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Motivation and objectives

Early subcritical shock observations: no structure
Recent subcritical shock observations: downstream oscillations
1D stationary theory and simulations: gyrating ions

Questions
2D simulations: how wide ?
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Sub- vs super-critical: structure develops
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From Farris et al. (1993)
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Recent: downstream oscillations at low Mach numbers
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Very low-Mach number Venusian Low-Mach number interplanetary
shock (Venus Express). shocks (STEREO).
From Balikhin et al. (2008) From Russell et al. (2009)
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Theory: gyration of directly transmitted ions

Thin shock transition: crossing ions are decelerated by the
cross-shock potential

e Downstream ions drift and gyrate

Total pressure py = [ mv2f(v)dv spatially periodic

Pressure balance p + B?/8m = const throughout the shock

e Ergo: magnetic pressure spatially periodic
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Theory: test particle, 1D

lon pressure and derived

lon trajectories for different /3 .
magnetic field

From Balikhin et al. (2008)
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1D hybrid simulations

Normalized ion pressure and
magnetic field. Shock parameters

are Bj = B =02,0 =771°,M = movie
1.48.

From Ofman et al. (2009)
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Open questions and problems with 1D

1D simulations suppress inhomogeneities along the shock front:
whether 1D structure is artificially enforced ?

What is the dependence on M and 3 7

What is the relative contribution of directly transmitted and
reflected ions ?
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2.5D hybrid simulations setup

o Box size: 1024x128 cells with grid size of 0.2x0.2 in units of
the ion inertial length.

e 200 particles per cell on average.

o Almost perpendicular geometry, cosf = 0.05.
e Shock formation by the wall reflection.

# Periodic boundary conditions across.

® In-plane magnetic field.
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Shock: magnetic field

Bi=04 M=34 Bi=15 M=53
Magnetic field surface plot
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Shock diagnostics: stationarity

Bi=0.4, M=34 Bi=15 M=53
Successive magnetic field profiles (averaged across the box)
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Shock diagnostics: 1D

B =04 M=34 Bi=15 M=5.3
Several simultaneous cuts across the shock

Ofman and Gedalin lon dynamics in quasi-_L shocks



lons crossing the shock

movie

Left: 8; =0.4, M = 3.4, right: 3; =15, M =5.3

Ofman and Gedalin lon dynamics in quasi-_L shocks



Shock with §; = 1.5, M = 5.3: ion distribution

Successive ion distributions throughout the shock
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Distribution vs magnetic field

Bi=15 M=523
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Conclusions

Downstream magnetic oscillations are due to ion gyration

The main contribution is due to directly transmitted ions

Basic parameter: vy /v, =+/0.58;/M

Reflected ion contribution increases with the increase of Mach
number

No periodicity of the magnetic field because of different spatial
periods for directly transmitted and reflected ions
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