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We derive generally covariant hydrodynamical equations for a plasma with an anisotropic pressure
in the external electromagnetic field. The equations are formulated in terms of the variables defined
in the local plasma rest frame, in which the electric field vanishes. Generally covariant generalization
for the equation of state is derived, which reduces to the Chew - Goldberger - Low form when the
plasma temperature is nonrelativistic in the plasma rest frame. Various ultrarelativistic limits are
analyzed. The obtained equations are applied to the simplest monopole geometry of the relativistic
stellar wind and to the analysis of the linear waves in the limit of geometrical optics.

I. INTRODUCTION

It is widely accepted that the study of collisionless relativistic plasmas in strong magnetic fields is essential for
understanding of the physics of various astrophysical objects, such as pulsar winds, relativistic jets, active galactic
nuclei etc.. Relativistic hydrodynamics is probably the most convenient way of description of slow and large scale
motion of such a plasma. In most models of plasma hydrodynamics the simplifying assumption of pressure tensor
isotropy is used (see e.g. [1]). Although this approximation is quite reasonable in collision-dominated situations,
it may be violated in a collisionless plasma with an imposed strong magnetic field, where there is no mechanism,
which could effectively ensure the energy redistribution among the parallel (with respect to the magnetic field) and
perpendicular degrees of freedom. One can expect that in such systems the plasma pressure will not be isotropic.

Nonrelativistic limit of the anisotropic plasma theory is well-known [2]. This Chew-Goldberger-Low (CGL) theory
predicts different equations of state for parallel and perpendicular pressure. Earlier generalizations of CGL theory
onto the case of relativistic velocities and temperatures were obtained by the direct application of the covariance
principle [3, 4] with some guess of the state equation, or by consideration of the warm plasma [5, 6], which in fact
corresponds to the nonrelativistic limit in the plasma rest frame.

Recently, relativistic generalization of CGL has been developed for Minkowsky space [7] by taking of momenta of
the Vlasov equation and applying the gyrokinetic expansion in the lowest order. The state equations were obtained,
that reduced to the ordinary CGL state equations in the nonrelativistic limit.

Relativistic collisionless plasma is expected to be present in the vicinity of compact massive objects, such as black
holes, and also at early stages of the Universe evolution. Although there is no direct evidence that these plasmas are
embedded in a strong external magnetic field, it is reasonable to think that such magnetic fields play significant role
in the plasma confinement in the equilibrium and also determine many of the wave properties and stability features.
It is therefore, necessary, to generalize the anisotropic plasma theory onto generally relativistic cases also.

In [8] the results of [7] were reproduced for a plasma in a Kerr metric. That was achieved by an explicit 3+1
splitting of the space-time and definite choice of orthonormal tetrads for the so called general co-moving frames
(GCMF). The derivation is based on the assumption that the 3-electric field vanishes in the chosen GMCF. On the
other hand, the anisotropic plasma hydrodynamical theories, both nonrelativistic [2] and relativistic [7] are essentially
local in that sense, that the state equations are written in variables defined in the local plasma rest frame, so that the
state of plasma “here and now” should not depend of what happens at global scales. Therefore, the very possibility
of splitting or global definition of GMCF should not be essential for the formulation of the generally relativistic
(anisotropic) magnetohydrodynamics, which can be casted in a completely covariant form. This underlying idea, that
the local magnetic field determines the plasma anisotropy, requires development of local generally covariant theory of
hydrodynamics of plasma with anisotropic pressure.

In the present paper we develop generally relativistic generalization of the anisotropic hydrodynamics for a plasma
in a strong magnetic field, based on the “locality principle”. We show that the generally covariant equations can be
formulated is a frame-independent form, without any assumptions about the metric. We also derive the distribution
function in the axially symmetric form instead of postulating it (cf. [8]).

The paper is organized as follows. In sec.2 we make an invariant frame-independent splitting of the electromagnetic
field tensor. The energy-momentum tensor of the electromagnetic field is further expressed in terms of the invariant
magnetic field. In sec.3 we derive the distribution function from the Vlasov equation for the plasma in a strong
magnetic field in the curved geometry, and obtain the basic hydrodynamical equations. In sec. 4 the state equations
for anisotropic plasma are obtained in a most general form. Various limits are discussed. In sec. 5 we apply the
obtained results to the simplest case of the monopole relativistic stellar wind and consider ultrarelativistic limits. In
sec. 6 we present the dispersion relations for the MHD waves obtained in the shortwavelength limit of the geometrical
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optics.

II. INVARIANT ELECTROMAGNETIC FIELD SPLITTING

We assume that the description of the plasma can be reduced to one-fluid magnetohydrodynamics (problems that
arise in these reduction procedure from multifluid description to the one-fluid one are described in [9]). In this case
the plasma motion is described by the set of MHD and Maxwell equations:

Jµ;µ = 0, (1)
Tµν

;ν = jνFµν , (2)
Fµν

;ν = 4πjµ, (3)
Fµν;σ + Fνσ;µ + Fσµ;ν = 0. (4)

where Jµ is the mass flow density, jµ is the current density, Fµν is the electromagnetic tensor, Tµν is the plasma
energy-momentum tensor, and semicolon denotes usual covariant derivative. In what follows we adopt positive metric
signature, i.e. (+,−,−,−). We also use the natural units in which c = G = 1.

The electromagnetic field tensor Fµν can be decomposed in a usual way [10]. Namely, let Uµ(xµ) be a 4-velocity
field, UµUµ = 1. Then Eµ = FµνUν and Bµ = (1/2)εµναβF ναUβ are the electric and magnetic field respectively in
the frame moving with the 4-velocity Uµ. Here εµναβ is the completely antisymmetric 4-tensor, ε0123 =

√
|g|, where

|g| = det ||g||.
Both Eµ and Bµ are spacelike: EµEµ = −E2 < 0, BµBµ = −B2 < 0, and orthogonal to Uµ: UµEµ = UµBµ = 0.
The electromagnetic tensor can be expressed in terms of Eµ and Bµ as follows:

Fµν = (EµUν − EνUµ) + 1
2εµνβγ(UβBγ − UγBβ), (5)

The electromagnetic invariants take the following form:

1
2FµνFµν = BµBµ − EµEµ = E2 −B2, (6)
1
4εµναβFµνFαβ = EµBµ, (7)

Bearing in mind magnetohydrodynamical applications we shall consider magnetically dominated case B2 > E2 when
there is no electric field along the magnetic field EµBµ = 0. The last condition means EB = 0 in the three-dimensional
form.

In this case one can find a frame where Eµ ≡ 0. Without loss of generality we may assume that the chosen Uµ

corresponds to the frame, where electric field is absent. Introducing the unity vector in the direction of the magnetic
field nµ = Bµ/B, nµnµ = −1, nµUµ = 0, one can write the electromagnetic tensor in the following form

Fµν = 1
2εµνβγ(UβBγ − UγBβ) = 1

2εµνβγB(Uβnγ − Uγnβ), (8)

In any other frame which is determined by the 4-velocity Ũµ the corresponding electric and magnetic fields are

Ẽµ = FµνŨν = (εµνβγUγŨν)Bβ , (9)

B̃µ = 1
2εµναβF ναŨβ = (ŨβUβ)Bµ − (ŨβBβ)Uµ, (10)

Eqs. (9) and (10) are the field transformation rules represented in the invariant form for the special case of the
electromagnetic tensor in the form (8).

Substituting the electromagnetic tensor in the form (8) into (2) we obtain the equation of motion in the form (see
also [7, 10])

Tµν
;ν = (Tµν

f + Tµν
el );ν = 0, (11)

where
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Tµν
el =

B2

8π
(2UµUν − gµν − 2nµnν), (12)

is the electromagnetic energy-momentum tensor, Tµν
f is the fluid energy-momentum tensor, and Tµν is now the total

energy-momentum tensor. Spatial part of the electromagnetic energy-momentum tensor reduces to the usual MHD
magnetic stress tensor in the nonrelativistic limit Uµ → (1, 0, 0, 0), gµν → (1,−1,−1,−1).

The Maxwell equation (4) takes the following form

(UµBν − UνBµ);ν = B(Uµnν − Uνnµ);ν + (Uµnν − Uνnµ)B;ν = 0, (13)

We shall use also the relations

nµnµ
;ν = UµUµ

;ν = 0, Uµnµ
;ν = −nµUµ

;ν , (14)

which follow from the conditions UµUµ = 1, nµnµ = −1, and Uµnµ = 0.

III. GENERALLY COVARIANT HYDRODYNAMICS

We assume that the plasma is collisionless. In this case the distribution function f (for each plasma species) satisfies
the relativistic Vlasov equation which we write in the following form:

uµ ∂f

∂xµ
+ (

e

m
Fµνuν − Γµ

νλuνuλ)
∂f

∂uµ
= 0, (15)

where uµ is the particle 4-velocity, uµuµ = 1, Γµ
νλ is the Christoffel symbol and

f = 2f0δ(uµuµ − 1)θ(u0). (16)

Here the Dirac δ-function makes the distribution function f nonzero only on the mass shell uµuµ = 1, while θ-function
picks up future directed velocity.

The corresponding hydrodynamical series is obtained by multiplying (15) by uµ, uµuν , uµuνuα, . . . , with subsequent
integration over the invariant volume

√
|g|d4u in the 4-velocity space [11]. The equations for the first three momenta

read (cf. [7])

Jµ
;µ = 0, (17)

Tµν
;ν = e

mJνFµν , (18)

Sαβµ
;µ = e

mgµν(FανT βµ + F βνTαµ) (19)

The procedure of reduction of these multifluid equations to the one-fluid set and the conditions when it is possible
are described in [9]. Here we simply assume that this reduction is already done. In this case the Eq. (18) transforms
into Eq. (2) while two others remain unchanged. The only difference is that now Jµ, Tµν , Sαβµ are the total fluid
mass flow density, energy-momentum tensor, and heat flux 4-tensor, respectively.

These momenta themselves are defined as distribution averages

Jµ = m〈uµ〉, Tµν = m〈uµuν〉, Sαβµ = m〈uαuβuµ〉, (20)

with the following averaging prescription

〈X(uµ)〉 =
∫ √

|g| d4ufX. (21)
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This averaging requires knowledge of the distribution function f . We shall specify the distribution function in the
MHD approximation, in which the inhomogeneity scale is assumed to be much larger than the particle gyroradius,
while the time variation scale is assumed to be much larger than the gyroperiod. For the relativistic particles this
approximation can be written qualitatively as follows:

ΩL � u, Ωτ � 1 Γ/Ω � 1, (22)

where Ω = qB/m (we work in natural units c ≡ 1) is the charged particle gyrofrequency, L and τ are typical spatial
and temporal scales of the plasma motion, u ≈ 1 is the typical particle velocity, and Γ is the typical value of the
Christoffel symbol.

The last condition imposes constraints on the gravitational field strength. It can be violated in strong gravitational
fields, e.g. near the horizon r ∼ rg in Schwarzshild metrics, where Γ ∝ rg/r(r − rg). More exact general condition
can not be obtained and in each specific case the validity of the approximation should verified separately.

In the MHD approximation the Vlasov equation (15) takes the following form:

εµναβ(nαUβ − Uαnβ)uν
∂f

∂uµ
= 0, (23)

and the solution is f0 = f0(ut, u‖, u⊥), where the following invariant decomposition is used:

uµ = utU
µ + u‖n

µ + uµ
⊥, uµ

⊥Uµ = uµ
⊥nµ = 0, uµ

⊥u⊥µ = −u2
⊥, (24)

uµ
⊥ = u⊥(eµ

1 cos φ + eµ
2 sinφ), eµ

1e1µ = eµ
2e2µ = −1, eµ

1e2µ = 0. (25)

Of course, since uµuµ = u2
t − u2

‖ − u2
⊥ = 1, ut is not an independent variable.

The invariant volume in the velocity space now can be written as

εαβγδduα
0 duβ

1duγ
2duδ

3 = εαβγδU
αnβeγ

1eδ
2dutdu‖u⊥du⊥dφ = dutdu‖u⊥du⊥dφ, (26)

and

2
√
|g|d4uδ(uµuµ − 1)θ(u0) → u−1

t u⊥du‖du⊥dφθ(ut). (27)

Now the mass flow density can be written as

Jµ = m(Uµ〈ut〉+ nµ〈u‖〉), (28)

and is not parallel to the 4-velocity Uµ unless 〈u‖〉 = 0.
The fluid velocity Ūµ = Jµ/

√
JµJµ now is

Ūµ = (Uµ〈ut〉+ nµ〈u‖〉)/
√
〈ut〉2 − 〈u‖〉2, (29)

The transformation rules (9), (10) immediately give the fields in the fluid rest frame Ēµ = 0 and:

B̄µ = B(〈ut〉nµ + 〈u‖〉Uµ)/
√
〈ut〉2 − 〈u‖〉2, (30)

Since Ēµ = 0 we may assume (without loss of generality) that 〈u‖〉 = 0 and Ūµ = Uµ. More specifically, we assume
that f = (1/2π)f0(u2

‖, u
2
⊥).

Then all the cross correlated terms ∝ 〈u‖ut〉, ∝ 〈u‖u⊥〉, ∝ 〈uµut〉, and ∝ 〈uµu‖〉 vanish.
Let us define a projection operator

Pµν = gµν − UµUν + nµnν , (31)
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with the features

PµνP ν
σ = Pµσ, PµνUν = Pµνnν , (32)

Since uµuνUν = uµuνnν = 0, the symmetry properties require that 〈uµuν〉 =∝ Pµν , and the fluid energy-momentum
tensor takes the following form:

Tµν = m〈uµuν〉 = (ε + p⊥)UµUν − p⊥gµν + (p‖ − p⊥)nµnν , (33)

where

p⊥ = m 1
2 〈u

2
⊥〉, p‖ = m〈u2

‖〉, ε = m〈u2
t 〉, ρ = m〈ut〉, (34)

and the averaging takes the form

〈X〉 =
∫

du‖u⊥du⊥u−1
t Xf0(u2

‖, u
2
⊥), (35)

Similarly, for the heat flux tensor one has

Sµνα = (ρ + q‖ + q⊥)UµUνUα + q‖Sym(Uµnνnα)− q⊥Sym(UµP να), (36)

where

q⊥ = m
2 〈utu

2
⊥〉, q‖ = m〈utu

2
‖〉, (37)

and Sym denotes symmetrization over indices as follows:

Sym(AµBνCβ) = AµBνCβ + BµCνAβ + CµAνBβ . (38)

Substituting the obtained expression for the energy-momentum tensor into (11) one has eventually

Tµν
;ν = [(ε + p⊥ +

B2

4π
)UµUν − (p⊥ +

B2

8π
)gµν + (p‖ − p⊥ −

B2

4π
)nµnν ];ν = 0, (39)

where Tµν is the total energy-momentum tensor for plasma and magnetic field.
One can see that the derived equation can be obtained from its analog in special relativity [7] by direct substitution

of the ordinary derivative to covariant derivative, when the proper ensemble averaging procedure (21), (35) is applied.

IV. STATE EQUATION

The obtained set of equations (1), (13), and (39) requires a closure in the form of a state equation. In the simplest
isotropic nonrelativistic case this state equation is found in the form p = p(ρ) from the energy conservation equation.
In our case the corresponding equation is obtained by taking a projection of the energy-momentum balance equation
(39) onto the flow velocity direction Uµ. Let D = Uµ∂µ be the usual convective derivative. Then the continuity
equation (1) gives

Uµ
;µ = −D ln ρ, (40)

Another useful relation is obtained by projecting (13) onto nµ direction and using (40):

nνnµUµ
;ν = D ln(ρ/B), (41)
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Projecting (39) onto Uµ and using (14), (40), and (41) after very easy algebra one arrives at the following state
equation

D(
ε

ρ
) =

p‖

ρ2
Dρ +

p⊥ − p‖

ρB
DB, (42)

where internal energy density ε = ρe(ρ,B), and pressure is related to the internal energy as follows:

p‖ = ρ2 ∂e

∂ρ
, p⊥ = p‖ + ρB

∂e

∂B
. (43)

The state equation can be written in an another useful form as follows

p‖

ρ
=

d(ε/ρ)
d ln(ρ/B)

, (44)

p⊥
ρ

=
d(ε/ρ)
d lnB

, (45)

In agreement with the “locality” and covariance principles the generally covariant state equation has the same form
as its analog in special relativity [7].

One can easily see that in the isotropic case p‖ = p⊥ = p the internal energy becomes a function of ρ solely and the
state equation p = p(ρ) is recovered.

The state equation (42) determines actually a class of state equations which are compatible with the relativistic
hydrodynamical equations for the anisotropic plasma. It is a generalization of the relativistic isotropic state equation
onto the generally relativistic anisotropic case in the same sense as the nonrelativistic Chew-Goldberger-Low [2] state
equations

p⊥/ρB = const, p‖B
2/ρ3 = const, (46)

generalize the isotropic state equation p = p(n) onto the nonrelativistic anisotropic case. It is worthwhile to note that
the CGL form of state equations (46) is recovered as a special case of (42) when

ε = ρ(1 + k1
ρ2

B2
+ k2B), (47)

where the coefficients k1 and k2 are constants.
Multiplying Eq. (19) by nαnβ , after some simple algebra one obtains (cf. [7], in [8] this relation is lost)

D
q‖B

2

ρ3
= 0, ⇒

q‖B
2

ρ3
= const, (48)

Multiplying Eq. (19) by UαUβ and taking into account (48) one has

q2
⊥q‖

ρ5
= const, ⇒ q⊥

ρB
= const. (49)

Eqs. (48) and (49) look exactly as the CGL state equations (46) with the only substitution p → q. However, they
cannot be considered as a generalization of the state equation because of the substantial difference between p and q.
Indeed, let us consider an isotropic case p‖ = p⊥ = p. In this case also q‖ = q⊥ = q. Eq. (48) implies q ∝ ρ3/B2,
while (43) shows that the pressure and internal energy do not depend on B at all.

On the other hand (49) gives q ∝ ρ5/3 in the isotropic case both in the nonrelativistic and ultrarelativistic limits. At
the same time it is easy to see that p ∝ ρ5/3 in the nonrelativistic case, but p ∝ ρ4/3 in the ultrarelativistic case. We
therefore (in contrast with [8]) consider (42) and (43) as a most general form of the state equation for an anisotropic
plasma. On the other hand (48) and (49) are useful in the determination of the state equations in various limits.
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As an example of the application of the obtained expressions we consider a two-parametric distribution function of
the form

f(u‖, u⊥) = f(
u‖

λ‖
,
u⊥
λ⊥

), (50)

The momenta take the following form:

ρ = λ‖λ
2
⊥

∫
ξ2dξ1dξ2 f(ξ1, ξ2), (51)

ε = λ‖λ
2
⊥

∫
(1 + λ2

‖ξ
2
1 + λ2

⊥ξ2
2)1/2ξ2dξ1dξ2 f(ξ1, ξ2), (52)

p‖ = λ3
‖λ

2
⊥

∫
(1 + λ2

‖ξ
2
1 + λ2

⊥ξ2
2)−1/2ξ2dξ1dξ2 f(ξ1, ξ2), (53)

p⊥ = λ‖λ
4
⊥

∫
(1 + λ2

‖ξ
2
1 + λ2

⊥ξ2
2)−1/2ξ2dξ1dξ2 f(ξ1, ξ2), (54)

q‖ = λ3
‖λ

2
⊥

∫
ξ2
1ξ2dξ1dξ2 f(ξ1, ξ2), (55)

q⊥ = λ‖λ
4
⊥

∫
ξ3
2dξ1dξ2 f(ξ1, ξ2), (56)

where we switched to the integration over the dimensionless variables ξ1 = u‖/λ‖, ξ2 = u⊥/λ⊥. One can see that in
this case ρ ∝ λ‖λ

2
⊥, q‖ ∝ λ3

‖λ
2
⊥, and q⊥ ∝ λ‖λ

4
⊥. Substituting this into (48)-(49) one immediately has

λ⊥ ∝
√

B, λ‖ ∝ ρ/B. (57)

The energy and pressure do not have such simple form in general case. However, it is easy to verify that Eqs. (44) -
(45) are satisfied automatically when substituting d/d ln(ρ/B) = d/d lnλ‖, d/d lnB = 2d/d lnλ⊥.

Great simplification can be made in several limits. In the nonrelativistic case (in the plasma rest frame) λ‖, λ⊥ � 1
one has

p‖ ∝ λ2
‖λ

2
⊥ ∝ ρ2/B, p⊥ ∝ λ‖λ

4
⊥ ∝ ρB, (58)

which are the ordinary CGL state equations in the form (46).
In the ultrarelativistic limit when λ‖ � λ⊥ � 1

p‖ ∝ λ2
‖λ

2
⊥ ∝

ρ2

B
, (59)

p⊥ ∝ λ4
⊥ ∝ B2 (60)

ε ∝ λ2
‖λ

2
⊥ ≈ p‖ (61)

This case is typical for pulsar magnetospheres, where the transverse momenta are rapidly radiated out due to
synchrotron radiation in a strong magnetic field (see e.g. [12]).

In the opposite case λ⊥ � λ‖ � 1 and one obtains

p‖ ∝ λ3
‖λ⊥ ∝

ρ3

B5/2
, (62)

p⊥ ∝ λ‖λ
3
⊥ ∝ ρB1/2 (63)

ε ∝ λ‖λ
3
⊥ ≈ p⊥ (64)

This case may be relevant if the plasma is strongly heated in the perpendicular direction due to a rapid magnetic
compression.
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V. GENERALLY RELATIVISTIC STELLAR WIND

As an example of application of the obtained hydrodynamical equations we shall derive a set of flow constants (see
e.g. [13, 14]) for a generally relativistic stellar wind with anisotropic pressure. We assume a spherically symmetric
metric of the form

ds2 = gtt(r)dt2 − grr(r)dr2 − gθθ(r)drθ2 − gφφ(r, θ))dφ2

in the spherical coordinates (note the notation where the sign of gµν is now given explicitly). We also assume time-
stationarity. We shall analyze only equatorial plane where a monopole magnetic field geometry can be assumed
[13]

Bµ = (Bt, Br, 0, Bφ), Uµ = (U t, Ur, 0, Uφ), (65)

and all variables do not depend on θ. The condition BµUµ = 0 requires

gttB
tU t − grrB

rUr − gφφBφUφ = 0. (66)

Let us consider the simplest case Bφ = Uφ = 0. In this case (66) immediately gives

Bt = Br grrU
r

gttU t
, (67)

and taking into account the definition B2 = −BµBµ, one obtains

Br = BU t(
gtt

grr
)1/2. (68)

The continuity equation (1) reduces to

√
|g|ρUr = const, (69)

where |g| = gttgrrgθθgφφ. In a similar way (13) gives

√
|g|(BrU t −BtUr) = const ⇒ B(gθθgφφ)1/2 = const, (70)

where we have taken into account the relations (67) and (68). In the equatorial plane of the Schwarzschild metric
gθθ = gφφ = r2 and Eq. (70) takes a simple form

r2B = const

which looks like the ordinary r-dependence of the radial magnetic field [13]. It should be noted however, that our
B is the magnetic field in the fluid frame. The distant observer’s magnetic field is obtained with the help of the
transformation rule (10), where Ũµ = (g−1/2

tt , 0, 0, 0). Taking into account the relations (67) and (68) one finds
B̃t = 0, B̃r = B/

√
gtt.

The t component of (2) gives after simple transformations

gtt

√
|g|T tr = gtt

√
|g|U tUr(ε + p‖) = const, (71)

Let us consider the parallel pressure dominated case, in which (see above) ε ≈ p‖ ∝ ρ2/B. Combination of the
derived constants easily gives

U t√gtt/Ur√grr = const

and taking into account the normalization gttU
tU t − grrU

rUr = 1, one has
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Ur ∝ (grr)−1/2, U t ∝ (gtt)−1/2, ρ ∝ 1/
√

gttgθθgφφ, (72)

p‖ ∝ 1/gtt
√

gθθgφφ, p⊥ ∝ B2 ∝ 1/gθθgφφ. (73)

In the far zone of the Schwartzschild geometry the main dependence is gθθ ∝ gφφ ∝ r2, and one has

U t ≈ const, ρ ∝ p‖ ∝ B ∝ r−2, (74)

p⊥ ∝ r−4, p⊥/p‖ ∝ r−2, p‖/B2 ∝ r2. (75)

The last two relations show that the fluid remains “transversely cold” and that the ratio of the kinetic to magnetic
pressure rapidly increases.

In the case of the perpendicularly dominated pressure ε ≈ p⊥ ∝ ρB1/2 one obtains

U t ∝ (gθθgφφ)1/4/gtt. (76)

In the far zone of the Schwartzschild geometry U t ∝ r, in this case one has

Ur ∝ (gθθgφφ)1/4/(gttgrr)1/2 ∝ r, ρ ∝ (gθθgφφ)−3/4 ∝ r−3, (77)

p⊥ ∝ p‖ ∝ B2 ∝ 1/(gθθgφφ) ∝ r−4, (78)

One can see that the pressure decreases rapidly with the increase of r, so that one can expect that the plasma
temperature quickly becomes nonrelativistic in the plasma rest frame.

VI. LINEAR WAVES

The fully covariant formulation should be especially useful for the analysis of the small amplitude perturbations and
comparison with the nonrelativistic results, since this analysis is usually carried out in the plasma rest frame (where
B is defined). Such an analysis of the waves in the relativistic plasma in the framework of the (specially) relativistic
anisotropic MHD has been done in [15]. The generalization of the analysis onto the generally relativistic case requires
separate investigation since it is significantly complicated by: a) problems of the equilibrium state determination, b)
inhomogeneity due to Γµ

να 6= 0, and c) perturbations of the metric. In the present paper we consider the case when
the plasma and magnetic field energy density is not large, so that one can neglect the metric perturbations. The
difficulties a) and b) are avoided by consideration of the waves in the limit of the geometrical optics.

Namely, let the plasma variables are disturbed by δρ, δB, δUµ, and δnµ. We assume that the coordinate dependence
of these variables is ∝ exp iη−1Θ(xµ), where η � 1. In this case

(exp iη−1Θ(xµ));ν = (
ikν

η
+ Γσ

σν) exp iη−1Θ(xµ)

≈ ikν

η
exp iη−1Θ(xµ),

where kµ = Θ,µ and we assume Γµ
νσ ∼ O(1). It is easy to see that in this shortwavelength approximation all covariant

derivatives should be substituted by ikµ and the equations for perturbations take the same form as in the specially
relativistic case. The derivation is straightforward and we refer the reader to [15] for the details. The resulting
dispersion relation will take the following form:

v2 = v2
A cos2 θ (79)

for the intermediate (Alfven) wave, and

v4 − v2((v2
s + v2

A) cos2 θ + v2
F sin2 θ) (80)

+ cos2 θ(v2
s(v2

A cos2 θ + v2
F sin2 θ)− v4

t (1− v2
A) sin2 θ) = 0



10

for the fast and slow magnetosonic waves. Here the following notation is used:

v = ω/k, ω = kµUµ, k2 = ω2 − kµkµ, k cos θ = kµnµ, (81)

v2
s =

∂p‖/∂ ln ρ

ε + p‖
(82)

v2
t =

∂p⊥/∂ ln ρ

ε + p‖
(83)

v2
A =

p⊥ − p‖ + (B2/4π)
ε + p⊥ + (B2/4π)

(84)

v2
F =

(∂p⊥/∂ lnB) + (∂p⊥/∂ ln ρ) + (B2/4π)
ε + p⊥ + (B2/4π)

(85)

It is worthwhile to notice that the intermediate solution (79) is unstable (firehose instability), when p‖−p⊥ > B2/4π.
As we have seen above in the parallel pressure dominated wind the ratio p‖/B2 ∝ r2 monotonically increases and
becomes large. Therefore, the parallel pressure dominated wind always achieves the point of firehose instability, where
the wind should be efficiently isotropized.

More detailed analysis of the dispersion relations, as well as consideration of the deviations from geometrical optics
and/or metric perturbations is beyond the scope of the present paper.

VII. CONCLUSION

In the present paper we have derived generally covariant hydrodynamical equations and the corresponding state
equations for an anisotropic plasma in a strong magnetic field. We assumed that the plasma can be described in
the framework of one-fluid hydrodynamics, and that it is magnetized. The last assumption implies that the electric
field in the plasma rest frame should be absent. We have shown that generalization of hydrodynamical equations
onto the generally relativistic case can be obtained from the corresponding equations of special relativity [7] by direct
substitution of ordinary derivatives to covariant derivatives. All fluid and thermodynamical variables, such as density,
pressure and internal energy density, are defined in in the plasma local rest frame in the invariant way. Most general
state equations are derived which are a generalization of the CGL state equations onto the generally relativistic case.
The exactly CGL form of equations is recovered when the fluid temperature in the fluid rest frame is nonrelativistic.

We applied the obtained HD equations to the relativistic wind description in the monopole geometry and found
the wind density, velocity, and pressure behavior in two ultrarelativistic limits. The MHD dispersion relations in the
limit of geometrical optics are also presented.
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