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Structures observed in
the terrestrial magnetosheath

Joy et al.  J. Geophys. Res. 111, A12212 (2006)

1. Satellite observations

Soucek, Lucek & Dandouras JGR 113, A04203 (2008)

Structures observed in the Jovian magnetosheath

Joy et al.  J. Geophys. Res. 111, A12212 (2006)

Magnetic structures (humps or holes) 
that are quasi-stationary in the plasma frame,
with no or little change in the magnetic field
direction are commonly observed in the
solar wind and the planetary magnetosheaths.

Usually viewed as nonlinear mirror modes



• Structures are quasi-static in the plasma frame (propagating drift mirror modes exist in density gradients)

• Small change in the magnetic field direction 

• Observed in regions displaying: ion temperature anisotropy                
β of a few units

(conditions met under the effect of plasma compression in front of  the magnetopause).
Not always in a mirror unstable regime.

• Magnetic fluctuations mostly affect the parallel component.

• Cigar-like structures, quasi-parallel to the ambient field, with a transverse scale of a few Larmor radii.

• Density is anticorrelated with magnetic field amplitude.

Origin of these  structures  is still not fully understood.

Usually  viewed as 

• nonlinearly saturated states of the  mirror instability (Venelov & Sagdeev 1958),

• or (in particular  in the solar wind), remnants of mirror structures created upstream of the observation point 
(Winterhalter et al. 1995).

Other interpretations:

• trains of slow-mode magnetosonic solitons (Stasiewicz 2004)
• mirror instability is the trigger, generating high amplitude fluctuations that evolve 

such as to become nonlinear solutions of isotropic or anisotropic plasma equations
(Baumgärtel, Sauer & Dubinin 2005) 

Main properties of observed structures:

ii TT >⊥



Magnetic holes: mostly in subcritical regime Magnetic humps: in supercritical regime

Génot et al., Ann. Geophys. 27, 601 (2009).

CM <1 : subcritical
CM >1 : supercritical
(for bi-Maxwellian equilibrium)

Skewness
<0

>0

CM<1 CM>1

Similar conclusions in Soucek et al.JGR 113, A04203 (2008)

distance from threshold



Soucek, Lucek & Dandouras, JGR 113, A04203 (2008)

Solid blue line: theoretical
(bi-Maxwellian) mirror threshold

Dashed-dotted blue line: empirical
marginal stability

Black dashed line: fitted boundary
between peaks and dips

Solar wind: “Although the plasma surrounding
the holes was generally stable against the mirror 

instability, there are indications that the holes 
may have been remnants of mirror mode structures
created upstream of the points of observation”
(Winterhalter et al. 1995).

“Peaks are typically observed in an 
unstable plasma, while mirror structures 
observed deep within the stable region 
appear almost exclusively as dips”.

QUESTION: Dynamics leading to these structures?

Steady state stability consistent with 
energetic arguments in the context of 
MHD with suitable equation of state
(Passot et al. PoP 13, 102310, 2006)



With a PIC code in a large domain:
Domain size= 2048 c/ωpi
Growth rate: 0.005 Ωp
1024 cells with 500 000 particles/cell

A large number of modes are excited.
Humps form and undergo coarsening.

2. Numerical simulations of the Vlasov-Maxwell equations

Mirror unstable regime near threshold in a large domain
(most unstable direction)

Shed light on the time evolution and on the origin of the structures.

Color plot of the fluctuations of the magnetic field
component Bη perpendicular to the direction ζ of 
spatial variation, as a function of ζ and t.

1D simulation:

Califano et al., JGR 113, A08219 (2008).



Initial conditions far from threshold

After a while skewness becomes negative.
Humps eventually transforms into dips.

(β||p=1, T┴ /T//=4, θ=50.5)

Magnetic holes also formed in PIC simulations in an 
expanding domain modeling the magnetosheath
(Hellinger &  Travnicek 2007).

(quarter of the box)

No such transition at larger β ( e.g. ).2=pβ



A (long-wavelength) reductive perturbative expansion near threshold can be performed for 
any (frozen) smooth equilibrium distribution function           provided

(normalized parallel
magnetic perturbation)

with

For a bi-Maxwellian distribution                              
,  

Thus Λ >0  and the model predicts
formation of magnetic holes, while
humps are observed in the simulations. 

3. Reductive perturbative expansion: Isolates the mirror mode dynamics 

Instability condition:

Nonlinear coupling:

(Kuznetsov et al. PRL 2007, Califano et al. JGR 2008) Cold electrons 

(Hellinger et al. 2009)

Solution above threshold blows up in a finite time Profile of 1D solution near collapse

Linear growth rate:

Subcritical bifurcation
(Kuznetsov et al. 2008)



At the level of the asymptotic equation, particle trapping can be phenomenologically
interpreted as a renormalization of the time derivative (It indeed corresponds to a 
quenching of the Landau resonance).

This effect was introduced at the level the asymptotic equation by prescribing a  
flattening of the parallel distribution function on a range that extends with the 
strength of the magnetic perturbation (Pokhotelov et al. JGR 2008) 

Can prevent explosive growth of the amplitude. 
The stationary solutions still have the form of KdV solitons.
Only holes can result from this model.

Possible saturation mechanism: particle trapping

Difficult to retain particle trapping within a systematic reductuve perturbative analysis

(1D model)



Flattening of the distribution function resulting  from 
diffusion in velocity space.

PIC simulation in an extended domain near threshold

Formation of magnetic hump suggests that the distribution function 
does not remain bi-Maxwellian

Possibly described by the quasi-linear theory 



Quasi-linear theory (Shapiro  & Shevchenko 1963)

• Assumes space homogeneity  (thus absence of coherent structures); can thus be valid at early times only.

• Requires many modes in interaction, thus an extended domain.

• Mainly associated with a diffusion process in velocity space (dominantly along the ambient field).

linear growth rate
Hellinger & al., GRL, 36, L06103, (2009)



Perturbation of the space-averaged distribution function ∆f = f – f(0)

QL theory PIC simulationt= 1.4 105 t=2 103

Integrated over
flattening

t=0

negative values

positive values

∆



This suggests to couple QL theory and reductive perturbative expansion by  estimating 
the coefficients in the equation for the magnetic fluctuations from the instantaneous 
QL distribution function (that is sensitive to the magnetic fluctuations).

Because of the quasi-singularity of distribution function resulting from QL evolution,
near zero parallel velocity, contributions of the resonant particles are to be taken into 
account in the estimate of the nonlinear coupling (nonlinear Landau damping), 
leading to the denominator.



Results of the simulation of coupled 
system in 1D  (in the most unstable direction) Formation of magnetic humps

QL theory

-min(b)

nonlinear coupling

QL saturation

resonance coefficient

change of sign

max(b)



where σ=+1 (supercritical) or -1 (subcritical)
s=+1 (near a Maxwellian distribution)

or s=-1 (due to QL flattening of the distribution function)

The parameters α and µ are taken positive.

The denominator is reminiscent (in a small amplitude expansion) of the arctan trapping correction 
suggested by Pokhotelov et al. (JGR 2008). 
The physical mechanism is however different, originating here from nonlinear Landau damping.

The parameter α refers to the contribution of the QL resonance to the nonlinear coupling.

While for α=0, the solution blows up in a finite time, 
the denominator arrests the collapse at a maximal amplitude given by 1/α,
leading to the formation  of

- magnetic hole solitons for s=+1
- magnetic hump solitons for s=-1

Saturation by nonlinear Landau damping

1D model after rescaling,

In order to isolate the saturation effect, we freeze the coefficients after the QL phase
(QL diffusion is expected to be strongly depleted as structures are formed)

(Passot et al., 2009)

Difficult to study saturation by direct integration of the model system (due to numerical limitations).



Numerical integration of the model equation, starting from a sine wave of 
amplitude 0.01 in a domain of size 2π leads to a stationary hump solution 
with a negative value of b in the background. 

Saturated solutions in a supercritical regime

The amplitude of the structures is prescribed by the strength of the early time QL 
resonance: larger amplitudes are obtained when these effects are smaller.

Saturation and stability of the soliton profile:

During the nonlinear phase of amplitude growth, a plateau 
of negative values gradually develops, that tends to locally
reduce the ambient magnetic field, putting the system in a 
situation similar to the subcritical regime.

The solution is then attracted to the negative of  the KdV soliton
with an amplitude bmax=1/α.

It is stable due to the presence of the denominator term.

When starting with random initial conditions, which leads to a 
large number of humps, a coarsening phenomenon is observed.

σ=+1
s=-1
µ=0.01
α=1

The problem is numerically (and mathematically) difficult and is
still under investigation. Extremely small time steps are required.

For s=+1, hole solutions are obtained (change b into –b): regime where
QL effects are subdominant, even above threshold.



When σ=-1 with large initial data, no quasi-linear phase: the distribution function remains
bi-Maxwellian (s=+1). 

The denominator correction (with α small) is to be retained because of the large amplitudes.

Magnetic holes are obtained.

Subcritical solutions

Random initial conditions of amplitude 1.2

σ=-1
s=+1
µ=0.05
α=0.8



Subcritical solutions (i.e. below threshold)

Vlasov-Maxwell simulation

Large-amplitude magnetic holes
survive even far below and above threshold.

Magnetic humps do not survive below threshold

Formation of magnetic holes when starting with large initial perturbations

β║=6,  T┴/T║=1.2 and θ=1.463

Domain size: 15x 2π c/ωpi

Solution above threshold.

t=0

t=0

m
ag

ne
tic

 fi
el

d
de

ns
ity

t=0

t=0

m
ag

ne
tic

 fi
el

d
de

ns
ity



Numerical integrations of VM equations in an extended domain:

• In the supercritical regime, existence of  an early phase described by the quasi-linear theory, followed by a
regime where coherent structures are formed.

• Structures resulting from the saturation of the mirror instabilty are magnetic humps.

• Stable solutions in the form of large-amplitude magnetic holes also exist both above and below threshold. 

Asymptotic modeling:

• Reductive perturbative expansion  of  VM eqs near threshold leads, for a bi-Maxwellian (and probably
any smooth) equilibrium distribution function, to an equation predicting the formation of magnetic holes,
with a finite-time singularity (i.e. large-amplitude structures).

• In fact, the early quasi-linear phase introduces a boundary layer for the distribution function near v//=0.
As a result, the asymptotic equation leads to magnetic humps.
Saturation  by nonlinear Landau damping at a level prescribed by  strength of the quasi-linear resonance.

4. Summary
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Although mirror modes near threshold have zero frequency, are quasi-transverse and at large scale,
genuine kinetic effects play a main role, making the dynamics not amenable to a fluid approach.


