Application of Radio Phase Modes to Modification and Remote Sensing of the Atmosphere and Space

Brett Isham (Interamerican University, Bayamón, Puerto Rico, USA)
Siavoush M. Mohammadi (Uppsala Student Union, Uppsala, Sweden) Jorge Chau (Jicamarca Radio Observatory, Jicamarca, Peru)

David L. Hysell (Cornell University, New York, USA)
Lars K. S. Daldorff (Finnish Meteorological Institute, Helsinki, Finland)
Thomas Leyser (Swedish Institute of Space Physics, Uppsala, Sweden)
Bo Thidé (Swedish Institute of Space Physics, Uppsala, Sweden)
Jan Bergman (Swedish Institute of Space Physics, Uppsala, Sweden)
Paul Gallop (Soffari Ltd., Reading, UK)

Dynamical Processes in Space Plasmas
Ein Bokek, Israel, 10-17 April 2010
http://physics.bgu.ac.il/~gedalin/Isradynamics2010/

Radio phase modes

Photon orbital angular momentum (OAM)

- intrinsic property of photons
- complement to photon spin angular momentum (polarization)
- long studied in optics

Transmission from existing radio antenna arrays

- remote sensing
- communication

Detection

- phase gradient
- full polarization (crossed dipole arrays may be insufficient)

Potential space and astrophysical sources

- space plasma turbulence?

Other potential applications

Transmission of radio phase modes

$$
n \delta \phi=2 \pi l
$$

n antennas
$l=$ OAM mode

High Frequency Active Auroral Research Program (HAARP)

$+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$

HAARP HF (2-8 MHz) antenna array
Generation of radio OAM
$+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$
$+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $++++++_{+}^{+}++++++++$ $+++++++++1+++++$ $+++++++++++++++$ $+++++++++++++++$

HAAR HF ($2-8 \mathrm{MHz}$) antenna array

Generation of radio OAM: Tapered beam
$+++++++++++++++$ $+++++++++++++++$ $+++++,+++1++++$ $+++++^{-}+++++_{+}+++$ $+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $+++++++++++++++$ $++++-++++++_{+}^{+}++$ $+++++-1+++r+++++$ $+++++++++++++++$ $+++++++++++++++$

Orbital angular momentum (OAM) (radio phase modes) at HAARP

Orbital angular momentum (OAM) (radio phase modes): $l=1$

Transmission of radio phase modes

OAM number $l=1$
$D=$ array diameter
$\lambda=$ wavelength

$\lambda=D / 2$

$\lambda=D / 3$
$\lambda=D / 4$

Transmission of radio phase modes

(wavelength = array diameter)

$$
0^{\circ}
$$

90°

HAARP HF array: Summary

Objectives:

- generate plasma turbulence using a high-power HF OAM beam
- identify differences between OAM and non-OAM turbulence

Methods:

- transmit OAM 1
- receive stimulated radio backscatter (SEE)
- compare to standard radio emissions (using OAM 0)

Results:

- OAM 1 generated
- radio emissions measured (one receiver, one polarization)
- data are inconclusive

Future possibilities:

- add additional diagnostics (radar, optics)
- receive using OAM-sensitive (full-polarization) radio techniques
- verify transmitted OAM

Jicamarca Radio Observatory (JRO) 50-MHz antenna array

Jicamarca radio antenna - one subarray

12×12 (144)
crossed dipoles per subarray
8×8 (64)
subarrays

$$
\begin{aligned}
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++ \\
& +++++++++++ \\
& +++++++++++ \\
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++
\end{aligned}
$$

Jicamarca radio antenna - 64 subarrays
12×12 (144)
crossed dipoles
per subarray
8×8 (64)
subarrays
9216 crossed dipoles

18432 dipoles

Jicamarca radio antenna
12×12 (144)
crossed dipoles
per subarray
8×8 (64)
subarrays
9216 crossed dipoles

18432 dipoles
four quarters each with
4×4 (16)
subarrays

Jicamarca radio antenna

OAM 1

generated
using subarrays

Jicamarca radio antenna

OAM 1

generated
using quarters

Dver Jicamarea: 11-Jul-2009 (192)

Dver Jicamarea: 11-Jul-2009 (192)

Equatorial electrojet observed using OAM $\boldsymbol{l}=0$ transmission

Equatorial electrojet observed using OAM l=1 transmission

Jicamarca 50-MHz radar: Summary

Objectives:

- use OAM as an active radio remote sensing technique
- search for differences between OAM and non-OAM backscatter

Methods:

- transmit OAM 0 and 1 using four antenna quarters
- receive using standard methods
- compare radar backscatter

Results:

- OAM 1 generated
- backscatter received
- data being analyzed

Future possibilities:

- generate OAM using eight antenna subarrays
- receive using OAM-sensitive (full-polarization) radio techniques
- verify transmitted OAM

Orbital angular momentum (OAM) (radio phase modes) at Arecibo

HF (5 and 8 MHz) transmission using three crossed dipoles

Orbital angular momentum (OAM) (radio phase modes) at Arecibo

 HF (5 and 8 MHz) transmission using three crossed dipoles

Orbital angular momentum (OAM) (radio phase modes) at Arecibo

HF (5 and 8 MHz) transmission using six linear dipoles

Orbital angular momentum (OAM) (radio phase modes) at Arecibo

 HF (5 and 8 MHz) transmission using six linear dipoles

New Arecibo HF: Summary

Objectives:

- determine if Arecibo can transmit a high-power HF OAM beam

Methods:

- calculate OAM for planned and possible dipole configurations

Results:

- pure OAM 1 cannot be generated with three crossed dipoles
- pure OAM 1 can be generated with six linear dipoles

Future possibilities:

- account for Cassegrain and primary reflectors

Reception of radio phase modes

Phase gradient method

$l=1$
$l=2$

$$
D=1 \lambda
$$

E_{y} at
$R=25 \lambda$
40-deg field of view

$$
D=2 \lambda
$$

$$
D=4 \lambda
$$

Mohammadi et al
(2010) figure 11
$l=1$
Radio phase mode (OAM mode) number at $R=25 \lambda$ 40-deg
field of view

$$
D=1 \lambda
$$

$$
D=4 \lambda
$$

$$
D=6 \lambda
$$

Reception of radio phase modes

Longitudinal electric field method

- Radio phase modes are not TEM modes
- E component along wave vector ($\mathbf{E} \| \mathbf{k}$) exists in the far field
- Measurement using this method requires polarization purity
- Not possible with current crossed-dipole radio arrays

Three-axis antennas

A new digital radio receiving system

Multi-purpose
spectra, polarization, direction angle
imaging, orbital angular momentum
pump wave "truth", anomalous absorption, ionosonde radar receiver
VHF/UHF satellite beacon scintillation receiver
anomalous absorption and ionosonde radar receiver
Wide band
clamped (radiowave pump) unclamped (natural)
Multi-channel (three-axis antennas) full polarization, polarization purity
Multiple and modular receivers
swapable
multiple sites
coherent
Low maintenance
easily configurable
unattended operation
remotely controllable

A new digital radio receiving system

Multi-purpose
spectra, polarization, direction angle
imaging, orbital angular momentum
pump wave "truth", anomalous absorption, ionosonde radar receiver
VHF/UHF satellite beacon scintillation receiver
anomalous absorption and ionosonde radar receiver
Wide band
clamped (radiowave pump) unclamped (natural)
Multi-channel (three-axis antennas)
full polarization, polarization purity
Multiple and modular receivers
swapable
multiple sites
coherent
Low maintenance
easily configurable
unattended operation
remotely controllable

Three types of potential sources of photon OAM

Intrinsic

- "point" sources (pulsars, Kerr black holes)
- SETI

Structure

- maser diffracting on discontinuities in ISM
- cosmic microwave background

Pointing

- stellar coronagraph (detection of faint close companions)

Other potential applications of radio OAM

Antenna pattern

- solar coronagraph
- nulling of strong unwanted source

Communications

- multiple channels at one frequency

Remote sensing (detection of OAM)

- radio and radar (reception)
- radar (transmission and reception)

Experiments (creation of OAM)

- radiowave pumping of high frequency turbulence

Other potential applications of radio OAM

Antenna pattern

- solar coronagraph
- nulling of strong unwanted source

Communications

- multiple channels at one frequency

Remote sensing (detection of OAM)

- radio and radar (reception)
- radar (transmission and reception)

Experiments (creation of OAM)

- radiowave pumping of high frequency turbulence

Space plasma turbulence
Intrinsic OAM?
Structure OAM?

Radio phase modes: Conclusions

Photon orbital angular momentum (OAM)

- intrinsic property of photons
- complement to photon spin angular momentum (polarization)

Transmission from existing antenna arrays

- remote sensing
- communication

Detection

- phase gradient
- full polarization (crossed dipole arrays may be insufficient)

Three types of OAM sources

- intrinsic
- structure
- pointing

Radio phase modes: Conclusions (continued)

Potential space and astrophysical sources

- stellar coronagraph (detection of faint close companions)
- "point" sources (pulsars, Kerr black holes)
- maser diffracting on discontinuities in ISM
- cosmic microwave background
- SETI
- space plasma turbulence

Other potential applications

- solar coronagraph
- nulling of unwanted sources

