COLLISIONLESS MAGNETIC RECONNECTION: ELECTRON INERTIA VERSUS NONSCALAR THERMAL PRESSURE.

G. Vekstein and M. Hosseinpour

Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom

Collisionless tearing instability in a sheared force-free magnetic field is considered in the framework of electron magnetohydrodynamics. A rigorous analytical analysis demonstrates that the bulk inertia of electrons is the dominant reconnection mechanism in a sufficiently low- β plasma, when the reconnection current sheet width exceeds the electron gyroradius. Otherwise a fluid-like approach fails, and fully kinetic treatment of the problem is required. A recently raised issue of the role of the electron gyroviscous cancellation in collisionless reconnection is also addressed.

recommended)