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1. INTRODUCTION

Solar corona is highly inhomogeneous and magnetic structured.

Ones of important structures are coronal magnetic loops.

On 14 July 1998 TRACE (Transition Region and Corona Explorer) ob-

served transverse oscillations of coronal loops.

In the first theoretical interpretation of this phenomenon coronal loops

were considered as straight magnetic cylinders with equilibrium quantities

constant inside and outside.
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Later more sophisticated models taking into account such effects as the

density variation along and across the loop, the loop curvature, the vari-

ation of the loop radius and the deviation of the loop cross-section from

circular were developed.

We discuss two problems related to theory of transverse coronal loop os-

cillations:

• Vertical and horizontal oscillations of coronal loops.

• Oscillations of non-planar loops.
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2. VERTICAL AND HORIZONTAL OSCILLATIONS OF

CORONAL LOOPS

Most of observed transverse coronal loop oscillations were horizontally po-

larized. However vertically polarized oscillations were also observed.

Van Doorsselaere et al. 2004, Astron. Astrophys. 424, 1065

The loop has shape

of half-torus. Plasma

is homogeneous inside

and outside the loop.
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Eigenfrequencies were found analytically using toroidal coordinates. The

account of curvature gives correction to oscillation frequency of order

(a/L)2 � 1. This result was confirmed by numerical solution of the

same problem but in stratified atmosphere by

Terradas et al. 2006, Astrophys. J. 650, L91
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ANOTHER MODEL

z

x

y

Loop is embedded in poten-

tial field: B = ∇φ = ∇×ψ

φ(x, z) is magnetic poten-

tial. ψ(x, z) is flux function.

Density is ρi(φ) inside loop,

and ρe(φ) outside loop.

Curvilinear coordinates: ψ, y, φ. Then polar coordinates in ψy surface:

ψ = ψ0 + r cos θ, y = r sin θ, ψ = ψ0 equation of loop axis

Equation of loop boundary is r = a.
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Asymptotic expansions with respect to a/L,

L =

∫ φ2

φ1

dφ

B2
is loop length

φ = φ1 and ψ = φ2 at loop footpoints.

To make analytical progress we, in addition, assume that expansion is

weak,

B2 = B2

0
[1 + λq(φ)], |λ| � 1, q(φ) ∼ 1

Then, in the first order approximation with respect to λ, we

obtain
d2ξ

ds2
+
ω2

1

C2

k

ξ = 0, ξ = 0 at s = 0, L

s =

∫ φ

φ1

dφ

B2
is distance along loop axis
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C2

k =
B2

0

µ0[ρi(s) + ρi(s)]
is square of kink speed

Second order approximation with respect to λ:

ω = ω1 + λω2v,h

ω2v

∫ L

0

ξ2

C2

k

ds =

∫ L

0

q

8

[

µ0ω1

B2
0

(3ρi + 2ρe)ξ
2 − 1

ω1

(

dξ

ds

)2
]

ds

ω2h

∫ L

0

ξ2

C2

k

ds =

∫ L

0

q
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[

µ0ω1

B2
0

(ρi + 2ρe)ξ
2 +

1

ω1

(

dξ

ds

)2
]

ds
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Example: EXPONENTIALLY DECAYING FIELD IN

ISOTHERMAL ATMOSPHERE

φ = B0le
−kz sin(kx), ψ = B0le

−kz cos(kx)

so that B = B0(lk)e−kz. Loop foodpoints are at z = 0, x = ±x0.

Isothermal atmosphere: ρe = ρ0e
−z/H, ρi/ρe = ζ > 1, ζ = const.

Weak loop expansion =⇒ (kx0)
2 = λ� 1. Then l = k−1(1 + αλ), and

q(s) = (s/x0 − 1)2 + 2α− 1

where α ∼ 1 is free parameter. Equation of loop axis is

z =
1

2
x0

√
λ

[

1 −
(

x

x0

)2
]
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Assume that x0 ∼ H =⇒ loop height � H =⇒ ρi,e ≈ const. Then

ω2v =
Ck[π

2(5ζ + 3)(6α + 1) − 6(7ζ + 5)]

24π2L(ζ + 1)

ω2h =
Ck[π

2(3ζ + 5)(6α + 1) − 6(ζ + 3)]

24π2L(ζ + 1)

where L ≈ 2x0.

∆ω = λ(ω2v − ω2h) =
λCk[π

2(ζ − 1)(6α + 1) − 6(3ζ + 1)]

12π2L(ζ + 1)
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3. TRANSVERSE OSCILLATIONS OF NON-PLANAR

LOOPS

EQUILIBRIUM STATE

z

y

x

Be

ϖ

We use Cartesian coordinates x, y, z with the vertical z-axis, and auxiliary

cylindrical coordinates x,$, ϕ, where y = $ cosϕ, z = $ sinϕ.
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In$ > $1 magnetic field is in x-direction and has constant magnitude B1.

In $ > $1 magnetic field is given by

Bx =
q2B0

q2 +$2
, B$ = 0, Bϕ =

q$B0

q2 +$2

∇× B =
2qB

q2 +$2
=⇒ magnetic field is force-free

magnetic pressure is continuous at $ = $1 =⇒ B2

1 =
q2B2

0

q2 +$2

Equation of a magnetic field line is

x = qϕ + x0, y = $0 cosϕ, z = $0 sinϕ

Each magnetic field line is invariant under helical map

ϕ 7→ ϕ + ϕ̃, x 7→ x + qϕ̃
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Loop axis coincides with magnetic filed line defined by

x = qϕ, y = R cosϕ, z = R sinϕ

where R < $1 and $1 −R ∼ $1.

z

x

yθ
r

s

Loop boundary consists of mag-

netic field lines passing through

circle of radius a in plane per-

pendicular to loop axis at one

footpoint. Helical invariance

=⇒ loop cross-section at any

point is a circle of radius a.

Curviliniar coordinates r, θ, s
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In the lowest order approximation with respect to ε = a/R � 1 this

coordinate system reduces to ordinary cylindrical coordinates.

Using asymptotic analysis with ε as a small parameter we obtain

∂2ξ

∂t2
− C2

k

∂2ξ

∂s2
= 0, ξ = 0 at s = 0, L

C2

k =
B2

µ0[ρi(s) + ρe(s)]
, ξ = (ξr, ξθ, 0)

Consider linearly polarized fundamental eigenmode determined by

ξr = f(s) sin(ωt) sin(θ + θ0), ξθ = f(s) cos(ωt) cos(θ + θ0)

where
d2f

ds2
+

ω2f

C2

k(s)
= 0, f(0) = f(L) = 0
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The Cartesian coordinates of ξ are given by

ξ = f(s)

(

R sin θ0
√

R2 + q2
, cos θ0 cosϕ +

q cos θ0 sinϕ
√

R2 + q2
,

cos θ0 cosϕ− q sin θ0 cosϕ
√

R2 + q2

)

where ϕ = s/
√

R2 + q2 and θ0 is the angle between the y-axis and ξ at

s = 0, i.e. it determines the direction of polarization at one footpoint.

At apex point (ϕ = π/2) we have

ξ = f(s)e0, e0 =

(

R sin θ0
√

R2 + q2
,

q cos θ0
√

R2 + q2
, cos θ0

)

If the line of sight is parallel to e0, than we see the node at the apex.
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CONCLUSIONS

• Ratio of frequencies of vertical and horizontal oscillations depends

strongly on a model. While these frequencies are practically the same

in a half-torus model, they can be quite different in a model of loop

embedded in a two-dimensional potential magnetic field.

• Kink oscillations of a non-planar loop are described by the same eigen-

value problem as those of a straight thin magnetic tube.

• Observational evidences of kink oscillations of non-planar loops can

be strongly different from those of planar loops. In particular, if we

observe only the displacement component perpendicular to the line of

sight then the fundamental mode can look like the first overtone.
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