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Radio phase modes
Photon orbital angular momentum (OAM)
  – intrinsic property of photons
  – complement to photon spin angular momentum (polarization)
  – long studied in optics
Transmission from existing radio antenna arrays
  – remote sensing
  – communication
Detection
  – phase gradient
  – full polarization (crossed dipole arrays may be insufficient)
Potential space and astrophysical sources
  – space plasma turbulence?
Other potential applications
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Transmission of radio phase modes
n δφ = 2π l

n antennas

l = OAM mode
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High Frequency Active Auroral Research Program (HAARP)





HAARP HF (2-8 MHz) antenna array



HAARP HF (2-8 MHz) antenna array
Generation of radio OAM



HAARP HF (2-8 MHz) antenna array
Generation of radio OAM:  Tapered beam



Orbital angular momentum (OAM) (radio phase modes) at HAARP 

Leyser et al. (2009)
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Orbital angular momentum (OAM) (radio phase modes):  l = 1

Thidé et al. (2007)
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Transmission of 
radio phase modes

OAM number l = 1

D = array diameter

   = wavelengthλ

λ = D/2

λ = D/3

λ = D/4

λ = D/1



Transmission of radio phase modes
(wavelength = array diameter)
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l = 1
l = 2

l = 3
l = 4



HAARP HF array:  Summary
Objectives:  
  – generate plasma turbulence using a high-power HF OAM beam
  – identify differences between OAM and non-OAM turbulence
Methods:  
  – transmit OAM 1
  – receive stimulated radio backscatter (SEE)
  – compare to standard radio emissions (using OAM 0)
Results:  
  – OAM 1 generated
  – radio emissions measured (one receiver, one polarization)
  – data are inconclusive
Future possibilities:  
  – add additional diagnostics (radar, optics)
  – receive using OAM-sensitive (full-polarization) radio techniques
  – verify transmitted OAM



Jicamarca Radio Observatory (JRO) 50-MHz antenna array





Jicamarca radio antenna – one subarray
12 x 12 (144) 
crossed dipoles
per subarray
8 x 8 (64)
subarrays



Jicamarca radio antenna – 64 subarrays
12 x 12 (144) 
crossed dipoles
per subarray
8 x 8 (64)
subarrays

9216 crossed 
dipoles
18432 dipoles



Jicamarca radio antenna
12 x 12 (144) 
crossed dipoles
per subarray
8 x 8 (64)
subarrays

9216 crossed 
dipoles
18432 dipoles

four quarters
each with 
4 x 4 (16)
subarrays



OAM 1 
generated
using subarrays

Jicamarca radio antenna



OAM 1 
generated
using quarters

Jicamarca radio antenna



Jicamarca
OAM l = 0
beam
pattern

using
quarters



Jicamarca
OAM l = 1
beam
pattern

using
quarters



Equatorial electrojet observed using OAM l = 0 transmission



Equatorial electrojet: OAM 1Equatorial electrojet observed using OAM l = 1 transmission



Jicamarca 50-MHz radar:  Summary
Objectives:  
  – use OAM as an active radio remote sensing technique
  – search for differences between OAM and non-OAM backscatter
Methods:  
  – transmit OAM 0 and 1 using four antenna quarters
  – receive using standard methods
  – compare radar backscatter
Results:  
  – OAM 1 generated
  – backscatter received
  – data being analyzed
Future possibilities:  
  – generate OAM using eight antenna subarrays
  – receive using OAM-sensitive (full-polarization) radio techniques
  – verify transmitted OAM
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Arecibo 
Observatory
305-meter antenna
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Breakall and Sulzer

Orbital angular momentum (OAM) (radio phase modes) at Arecibo:
Transmitter with three crossed dipoles 

Breakall and Sulzer

Orbital angular momentum (OAM) (radio phase modes) at Arecibo
HF (5 and 8 MHz) transmission using three crossed dipoles 
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Orbital angular momentum (OAM) (radio phase modes) at Arecibo
HF (5 and 8 MHz) transmission using three crossed dipoles 
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Orbital angular momentum (OAM) (radio phase modes) at Arecibo
HF (5 and 8 MHz) transmission using six linear dipoles 
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Orbital angular momentum (OAM) (radio phase modes) at Arecibo
HF (5 and 8 MHz) transmission using six linear dipoles 



New Arecibo HF:  Summary
Objectives:  
  – determine if Arecibo can transmit a high-power HF OAM beam 
Methods:  
  – calculate OAM for planned and possible dipole configurations
Results:  
  – pure OAM 1 cannot be generated with three crossed dipoles
  – pure OAM 1 can be generated with six linear dipoles
Future possibilities:  
  – account for Cassegrain and primary reflectors
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Reception of radio phase modes
Phase gradient method
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Figure 11. Phase plot showing the local behavior of the phase of the Ey component, calculated at

z = 25λ, generated by a ten element circular array of λ/2 electric dipoles. Moving to from left to

right, the OAM number increases from l = 1 to l = 4 and moving from the top to the bottom the

array diameter increases from D = λ to D = 6λ. Most notably, we see the effect of the sidelobes

of the arrays with larger array diameter. The color-coding is from 0
◦
(blue) to 360

◦
(red). The

opening angles (in the vertical and horizontal directions) are 38.7◦ . Compare with Fig. 7.
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Figure 10. The local behavior of the estimated OAM mode l, calculated at z = 25λ, correspond-
ing to an opening angle of 38.7◦ (in the vertical and horizontal directions), The color scale is from

j = −10 (blue) to j = 10 (red). From left to right, the OAM number increases from l = 1 to l = 4

and from top to bottom the array diameter increases from D = 1λ to D = 6λ. Compare with

Fig. 4. The beams were generated by a ten element circular array of λ/2 electric dipoles.
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Reception of radio phase modes
Longitudinal electric field method
– Radio phase modes are not TEM modes
– E component along wave vector (E || k) exists in the far field
– Measurement using this method requires polarization purity
– Not possible with current crossed-dipole radio arrays



Three-axis antennas



A new digital radio receiving system
Multi-purpose 
    spectra, polarization, direction angle
    imaging, orbital angular momentum
    pump wave “truth”, anomalous absorption, ionosonde radar receiver
    VHF/UHF satellite beacon scintillation receiver
    anomalous absorption and ionosonde radar receiver
Wide band
    clamped (radiowave pump)
    unclamped (natural)
Multi-channel (three-axis antennas)
    full polarization, polarization purity
Multiple and modular receivers
    swapable
    multiple sites
    coherent 
Low maintenance 
    easily configurable
    unattended operation
    remotely controllable
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Three-axis antennas

Thidé, Bergman, Isham, et al.
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Thidé, Bergman, Isham, et al.



Three types of potential sources of photon OAM
Intrinsic
  – “point” sources (pulsars, Kerr black holes)
  – SETI
Structure
  – maser diffracting on discontinuities in ISM
  – cosmic microwave background
Pointing
  – stellar coronagraph (detection of faint close companions)

In part from: Harwit (2003), Tamburini et al. (2006), Elias (2008)



Other potential applications of radio OAM
Antenna pattern
  – solar coronagraph
  – nulling of strong unwanted source
Communications
  – multiple channels at one frequency
Remote sensing (detection of OAM)
  – radio and radar (reception)
  – radar (transmission and reception)
Experiments (creation of OAM)
  – radiowave pumping of high frequency turbulence
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Communications
  – multiple channels at one frequency
Remote sensing (detection of OAM)
  – radio and radar (reception)
  – radar (transmission and reception)
Experiments (creation of OAM)
  – radiowave pumping of high frequency turbulence

Space plasma turbulence
Intrinsic OAM? 
Structure OAM?



Radio phase modes:  Conclusions
Photon orbital angular momentum (OAM) 
  – intrinsic property of photons
  – complement to photon spin angular momentum (polarization)
Transmission from existing antenna arrays
  – remote sensing
  – communication
Detection
  – phase gradient
  – full polarization (crossed dipole arrays may be insufficient)
Three types of OAM sources
  – intrinsic
  – structure
  – pointing 



Radio phase modes:  Conclusions (continued)
Potential space and astrophysical sources
  – stellar coronagraph (detection of faint close companions)
  – “point” sources (pulsars, Kerr black holes)
  – maser diffracting on discontinuities in ISM
  – cosmic microwave background
  – SETI
  – space plasma turbulence
Other potential applications
  – solar coronagraph
  – nulling of unwanted sources


