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It is shown that pulsar radio emission can be generated effectively through a streaming motion in the polar-cap
regions of a pulsar magnetosphere causing nonresonant growth of waves that can escape directly. As in other
beam models, a relatively low-energy high-density beam is required. The instability generates quasi-transverse
waves in a beam mode at frequencies that can be well below the resonant frequency. As the waves propagate
outward growth continues until the height at which the wave frequency is equal to the resonant frequency.
Beyond this point the waves escape in a natural plasma mode (L-O mode). This one-step mechanism is much
more efficient than previously widely considered multi-step mechanisms.

PACS numbers:

Since the discovery of pulsars in 1967 the mechanism of generation of their highly nonthermal (brightness temperatures up
to 1029 K) pulsed radio emission (in the range 108 − 1011 Hz) remains one of the most intriguing astrophysical puzzles [1].
Compact sizes (radius Rp ∼ 106 cm), fast rotation (period P ∼ 1 s), and superstrong polar magnetic fields (B ∼ 1012 G) result
in the efficient avalanche production of an ultrarelativistic pair plasma (Lorentz factor γp � 1) in the vicinity of the magnetic
poles of the neutron star (see, e.g. Ref. 2). This plasma flows outward along the open magnetic field lines and escapes the pulsar
magnetosphere as a relativistic wind beyond the light cylinder, R = cP/2π. In a standard polar-cap model, a primary beam
(Lorentz factor γb � γp) of particles of one species propagates through a secondary pair plasma [1]. The superstrong magnetic
field of the pulsar implies a very short lifetime for the electrons and positrons to radiate away all their perpendicular momenta,
so that the plasma distribution is one dimensional. The properties of this pulsar plasma determine the natural wave modes, and
the problem is to explain how excitation of these modes occurs and how it produces the observed radiation that escapes from the
magnetosphere.

It is probable that the radio spectrum forms in the inner magnetosphere [3], where the infinite magnetic field approximation is
appropriate. The properties of low-frequency (well below the cyclotron frequency) waves in a one-dimensional, relativistic pair
plasma have been extensively studied (e.g., Ref. 4 and references therein). It has been found [5, 6] that for a rather wide class of
plasma distributions the natural modes are the electromagnetic t-mode, ω = kc, and two mixed (with transverse and longitudinal
components of the electric field vector) modes, the almost nondispersive Alfvén mode, ω = k‖vA (here and hereafter subscripts
‖ and⊥ refer to the direction with respect to the external magnetic field), and the L-O mode which has a long wavelength cutoff.
The L-O mode is superluminal, ω/k‖ > c, near the cutoff but can be subluminal for sufficiently small angles, θ, of propagation
at high frequencies. The critical features of any plausible mechanism for the radio wave generation can be summarized as
follows [5]. Only t-waves (which cannot be generated through a beam instability) and waves which eventually appear on the
L-O branch can freely leave the pulsar magnetosphere. Beam instabilities are widely favored, and in the pulsar magnetosphere
are of hydrodynamical type, where the whole beam excites the modes, in contrast to kinetic instabilities which are driven only
by a group of resonant particles [7].

One of the most widely favored scenarios for the radio emission mechanism involves a resonant instability in which an
energetic beam causes quasi-longitudinal subluminal waves to grow. This mechanism encounters certain difficulties. The first
difficulty is that the emission mechanism is indirect: the postulated growing waves need to be converted into quasi-transverse
waves (in the t or L-O modes) via some secondary (e.g., nonlinear) mechanism before they can produce escaping radiation. A
direct mechanism in which the escaping waves are generated directly by the instability would be preferable, and the mechanism
proposed here has this desirable feature. The second difficulty concerns the beam: when the generation is attributed to the
primary, highly relativistic, γb ∼ 107, the growth is too slow to be effective. Thus, efficient beam instability requires a denser,
lower energy beam. One suggestion is that such a beam results from nonstationary avalanche pair generation [8, 9]. Alternatively,
even in the steady avalanche regime, the high energy tail of the pair plasma distribution [10] transforms into a dense beam due
to the inverse Compton scattering [11]. The resulting distribution typically consists of a plasma body with γp ∼ 101 − 102

and a beam with γb ∼ 103. In the steady case such a beam forms at about 10Rp. Although existence of such a beam seems
plausible it is still a model dependent assumption. The third difficulty is related to the nature of the wave generation. Most
authors have concentrated on resonant excitation of parallel (to the magnetic field) propagating modes (Langmuir waves) [4, 11–
13], where it is widely believed that there is a sharp maximum of the growth rate. Growth for slightly oblique propagation
has been considered [5, 14] and also found to favor quasi-longitudinal L-O waves. Only subluminal waves can be resonantly
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excited by a beam. L-O mode becomes subluminal only at frequencies ∼ γp×plasma frequency [5]. Growth is possible at the
resonant frequency, which is just above the frequency where the waves become subluminal. These L-O waves can eventually
escape directly. However, the frequencies are too high to account for the broadband pulsar emission extending to much lower
frequencies (so that a conversion mechanism to lower frequencies would be required). Moreover, growth is restricted to a narrow
range of heights in the magnetosphere where the resonance condition is satisfied, restricting the growth factor to too small a value
to allow effective growth [5]. These constraints led to our relatively pessimist view in [5] of the effectiveness of direct growth of
escaping quasi-transverse waves.

In this Letter we show that a nonresonant version of the instability causes a beam mode to grow over a broad range of lower
frequencies. These waves can grow over a large range of heights. As the propagate outward that ratio of their frequency to
the resonant frequency decreases, and at which height at which this ratio become unity, they evlove into L-O mode waves, and
escape, without any secondary conversion process being required.

We use the following notation: p = mu is the (one dimensional) particle momentum, with m the electron mass, and v = u/γ,
γ = (1 − v2)−1/2 = (1 + u2)1/2 is the particle velocity in units with c = 1. We assume that the distribution function consists
of a pair (p) and a beam (b) component, f(u) = npfp(u) + nbfb(u) with

∫
fpdu =

∫
fbdu = 1. We adopt the infinite magnetic

field limit, which is justified in the inner part of the plasma magnetosphere where the beam-plasma system is formed [11], and
then it is not necessary to distinguish between electrons and positrons, which contribute in an identical manner. The dispersion
relation for this beam-plasma system takes the following form [4–6]:

ε‖ =
tan2 θ

z2 − 1
, (1)

with z = ω/k‖, k‖ = k cos θ, k⊥ = k sin θ, and where ε‖ = 1 − (ω2
p/k2

‖)W (z) + εb is the parallel dielectric constant.
Here ωp = (8πnpe

2/m)1/2 (equal electron and positron densities) is the plasma frequency for the pairs, W =
∫∞
−∞(v − z −

iτ)−1(dfp/du)du, τ → +0, is the dispersion function for the pairs; the contribution of the beam is εb = −ω2
bγ−3

b (ω− k‖vb)−2.
We consider a cold beam for simplicity; the cold approximation is justified when the instabilities are know to be hydrodynamic.
The dispersion relation (1) takes the form

ω2
b

γ3
b (ω − k‖vb)2

=
z2 − cos−2 θ

z2 − 1
−

ω2
pW (z)
k2
‖

≡ K(z). (2)

In the absence of the beam the dispersion relation for the natural modes of the pair plasma is K(z) = 0, which can be written in
the parametric form (recall c = 1)

k2
‖ =

ω2
pW (z2 − 1)

z2 − cos−2 θ
, ω2 =

ω2
pWz2(z2 − 1)
z2 − cos−2 θ

. (3)

The inclusion of the beam introduces additional solutions, called beam modes, and hydrodynamic instabilities may be attributed
to a beam mode becoming intrinsically growing. The instability is said to be nonresonant when the beam mode does not coincide
with a natural mode of the pair plasma, and resonant when it does. The contribution of the beam is significant only when the
denominator in the left hand side of (2) is small, that is, near z = vb. Writing ω = k‖vb + δω, |δω| � |ω| one finds

δω = ωbγ
−3/2
b K(vb)−1/2 = ωbγ

−3/2
b

[
v2

b − cos−2 θ

v2
b − 1

−
ω2

pW (vb)v2
b

ω2

]−1/2

. (4)

The unstable solution δω = iΓ, Γ > 0, exists for K(vb) < 0, that is, ω2 < ω2
pW (vb)v2

b (v2
b − 1)/(v2

b − cos2 θ), which requires
W (vb) > 0. This is the nonresonant beam instability which sets on the beam mode ω ≈ k‖vb.

The expression (4) becomes invalid for K(vb) → 0, that is, where the beam mode ω = k‖vb resonates with the L-O mode
(which is the solution of K(vb) = 0). In this case the right hand side of (2) should be Taylor expanded up to the first nonzero term
which immediately gives (see, e.g., Ref. 4) Γr = Im δω = (

√
3/2)(ω2

b/γ3
b K ′)1/3, with K ′ ≡ (∂K/∂ω)res = 2v2

bγ4
b tan2 θ/ω−

ω2
pv3

bW ′(vb)/ω3, and W ′(z) = dW/dz. For a wide class of distributions the approximation W ′(vb) ∼ γ2
pW (vb) holds. This

implies that the resonant growth rate is insensitive to θ . γp/γ2
b , and decreases slowly with θ & γp/γ2

b . This point is important
in the following discussion: if the growth rate were very sensitive to θ, then a small change in θ as the waves propagate outward
along the curved field lines would restrict the distance over which growth can occur, and hence severely limit the possible growth
factor.

The polarization of the unstable mode is given by (E⊥/E‖) = tan θ(1 − z2)−1 = γ2
b tan θ. Thus, the unstable mode is

quasi-longitudinal (E ‖ B0) for θ . γ−2
b and quasi-transverse (E ⊥ B0) otherwise. The polarization of the growing waves is
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relatively unimportant in practice: the polarization evolves as the waves propagate outward and the observed polarization may
be quite different from the polarization at the point of emission [15].

The derived expressions give the growth rate for arbitrary propagation angle and beam parameters. For small θ � 1 and a
highly relativistic beam vb ≈ 1− 1/2γ2

b , γb � 1, the growth rate for the nonresonant instability (4) reduces to

Γn = ωbγ
−1/2
b

[
ω2

pW (vb)
ω2

− 1− γ2
b θ2

]−1/2

, (5)

which is a slightly increasing function of θ. In the range γ−2
b . θ . γ−1

b , where the waves are quasi-transverse, the dependence
on θ is negligible. The maximum unstable frequency ω2

m = ω2
pW (vb)/(1 + γ2

b θ2), is also the frequency at which the resonant
instability occurs, and it is also almost independent of θ in this range. We conclude that under quite general conditions the beam
instability generates weakly oblique, quasi-transverse waves with a similar efficiency to that for quasi-longitudinal waves.

To illustrate the results in the simplest possible way, we use the cold plasma approximation, fp = δ(u− up). In this case one
has W (z) = γ−3

p (z− vp)−2. The parametric equations (3) become k2
‖ = ω2

p(z2− 1)/γ3
p(z2− cos−2 θ)(z− vp)2, ω = k‖z. For

small θ and γb � γp � 1, the growth rate of the nonresonant instability becomes

Γn = ωbγ
−3/2
b

[
4ω2

pγp/ω2 − 1− γ2
b θ2

]−1/2
. (6)

Thus the growth rate for the resonant instability also decreases monotonically with increasing θ. Although these results are
derived using the cold plasma expressions, as we plan to show in detail elsewhere, they are illustrative of a rather wide class of
distributions due to the fact that the hydrodynamic instability is insensitive to the details of the beam distribution.

For small propagation angles θ . 1/γb the growth rates are almost independent of θ, and we can use the following ap-
proximations. In the ultrarelativistic limit γb � γp � 1 one has Γn = ωbγ

−3/2
b (4ω2

pγp/ω2 − 1)−1/2. For low frequencies,

ω � 2ωpγ
1/2
p , this expression simplifies to Γn = ωωb/2ωpγ

3/2
b γ

1/2
p . The resonant frequency is ωr = 2ωpγ

1/2
p , and the res-

onant growth rate is Γr = 31/22−4/3(ωpω
2
b )1/3/γbγ

1/2
p . Note that Γn(ω = ωr)/Γr ∼ (γp/γb)1/2(nb/np)1/3 implies that for

moderate npγp/nbγb the ratio of the two growth rates is of the order of unity. One can approximate the growth rate in the whole
range by Γ = (ω/2γ

3/2
b γ

1/2
p )H(ωr − ω), where H(x ≥ 0) = 1 and H(x < 0) = 0. This approximation is also valid if the

above ratio is small, except in a narrow frequency range around that resonant frequency. We exploit this approximation in our
estimates below. Note that the condition γb � γp is made for simplicity, and it is not an essential condition for the instability
to operate.

The direct excitation of quasi-transverse waves is a fast process, faster than any nonlinear conversion mechanism. Let the
growth rate be Γ(ω), which is a function of the plasma parameters, np, nb, γp, γb, and np, through which it depends on the
radius, R from the center of the star. The wave amplitude evolves according to (daω/dt) = Γ(ω, R)aω. With the plasma
streaming outward at close to the speed of light, the solution implies aω(R) = aω(R0) exp(

∫ R

R0
Γ(ω, R)dR), where R0 is the

radius where the instability sets in. The power spectrum of the escaping radiation is proportional to the square of this amplitude.
In a homogeneous static plasma the fastest growing mode is the resonant one, and one might expect that the resonant frequency

ultimately dominates the spectrum. In the inhomogeneous plasma of the pulsar magnetosphere the conditions change with the
radius. A wave which is excited at the frequency ω at radius R0 propagates outward into the lower density plasma. A wave
initially at resonance does not remain resonant as it the propagates. The frequency width of the resonance is ∼ Γr � ωr,
where Γr ∝ ωr ∝ n1/2 ∝ R−3/2. For a given ω the resonant condition |ω − ωr(R)| . Γr(R) is satisfied only for a small
∆R/R ∼ Γr/ωr. As a consequence, the resonant growth condition can be met only for a short time, and effectively only at a
single height in the magnetosphere, which places a severe restriction on the gain factor G = exp 2

∫
ΓdR. It is the gain factor G

which determines the efficiency of the wave generation and not the local growth rate Γ. It was for this reason that a pessimistic
view of the effectiveness of the resonant instability was taken in [5]. However, a wave at a given ω can grow nonresonantly for
ω . ωr, and the slightly lower growth rate for the nonresonant instability, compared with the resonant instability, is relatively
unimportant compared with the much greater distance over which nonresonant growth occurs. The much longer growth path
through the magnetosphere results in a much larger gain factor. We note that during the propagation the wavevector, in general,
deviates from the initial propagation direction, so that the propagation angle θ changes, and in principle this would limit the
growth if the wave moves out of resonance as θ increases. This issue will be studied elsewhere. A wave that starts growing
nonresonantly with ω � ωr at some radius, R0, keeps growing while propagating outward until ωr ∝ R−3/2 decreases to
ωr = ω. At this resonant point the beam mode joins on to the L-O mode [17]. Beyond this point amplification ceases and the
wave escapes as in the L-O mode.

Let us estimate the gain factor using the approximation for Γn for the cold plasma case, assuming γp and γb do not
change during the outflow, with ωr ∝ n

1/2
p ∝ R−3/2 [1]. The gain factor at a given ω is G = exp(2

∫∞
R0

Γ(ω, R)dR) =
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exp[2(ωb0R0/γ
3/2
b )x(x−2/3 − 1)], where ωp0 is the plasma frequency at R = R0, and x = ω/2ωp0γ

1/2
p . The factor G is a

maximum at x ≈ 0.2 and, reverting to ordinary units, Gmax ≈ exp(0.25ωb0R0/cγ
3/2
b ). For numerical estimates we use the

following parameters: P = 1 s, B = 1012 G, np = MnGJ = 102 × 6 · 1010 cm−3 (near the pulsar surface), γp = 10 [10, 16],
γb = 103, nb/np ∼ 1, and R0 = 10Rp [11]. This immediately gives that the maximum is achieved at ω/2π ≈ 500 MHz. The
corresponding gain factor exp(G) ≈ exp(30) ≈ 1012, which implies efficient growth. Lower multiplicities would result in
lower maximum gain frequencies. Lower γb, on the other hand, would make the instability more efficient. Better knowledge
of the pulsar plasma parameters is required for direct comparison of our predictions with observations. The above estimate is
invalid for low frequencies, corresponding to wave excitation at very large radii R > 102R0. At such radii one has ωr ∼ Ω/γp

[6], where Ω is the gyrofrequency, and then the infinite magnetic field approximation is no longer valid. Thus there should be
a significant decrease of efficiency of wave growth at low frequencies. Specifically, using parameters chosen by Ref. 6, the
spectrum should be cut off for ω/ωr < 10−3.

Let us summarize the predictions of the proposed model. Quasi-transverse waves are generated efficiently in a wide frequency
range below ωp0γ

1/2
p for small angles of propagation. The power spectrum of the escaping radiation is assumed ∝ G2, where G

is the gain factor, and there is a maximum in G2 at the frequency ωmax ∼ 0.1ωp0γ
1/2
p . The efficiency of wave growth decreases

at both ω < ωmax and ω > ωmax, and the rate of decrease (steepness of the curve G(ω)) increases with the distance from ωmax.
The implied form of spectrum is consistent with observations (e.g., Ref. 1).

We conclude that the nonresonant beam instability efficiently generates quasi-transverse waves in the radio range in a one-step
process. The growing waves are in a beam mode well below the resonant frequency. As these waves propagate outward through
the magnetosphere they evolve into the L-O mode when their frequency matches the resonant frequency. It is also the place
where the growth ceases and, therefore, the spectrum forms. This emission mechanism plausibly reproduces the basic features
of the observed radio spectra of pulsar, notably the existence of a maximum frequency with the spectrum steepening towards
both higher and lower frequencies. However, a detailed interpretation of the observed power spectra requires that the emission
mechanism proposed here be complemented with a statistical model for the emission. The observed spectra are obtained by
integration over many pulses, and each pulse probably involves emission from a statistically large number of individual beams.
Moreover, there remains a potential problem in explaining the lowest frequencies inferred for some pulsar emission: although
the nonresonant model allows emission considerably below the resonant frequency, a more detailed investigation is required to
determine whether the frequency range can extend low enough. A more detailed model for pulsar radio emission based on the
mechanism proposed here will be presented elsewhere.
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