

action between particles, but only the interaction of particles with

the �eld. Notice we omitted two of Maxwell's equations, namely,

Gauss's laws for the electric and magnetic �elds

∇ · E = 4πρ (6)

∇ ·B = 0 (7)

The reason is that the Gauss laws can be derived from the other

two Maxwell equations and charge conservation. Since charge

conservation is already included in the Vlasov equation (it is the

�rst moment of eq. 5), the Gauss laws are redundant.

The last relation that is required to close this set of equations is
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the de�nition of current

J =
∑
σ

ˆ
fσvd

3p (8)

3.2 Linear stability analysis

We assume some initial distribution functions f 0
σ (p), and that

the initial electromagnetic �elds are zero. Next, we add small dis-

turbances that vary as exp (ik · r− iωt). Every derivative turns

into a multiplication by a constant: ∂
∂t → −iω,

∂
∂r → ik, and the

di�erential equation turns into an algebric equation. After some

algebra, we arrive at

[
ω2

c2 ε (k, ω) + k⊗ k− k2I

]
Ek = 0 (9)
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Where ⊗ denotes tensor product, and the dielectric tensor is given

by

ε (k, ω) = I+
4πq2

ω

ˆ
d3p

v

ω − k · v
∂f

∂p
·
[(

1− k · v
ω

)
I +

k⊗ v

ω

]
(10)

εαβ (k, ω) = δαβ+
∑
σ

ω2
pσ

nω2

ˆ
pα
γ

∂f 0
σ

∂pβ
d3p+

∑
σ

ω2
pσ

nω2

ˆ
pαpβ
γ

k · ∂f 0
σ/∂p

mωγ − k · p
(11)

Equation (9) has the form T · Ek = 0. Nontrivial solutions

(Ek 6= 0) exist if |T| = 0, and that yields the dispersion equa-

tion. Without restriction to generality, we assume k = (kx, 0, kz)

and that f is an even function of px,py (hence εxy = εyz = 0), so

the dispersion equation takes the form

(
ω2

c2 εyy − k
2
)[(

ω2

c2 εxx − k
2
z

)(
ω2

c2 εzz − k
2
x

)
−
(
ω2

c2 εxz + kzkx

)2
]

= 0

(12)

A more detailed derivation is given in [11]. The �rst branch of the

dispersion equation yields only stable modes or modes with rela-

tively small growth rate [18], and will be disregarded henceforth.

What remains is to solve the dispersion equation for ω.
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After we solve the dispersion equation, we can �nd the directions

of the growing electromagnetic �elds. We solve the degenerate

system of linear equations

T · Ek =


εxx − k2

zc
2

ω2 0 εxz + kxkzc
2

ω2

0 εyy − k2c2

ω2 0

εxz + kxkzc
2

ω2 0 εzz − k2
xc

2

ω2



Ekx

Eky

Ekz

 = 0

(13)

Since we disregard the �rst branch, we can set Eky = 0. The

direction of the electric �eld in the xz plane is determined by the

ratio of the two nonzero vector components

Ekx

Ekz
= − ω2εzz − k2

xc
2

ω2εxz + kxkzc2 = −ω
2εxz + kxkzc

2

ω2εxx − k2
zc

2 (14)

Or, alternatively, by the ratio of the components parallel and per-

pendicular to the k vector

Ek⊥

Ek‖
=

(Ekx/Ekz) cos θk − sin θk
(Ekx/Ekz) sin θk + cos θk

(15)

Where cos θk = kz√
k2

x+k2
z

. According to Faraday's law, Bk ∝ k ×

Ek. Since Both k,Bk lie in the xz plane, B always points in the
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y direction.

Full derivation of the equations developed in this section is given

in [11].

3.3 Solution of the dispersion equation

Equation 12 is often transcendental, so a numerical solution must

be employed. We tested several popular numerical methods, namely,

Newton - Raphson, Brent's method and Bisection [29]. We soon

realised that these methods were of no avail due to their reliance

on a good initial guess (�nding a good initial guess is tantamount

to solving the dispersion equation). Moreover, the number of iter-

ations required for these algorithms is unbounded, and they often

failed to converge. We therefore resorted to a more primitive,

bruteforce and sure�re method, that, although lacking the ele-

gance of the previous methods, proved much more e�cient in root

�nding. We will elaborate on this 'Brute force' method momen-

tarily.

We recall that the dispersion equation is complex, so it can be
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Figure 7: Root �nding algorithm. The solid lines represent the grid lines
in . The dashed line represents the contour along which the real part of
the dispersion equation is zero, and the dash dot line represents the contour
along which the imaginary part of the dispersion equation is zero. The yellow
square is that which the algorithm registers as containing a square.

decomposed into two real equations. Hence, the solution is also

comprised of two real components. The algorithm begins with a

rectengular area that should contain the root. The algorithm pro-

ceeds by dividing the area into many smaller squares, and sweeps

over all the smaller squares in search of a root. The algorithm

detects a root by going over all the sides to check whether the one

of the components of the dispersion equation has di�erent signs

on di�erent vertices. If both components change signs along the

sides of the same square, then the data of that square is registered.

The algorithm is demonstrated in �gure [7].
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The brute force method has two prominent advantages. First,

the number of iterations is bounded. The maximum number of

evaluations equals the number of vertices on the grid. If we are

interested only in the fastest growing mode, we can start sweeping

the grid from the top, and stop sweeping as soon as we come across

a root. Second, It does not require an initial guess.

However, this method has also many disadvantages, of which we

will survey the most pronounced:

1. Long execution time. If the grid has n points along each axis,
then in the worst case, the algorithm will require n2 evalua-
tions of the dispersion equation. The algorithm is therefore
said to be of complexity O

(
n2
)
.

2. The precision of the results is bounded by the cell size. The
algorithm only identi�es squares that contain a root. The
uncertainty in the location of the root is therefore equal to the
dimensions of the square. This drawback can be mitigated by
either applying the algorithm recursively to the area bound
by the square, or feeding the centre of the square as a �rst
guess to one of the algorithms previously disquali�ed. We
were content with the precision obtained from an unre�ned
calculation, so we used neither method.

3. False positive and true negative identi�cations. When the
grid is too coarse the algorithm might either register a square
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that does not encompasses a root (false positive) or miss a
squre that does encompass a root.(true negative). The two
caes are illustrated in �g 8. Both should disappear when the
grid is re�ned.

4. Requires proper choice of the boundaries for the initial region
in ω space. On the one hand, the region should be large
enough to ensure that it contains the root, but on the other
hand, if the region is too big then either the execution time
becomes too long (if the resolutions is preserved) or the grid
becomes too coarse and the precision decreases (if the number
of points is preserved). A proper choice of the size of the
region should optimize this tradeo�, and we usually attain
it by trial and error. A propery of the dispersion equation
that comes to our aid in this consideration is the asymptotic
stability. For any physical initial distribution function, the
dispersion equation 12 can be shown to reduce to the vacuum
dispersion equation

ω2 − c2k2 = 0 (16)

When the limit |ω| → ∞ is taken [27]. The physical in-
terpretation of this limit is that when the �eld changes too
fast, then the particles hardly deviate from their original po-
sition, meaning they do not respond to the �elds, so the latter
evolves as if there were no particles at all.
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Figure 8: True negativ (on the left) and false positive (on the right). As in �g
7, solid lines represent grid lines, dashed and dash dot lines represent contours
along which the real and imaginary parts of the dispersion equation are zero,
and a yellow square means that it has been identi�ed by the algorithm as
encompassing a root. In the true negative case, the contours intersect, so the
square encompasses two roots, but none of the contours intersect the grid
lines, so the algorithm doesn't register this square. In the false positive case,
both contours intersect the grid lines, but not one another. Therefore, the
algorithm registers this square, but it does not encompass a real root.

34



4 Numerical Analysis

4.1 Immobile background

In this section we analyse simple systems in which plasma insta-

bilities can erupt. They are simple in the sense that they are

characterised by a small number of parameters, are easily solved,

and their results can be readily interpreted. The purpose of these

exercises is to help us understand the relation between the initial

conditions and the properties of the resulting instabilities, and

also, these exercises will serve as benchmarks for more compli-

cated models. These calculations can also be applied to the �rst

stage of the instability in afterglows, where only the electrons

participate. We will begin with the simplest case (cold beams of

equal densities) and then we will introduce �nite temperature and

density variation in order to study their e�ects on the instability.
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4.1.1 Cold beams of equal densities

We consider two beams of electrons �owing parallel and anti par-

allel to the z axis. We assume that each electron moves with the

mean velocty its beam, and that there exists a charge neutralizing

background of stationary protons. The corresponding distribution

function of the electrons is

f (p) =
n

2
δ (px) δ (py) [δ (pz − P ) + δ (pz + P )] (17)

This is the simplest case in which the Weibel instability occurs.

It is characterised by a single parameter, P , which is the mag-

nitude of the momentum of each particle prior to the instability.

The resulting dispersion equation for this distribution function

is bi quartic in the frequency, so there exists an analytic, closed

form solution. Due to the length of the expressions involved, the

full dispersion equation will be given in the appendix. Here we

give key features of this system and display numerical results for

a single case which is of interest in regard to GRB afterglows.

In presenting the results we use the following dimensionless vari-
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Figure 9: Imaginary part of the frequency (top left) Real part of the fre-
quency (top right) Electric �eld direction (bottom left) The ratio between
the electromagnetic and electrostatic electric �eld comonents (bottom right).
The system parameter is γ = 100. The dominant mode Ω = 0.1i occurs at
Zz = 0

ables β = P

m
√

1+ P2

m2c2

, γ = 1√
1−β2

, Z = ck
ωp
, Ω = ω

ωp
, ωp =√

4πq2
m n. If the ISM particles re�ect perfectly from the jet front,

then the ISM centre of mass reference frame, both beams would

move with the jet's Lorenrz factor, which is estimated at γ = 100.

Figure 9 exhibits the main features of the instability. The dom-
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inant mode is perpendicular to the beam. The real part (and

hence the pahse velocity) is zero (due to the symmetery of the

system). The k space loci where the electromagnetic component

of the beam maximises coincides with that of the dominant mode,

which means that this instability generates magnetic �elds.

By setting the dimensionless frequency to 0 in the dispersion equa-

tion, we obtain the stability condition

Zz >

(
1− β2

)1/4

β
(18)

To understand the reason for that, one must consider the problem

from the beams' reference frame. A static wave with wavelength kz

in the lab refrence frame will seem as a wave with frequency kzcβ√
1−β2

in the beams' refrence frame. The wave is stable if the frequency

is greater than the plasma frequncy kzcβ√
1−β2

> ω′p. The plasma

frequncy is proportional to the square root of the density. Since

the density in the beam frame is lower by a factor of
√

1− β2

from the density in the lab frame, the plasma frequency in the

beam frame will be lower than that of the lab frame by a factor
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of
(
1− β2

)1/4
. Hence the stability condition is

kzcβ√
1− β2

> ω′p =
ωp

(1− β2)1/4 ⇒ ckz
ωp

>

(
1− β2

)1/4

β
(19)

Which is equivalent to the result we obtained from the disper-

sion equation [18]. In addition, by substituting Ω = 0 into the

expression for the ratio of the electric �eld components we obtain

(
Ez

Ex

)
Ω=0

=
kz
kx

(20)

Which means that the instability stops when the electric �eld

aligns with the wave vector. When that happens, k × E = 0, so

the magnetic �eld does not grow.

Another notable property of this scenario is that the fastest grow-

ing mode occurs at

ZZ =

√
(1− 3β2) (3− β2)

2
√

2β
√

1− β2
(21)

Hence the mode is oblique when β < 1√
3
and perpendicular to the

beams when β > 1√
3
.
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4.1.2 Cold Beams of di�erent densities

In order to calculate instabilities in this scenario, we make two

modi�cation to the previous distribution function. The �rst (and

obvious) is to change the density of one of the beams. This is

achieved by multiplying one of the terms by a constant 0 < α ≤ 1

(density ratio). After this modi�cation, the electron beams have

nonzero current, which means the protons must also move in order

to cancel out the current. Hence, the second modi�cation is a

Lorentz transformation to a reference frame where the background

is at rest. In that reference frame, the average momentum of the

denser beam is

α
P

m
√

1 + P 2

m2c2

+
P ′

m
√

1 + P ′2

m2c2

= 0 ⇒ P ′ =
αP√

1 + P 2

m2c2 (1− α2)

(22)

Finally, the distribution function

f (p) =
1

1 + α
δ (px) δ (py)

αδ (pz − P ) + δ

pz +
αP√

1 + P 2

m2c2 (1− α2)




(23)
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The resulting dispersion equation is polynimal, so according to

the fundamental theorem of algebra, the number of distict roots

is bounded by the order of the polynomial. Moreover, there exist

algorithms for �nding all the roots [29] so the problem is numeri-

cally solvable. In presenting the results we used the same dimen-

sionless variables as in the previous section. We used the arbitrary

value α = 0.001 to emphasize the di�erent between this and the

case of equal densities.

Figure 10 exhibits the main features of instabilities in this sce-

nario. The wavevector of the dominant mode is at an acute angle

with the beam direction. The real part is nonzero, and increases

monotonically with Zz (the graph can be misleading. closer in-

spection of the analytical solutions reveals that the relation be-

tween ZZ and < (Ω) is more complicated). This means that the

unstable modes not only grow but also drift, and since the dis-

persion relation is not linear, di�erent modes drift at di�erent

velocities. The electrostatic component of the electric �eld of the

dominant mode is much greater than the electromagnetic compo-
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Figure 10: Imaginary part of the frequency (top left) Real part of the fre-
quency (top right) Electric �eld direction (bottom left) The ratio between
the electromagnetic and electrostatic electric �eld comonents (bottom right).
The system parameters are γ = 100, α = 0.001. The dominant mode
Ω = 0.97 + 0.012i occurs at Zz = 0.97.
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Figure 11: The value of the dimensionless wavevector component parallel
corresponding to the dominant mode versus the system parameters

nent, which may suggest that this instability does not generate

magnetic �elds. Moreover, in the limit kx, kz → ∞ equation 14

reduces to Ex/Ez = kx/kz, which implies that as the wavenumber

increases, the instability becomes more electrostatic.

The dominant mode is not oblique in the entire parameter space,

as can be deduced from �gure 11.

The instability is perpendicular only for high values of α, β (in the

above graph, the �at plateau at the upper right corner de�nes the

parameter space area for which the instability is perpendicular).

For other values of α, β, the instability is oblique. These results
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are in agreement with PIC simulations [30].

4.1.3 Warm Beams of equal densities

The distribution function is given by

f (p) =
n

π3/2P 3
th

exp

[
−
p2
x + p2

y

P 2
th

](
exp

[
−(pz − P )2

P 2
th

]
+ exp

[
−(pz + P )2

P 2
th

])
(24)

Where we used the following dimensionless variables Pth = ρmc,

P = mcβ√
1−β2

, γ = 1√
1−β2

. The ISM estimated temperature ranges

from zero [37 to a few keVs [38]. These estimates limit ρ to the

range 0.2 ≥ ρ ≥ 0. We chose ρ = 0.01 as a representing value.

The instability condition for pure electromagnetic waves (i.e. waves

that propagate perpendicular to the beam) is

Zx <
2

ρ

(
1− β2)1/4

(25)

Or, in terms of dimensional variables

kx <
2mωp
Pth

(
1− β2)1/4

=

√
4π (2γn) q2

T
(26)
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Figure 12: Imaginary part of the frequency (top left) Real part of the fre-
quency (top right) Electric �eld direction (bottom left) The ratio between
the electromagnetic and electrostatic electric �eld comonents (bottom right).
The system parameters are γ = 100, ρ = 0.01. The dominant mode Ω = 0.1i
occurs at Zz = 0, Zx = 5.
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The expression on the rhs of the last equation is the inverse of

the Debye length in the beams' rest frame. This condition simply

means that when the �lament is too thin, no Debye screening

occurs and no energy is transferred to the plasma.

4.2 Background e�ect

In the previous section, we studied an instability that developed

when between two beams in the presence of immobile background

particles of opposite charge. In this section, we will study how

the instability changes when the background is allowed to move.

Moreover, we will assume that the background is composed solely

of electrons, and the beams solely of protons, which are about

2000 times more massive.

Calculations in this sections purport to predict the second stage

of the instability. We will ultimately wish to study two cases:

symmetric and assymetric warm beams with hot background (we

use the term warm to denote non - relativistic temperature and

hot for ultrarelativistic temperature). The �rst corresponds to the
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case where the ISM particles re�ect perfecly from the jet front,

while the second corresponds to imperfect re�ection. We will not,

however, approach the calculation immediately, but rather start

with the simplest case and proceed gradualy by adding each e�ect

at a time and studying them seperately. This will allow both to

validate our calculations and gain insight on the e�ect of the initial

conditions on the instabilities.

4.2.1 Cold beams, cold background

We assume that the proton distribution function is eq. 17 and the
electrons is

fe = nδ (px) δ (py) δ (pz)

Figure 13 exhibits the main features of instabilities in this sce-

nario. The growth rate map reveals the two competing modes:

the electromagnetic Weibel mode due to beam - beam interaction

and the electrostatic Buneman mode due to beam - background

interaction.
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Figure 13: Imaginary part of the frequency (top left) Real part of the fre-
quency (top right) Electric �eld direction (bottom left) The ratio between
the electromagnetic and electrostatic electric �eld comonents (bottom right).
The beams' parameter is γ = 100. The dominant mode Ω = 44.65 + 0.39i
occurs at Zz = 45
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4.2.2 Cold beams with warm background

We assume that the protons are described by the distribution

function in eq. 17 and the electrons are described by

fe =
n

π3/2P 3
th

exp

[
−
p2
x + p2

y + p2
z

P 2
th

]
(27)

We also assume that the thermal energy is neglibile in compari-

son to the electrons rest mass (i.e. non - reletivistic case). This

distribution is charaterised by a single variable - Pth, which is pro-

portional to the square root of the temperature. In presenting the

results we will rather use the dimensionless variable pth = ρmec.

As the temperature increases, the electrostatic mode stabilises,

as can be seen in �gure 14. Therefore, at low temperatures, the

Buneman mode dominates, while at higher temperatures it be-

comes comparable with the Weibel mode. A qualitative descrip-

tion for this phenomenon was given in section 4.1.3.
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Figure 14: Growth rate maps for two counterstreaming symmetric cold beams
with γ=100 at di�erent background temperatures: ρ = 0.2 (top left) ρ = 0.3
(top right) ρ = 0.4 (bottom left) ρ = 0.5 (bottom right)

4.2.3 Warm beams of equal densities, hot background

We assume that the proton beams have non relativistic thermal

energy, so they are described by drifting Maxwellian distribution-

seq. 24. The electrons are assumed to to have ultrarelativistic

temperature, so they are described by a relativistic distribution

function for massless particles

fe =
n

8πP 3
th

exp

−
√
p2
x + p2

y + p2
z

Pth

 (28)
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Pth is proportional to the temperature. In the limit Pth,bg → ∞,

the system behaves as though the background is immobile. The

reason is that the e�ective mass of the particles increases with the

temperature, and hence the deviation from the unpertrubed tra-

jectory decreases, so the instability weakens. From �gure 15 we

can see that even in ultrarelativistic temperatures, the Buneman

mode still survives, and is even slightly stronger the Weibel mode.

As the background temperature increases the Buneman mode de-

cays and drifts towards the Zx (i.e. its maximum occurs at lower

Zz). It vanishes/merges with the Weibel mode at a temperature

equivalent to an order of magnitude of 105 times the electron rest

mass energy. This greatly exceeds the most optimistic estimate

on the kinetic energy of the jet, so the Buneman instability should

occur in the second stage of every GRB afterglow.

According to assessment of the electron cooling rate [41,40], the ra-

tio between the thermal energy of the elecrons after thermalisation

and their initial kinetic energy lies in the range 0.1 < εe < 0.3.

We chose εe = 0.15 as a representing value, and since we assume

that the initial electron energy is γ = 15, their temperature would
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Figure 15: Imaginary part of the frequency (top left) Real part of the fre-
quency (top right) Electric �eld direction (bottom left) The ratio between
the electromagnetic and electrostatic electric �eld comonents (bottom right).
The beams' parameter is γ = 100, ρ = 0.1, and the background parameters
ρ = 15. The dominant mode Ω = 14 + 0.07i occurs at (Zz, Zx) = (0, 14)

be ρth,bg = kT
mec2

= 15.
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4.2.4 Warm beams of di�erent densities, hot background

We assume the proton beams distribution is

fp =
1

1 + α

1

π3/2P 3
th

exp

[
−
p2
x + p2

y

P 2
th

]exp

[
−(pz − P )2

P 2
th

]
+ exp

− 1

P 2
th

pz +
αP√

1 + P 2

m2c2 (1− α2)


2



(29)

and the electron background distribution function 28. As in the

symmetric case, this scenario gives rise to the Weibel mode and

the Buneman mode. The existence of the Weibel (�gure 16) mode

implies that magnetic �elds will be generated, in contrast to the

asymmetric case in the absence of background. We also expect

that in the limit Pth,bg → ∞, we will recover the results for the

latter case. The Weible mode disappears when
Pth,bg

mec
is of the order

of a few hundreds. In principle, current limitations on the jet

energy and electron cooling rate, the electrons may exceed this

limit, but we should expect this phenomenon to occur in most

GRB afterglows.
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Figure 16: Imaginary part of the frequency (top left) Real part of the fre-
quency (top right) Electric �eld direction (bottom left) The ratio between
the electromagnetic and electrostatic electric �eld comonents (bottom right).
The beams' parameter is γ = 100, ρ = 0.1, α = 0.1, and the back-
ground parameters ρ = 15. The dominant mode Ω = 16 + 0.07i occurs
at (Zz, Zx) = (0, 16)
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5 Conclusions

In this section we summarize the results obtained in the previous

sections and comment on their imlication to the two stage of the

instability that developes in GRB afterglows.

5.1 First stage

We have seen that in case of a symmetric collision the Weibel in-

stability dominates. If the beams' velocity exceeds a certain value

(which is well below the ultrarelativistic limit) then the dominant

mode is purely electromagnetic. If the ISM particles all re�ect

perfectly from the jet front, then the dominant mode would be

the Weibel mode. However, if the re�ection is not perfect (the

particles either re�ect with a lower speed or get absorbed in the

jet) then the counter streaming pro�le would be asymmetric, so

the dominant mode would be electrostatic and no magnetic �elds

will be generated.
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5.2 Second stage

At very low background temperatures, the background - beam

interaction overwhelms the beam - beam interaction. The domi-

nant mode in these cases is electrostatic. When the background

temperature rises, the background - beam interaction subsides,

until it becomes comparable with the beam - beam interaction.

This happens when the background temperature is of the order

of tenths of the electron rest mass. For typical temperatures of

thermalised electrons in GRB afterglows, an assuming symmetric

re�ection of ISM particles from the jet front, the system gives rise

to two modes, one electromagnetic, and one electrostatic. how-

ever, a similar pro�le emerges even when the re�ection is not per-

fect. Therefore, this phenomenon guarantees that magnetic �elds

will be generated, even if the assumption of perfect re�ection does

not hold. Thus, generation of magnetic �eld in GRB afterglows

through the Weibel instability turns out to be more robust than

previously realized. However, according to current limitation on

GRB afterglow parameters, some afterglows can still avoid mag-
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netic �eld generation by having both imperfect re�ection (which

prevents magnetic �eld generation in the �rst stage) and high elec-

tron thermalisation temperature (which prevents magnetic �eld

generation in the second stage).
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Appendices

A Dispersion equation for cold counter - streaming beams

of equal densities

The dielectric tensor components are computed according to
eq. 10

εxx = 1−
ω2
p

ω2
√

P 2

c2m2 + 1
(30)

εxz = −
c4kxkzm

2P 2ω2
p

√
P 2

c2m2 + 1

ω2 (c2m2 + P 2) (c2 (m2ω2 − k2
zP

2) + P 2ω2)
(31)

εzz = 1−
ω2
p

(
k2
xP

2 +m2ω2
) (
c2
(
k2
zP

2 +m2ω2
)

+ P 2ω2
)√

P 2

c2m2 + 1
(
−ck2

zP
2ω + cm2ω3 + P 2ω3

c

)2
(32)

The dispersion equation is obtained by substituting these expres-
sions into eq. 12. After multiplying by the lowest common de-
nominator, the dispersion equation takes the form (in terms of the
dimensionless variables)

Ω6 + Ω4
(
−Z2

x − 2β2Z2
z − Z2

z +
√

1− β2β2 − 2
√

1− β2
)

+Ω2
(

2β2Z2
xZ

2
z −

√
1− β2β2Z2

x +
√

1− β2Z2
x + β4Z4

z

+2β2Z4
z +

√
1− β2Z2

z +
√

1− β2β4Z2
z + β4 − 2β2 + 1

)
−β4Z2

xZ
4
z +

√
1− β2β2Z2

xZ
2
z −

√
1− β2β4Z2

xZ
2
z − β4Z2

x + β2Z2
x

+β6Z2
z − β4Z6

z − 2β4Z2
z +

√
1− β2β2Z4

z + β2Z2
z − 2

√
1− β2β4Z4

z = 0
(33)
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