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1. Introduction

It is well known that the ion distribution upstream of the Earth’s bow shock [Gurgiolo et al., 1981; Sckopke et al., 1983]
and well downstream in the magnetosheath [Sckopke et al., 1990] is nongyrotropic and contains gyrophase-bunched ions.
Consequences of non-gyrotropy for wave features and micro-stability has been studied extensively [Brinca et al., 1993].
Temperature anisotropy caused by gyrophase-bunched ions also was studied both observationally [Sckopke et al., 1990] and
in simulations [Burgess et al., 1989; Wilkinson, 1991; McKean et al., 1995]. In these studies only the diagonal components
of the temperature were considered, either in the shock coordinates or relative to the magnetic field direction. The complete
pressure structure, however, has not been considered, and in the studies of the shock structure (and magnetosheath plasma as
well) it is still widely accepted to assume pressure isotropy or at least gyrotropy [Lyu and Kan, 1986; Hau et al., 1993; Chao
et al., 1995]. In the last case the pressure tensor is assumed to be axisymmetric with a symmetry axis along the magnetic
field. Less attention has been devoted to the off-diagonal components of the ion pressure tensor (in the shock coordinates,
where x is along the shock normal, y is the noncoplanarity direction, and z is along the main component of the magnetic
field, these off-diagonal components are pxy , pxz and pyz). Recently, Li et al. [1995] found that the ion pressure tensor
in the magnetosheath, far from the bowshock, is only approximately axisymmetric, and its symmetry axis is not directed
along the magnetic field, that is, there are nonzero off-diagonal components which Li et al. [1995] relate to the strong local
obliquity of the magnetic field. These off-diagonal components indicate presence of gyrophase bunched ions. Since there
is a strong gyrophase-bunched component of the ion distribution in the foot of the high Mach number supercritical shocks,
due to the large fraction of reflected ions (> 20% forM ∼ 8 [Sckopke et al., 1983]), one can expect that substantial nonzero
off-diagonal components of the pressure tensor should be observable there even in the case of the perpendicular geometry.

The hydrodynamical structure of collisionless shocks depends crucially on the ion pressure behavior in the shock front.
While neglecting the off-diagonal components of the ion pressure may be a satisfactory approximation at scales & Vu/Ωu

(where Vu is the plasma upstream velocity and Ωu = eBu/mi is the upstream ion gyrofrequency), these components should
be taken into account when analyzing the fine structure of the shock. They are related to the noncoplanar magnetic field
enhancement and cross-shock electric field, which have been described earlier by introducing unknown ion current velocity
[Jones and Ellison, 1991] and/or generalized Ohm’s law with phenomenological resistivity of collisionless plasma [Scudder,
1995].

The objective of the present paper is to investigate the structure of the ion pressure in the foot of the perpendicular
collisionless shock, where there is a mixture of incident and reflected-gyrating ions, and to analyze some implications for
the shock physics.

2. Pressure Tensor Structure

Let us consider a perpendicular shock geometry (shock normal and magnetic field along x and z, respectively). Equations
of the two-fluid hydrodynamics for the one-dimensional, stationary, and quasineutral shock read

nmevx
dvx

dx
= −neEx − neve,yBz −

dpe,xx

dx
, (1)

nmivx
dvx

dx
= neEx + nevi,yyBz −

dpi,xx

dx
, (2)

nmevx
dve,y

dx
= −en(Ey − vxBz)−

dpe,xy

dx
, (3)

nmivx
dvi,y

dx
= en(Ey − vxBz)−

dpi,xy

dx
, (4)

dBz

dx
= −µ0ne(vi,y − ve,y), (5)

where ne = ni = n, ve,x = vi,x = vx, nvx = nuVu = const, and Ey = VuBu = const.
Assuming gyrotropy of the electron pressure pe,xy = 0 due to small electron gyroradius and high electron gyrofrequency

and using the widely accepted massless electron approximation me = 0 one finds

vi,y = − pi,xy

numiVu
. (6)
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If pi,xy = 0 the ion current velocity vi,y = (me/mi)ve,y is negligible, in contrast with observations on high Mach number
shocks. Using (6) one has, consequently,

eEx = − 1
n

dpe,xx

dx
− 1

2µ0n

dB2
z

dx
− evi,yBz, (7)

which is well known [Scudder, 1995], and

eEx = − 1
n

dpe,xx

dx
− 1

2µ0n

dB2
z

dx
+

epi,xy

numiVu
Bz. (8)

The last term in (8) directly relates the potential electric field to the off-diagonal elements of the ion pressure tensor. To
evaluate this potential we use the approximations n ∝ B [Scudder et al., 1986] and pe,xx ∝ nγe−1 [Schwartz et al., 1988]
to obtain

eϕ =
γe

γe − 1
(Te,xx − Te,u) +

Bu

µ0nu
(Bz −Bu)

+
e

numiVu

∫
pi,xyBz dx.

(9)

While the first two terms in (9) depend only on the initial and final values of the electron temperature and magnetic field,
respectively, the last term is significantly nonlocal. It may contribute considerably to the overall cross-shock potential at the
shock front.

In the present paper we analyze the ion pressure in the foot of a supercritical shock within the model of specular ion
reflection. In the spirit of Schwartz et al. [1983] we assume that B = (0, 0, Bu) = const and E = (0, VuBu, 0) = const in
the foot −D < x < 0. Ions are reflected off the ramp x = 0 specularly, that is, in the reflection point vx changes its sign,
while vy does not change. The effect of the gradual increase of the magnetic field in the foot can be approximately taken
into account by equating Bu to the mean magnetic field in the foot [Sckopke et al., 1983]. It results also in the weak bulk
acceleration of the incident ions in y-direction [cf., for example, Burgess et al., 1989], which, probably, can be estimated
perturbatively. In the present letter we restrict ourselves to the simplest model of a constant magnetic field in the foot,
assuming also that the cross-shock potential has already done its job by specularly reflecting certain fraction of incident
ions, and do not take into account the weak potential in the foot [Wilkinson and Schwartz, 1990]. In this way we rely on the
observations of Sckopke et al. [1983], who found that the model of specular reflection provides a satisfactory description of
the reflected ion distribution in the foot, within the limits of observational errors.

An ion trajectory in the foot can be represented as follows

vx = Vu + wy sinψ + (wx − Vu) cosψ, (10)
vy = wy cosψ − (wx − Vu) sinψ, (11)

Ωux = (Vuψ + (wx − Vu) sinψ + wy(1− cosψ)), (12)

where ψ > 0 is the ion gyrophase, and the initial conditions read x = 0, vx = wx, and vy = wy at ψ = 0. We define
the two single-valued reflection functions ψ1(ξ) and ψ2(ξ), where ξ = Ωux/Vu, which are the solutions of (12), such that
0 < ψ1 < ψ0 − α < ψ2 < 2π − ψ0 − α, where α = arcsin(wy/v⊥), ψ0 = arccos(Vu/v⊥), and v2

⊥ = (Vu − wx)2 + w2
y .

Obviously, ψ1 and ψ2 are the ion gyrophases in the point x before and after the turnaround, respectively.
Given the distribution of reflected ions fr(wx, wy) at x = 0, the distribution in an arbitrary point x < 0 is f(vx, vy, x) =

fr(wx(vx, vy, x), wy(vx, vy, x)). Any function g(vx, vy) is averaged as follows

〈g(vx, vy)〉 =
∫
g(vx, vy)f(vx, vy, x) dvxdvy

=
∫
g(vx, vy)fr(wx, wy)|wx|/|vx| dwxdwy

(13)

where vx = vx(wx, wy, x), vy = vy(wx, wy, x) are obtained by substituting ψ1 and ψ2 into (10) and (11), and J = |wx/vx|
is the Jacobian of the transformation w → v for x = const. Approximating the incident ion distribution by the Maxwellian
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f(vx, vy) = (n0/2πv2
T ) exp(−((vx − Vu)2 + v2

y)/2v2
T ), and taking moments one obtains

n = n0 +
∑

s

〈〈J (s)〉〉, (14)

nVx = n0Vu +
∑

s

〈〈v(s)
x J (s)〉〉 = n0Vu, (15)

nVy =
∑

s

〈〈v(s)
y J (s)〉〉, (16)

pxx = mi(n0(V 2
u + v2

T ) (17)

+
∑

s

〈〈(v(s)
x )2J (s)〉〉 − nV 2

x ),

pyy = mi(n0v
2
T +

∑
s

〈〈(v(s)
y )2J (s)〉〉 − nV 2

y ), (18)

pxy = mi(
∑

s

〈〈v(s)
x v(s)

y J (s)〉〉 − nVxVy), (19)

where pij is the pressure tensor, J (s) = |wx|/|v(s)
x |, the summation is over the roots of (12) (s = 1, 2 correspond to ψ1 and

ψ2, respectively), vT =
√
T/mi = Vu

√
βi/2/M , βi = 8πnT/B2, M is the Alfven Mach number, and we introduced the

notation 〈〈. . .〉〉 =
∫

(. . .)fr(wx, wy)dwxdwy for brevity.
(14)-(19) represent the hydrodynamical variables in terms of the reflection functions ψ1 and ψ2, for arbitrary fr. If

the reflection is specular fr(wx, wy) = (nr/2πv2
T ) exp(−((wx + Vu)2 + w2

y)/2v2
T ). In the high Mach number shocks

v2
T /V

2
u = βi/2M2 � 1, unless βi ∼ M2 ∼ 102 for M & 6. It is easy to see that Taylor expansion of the integrands

in (14)-(19) goes on powers of (vT /vx)2. Sufficiently far from the turnaround point vx ∼ Vu and the terms ∼ (vT /vx)2

and higher can be neglected. Therefore, in the lowest order at x = 0 one can put fr = nrδ(wx + Vu)δ(wy). Then
vx = Vu(1− 2 cosψ), vy = 2Vu sinψ, and

Ωux/Vu = ψ − 2 sinψ, (20)

and the moments of the total distribution function are

n = n0 + nr(|K1|−1 + |K2|−1), (21)

nVy = 2nrVu(sinψ1|K1|−1 + sinψ2|K2|−1), (22)

pxx = mi(n0(V 2
u + v2

T )

+ nrV
2
u (K2 −K1)− nV 2

x ), (23)

pyy = mi(n0v
2
T + 4nrV

2
u (sin2 ψ1|K1|−1

+ sin2 ψ2|K2|−1)− nV 2
y ), (24)

pxy = mi(2nrV
2
u (sinψ2 − sinψ1)− nVxVy), (25)

where Ki = 1 − 2 cosψi, ψ1 and ψ2 are determined by (20), and K1 < 0 < K2. All ions turn around in the point
vx = 0 → ψt = π/3, x = Vu(π/3− 2 sin(π/3))/Ωu ≈ −0.68(Vu/Ωu) [Woods, 1971]. The thermal component n0miv

2
T

of the incident ion pressure cannot be neglected a priori since it might be that n0/nr � 1.
(21)-(25) describe the typical pressure tensor for the mixture of incident and reflected ions in the foot of a high Mach

number shock sufficiently far from the turnaround point x = −0.68(Vu/Ωu). The approximation vT /vx � 1 does not
work near the turnaround point and this region requires separate consideration. This question is beyond the scope of the
present letter.

The profiles of the total density and plasma velocities, predicted by (21)-(22), are shown in Figure 1a for M = 6, βi = 1,
and four different values of the reflected ion fraction nr/n0 = 0.1, 0.15, 0.2, 0.25. Both density and Vy increase with the
increase of nr/n0, while Vx decreases. The corresponding pressure tensor components are shown in Figure 1b. One can
see that pxx, pyy ∼ n0miV

2
u . The contribution of the thermal incident ion pressure p(T )

xx = p
(T )
yy = n0miv

2
T is small

δp/p ∼ v2
T /V

2
u � 1, so that pij is rather insensitive to βi. The absolute value of pxy changes less than pxx and pyy ,

although relative variations are similar. The components pxx and pxy monotonically increase with the increase of x, while
pyy decreases. Both pxx and pyy increase monotonically with the increase of nr/n0. The component pxy is correlated with
nr/n0 near the ramp, but they anti-correlate near the turnaround point. This component changes its sign approximately in
the middle of the foot.

If Bz = const the electric field Ex ∝ pxy (see (8)). The behavior of this Ex and its value at the ramp ≈ 0.25Ey are
in agreement with observations [Scudder et al., 1986]. The distribution of the potential in the foot is shown in Figure 2.
The potential drop constitutes about 0.1 of the incident ion energy, in qualitative agreement with observations [Scudder et
al., 1986] and simulations [Burgess et al., 1989]. It is rather insensitive to the reflected ion fraction because of the partial
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Figure 1. Ion (a) density and velocity components and (b)
pressure tensor components in the foot for different nr/n0 =
0.1, 0.15, 0.2, 0.25.
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Figure 2. Electric potential distribution in the foot for different nr/n0.
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Figure 3. The pressure anisotropy parameters (a) r = pmax/pmin
and A = (pmax− pmin)/(pmax + pmin) and (b) angle between the
major axis of the pressure tensor ellipse and x-axis for different
nr/n0.

cancellation in (9) due to the change of sign of pxy . The potential maximum in the middle of the foot increases with the
increase of nr/n0.

Due to pxx 6= pyy and pxy 6= 0 the pressure tensor is no more gyrotropic. The ratio r = pmax/pmin and anisotropy
A = (pmax − pmin)/(pmax + pmin), where pmax,min = (pxx + pyy ± ((pxx − pyy)2 + 4p2

xy)1/2)/2, are shown in Figure 3a,
while the angle between the major axis and the shock normal θ = arctan (pmax − pxx)/pxy is shown in Figure 3b. They
depend weakly on nr/n0. The anisotropy drops to ∼ 1 approximately in the middle of the foot and is large at the edges.
The major axis of the pressure tensor ellipse rotates to almost 90 deg across the foot. The anisotropy is larger than the
observed by Li et al. [1995] in the magnetosheath (in the plane perpendicular to the magnetic field). It is not surprising since
the shock front is an efficient source of the reflected-gyrating ions in the foot. These ions may contribute also to the ions
pressure features found by Li et al. [1995], if they can propagate far downstream without being completely isotropized.

The temperature is defined as Tij = pij/n. While the total perpendicular temperature T⊥ = (Txx+Tyy)/2 is independent
of pxy , the anisotropy A = ((Txx − Tyy)2 + 4T 2

xy)1/2/T⊥ can be substantially higher than the usually defined A0 =
|Txx − Tyy|/T⊥, due to Txy 6= 0.

3. Conclusions

To conclude, we have shown that the gyrophase bunched reflected ions in the shock foot may contribute significantly to
the off-diagonal elements of the ion pressure tensor. General expressions are derived for the pressure tensor of the mixture
of incident and reflected ions in the widely accepted model of the foot. When the reflection is nearly specular the pressure
tensor takes definite typical form which is rather insensitive to the incident ion temperature.
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The potential electric field is directly related to the off-diagonal ion pressure components. The behavior of this electric
field and the found potential drop ∼ 0.1(miV

2
u /2) across the foot are in a qualitative agreement with observations [Scudder

et al., 1986]. Presence of this electric field and increase of the magnetic field in the foot due to the reflected ion current
would modify the ion motion in this region, which should be taken into account in a more sophisticated model. Observations
[Sckopke et al., 1983; Scudder et al., 1986] and simulations [Burgess et al., 1989] show that the bulk ion velocity changes
by ∼ 0.1Vu, so that we expect that the corresponding corrections be . 10%. Non-specular character of the ion reflection
[Sckopke et al., 1983] would probably result in a more significant modification of the quantitative results of our model. This
question is beyond the scope of the present letter.
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