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Motivation

Conductance of closed diffusive rings studied

experiment : B. Reulet et. al., PRL 75, 124 (1995)

theoretical review : A. Kamenev and Y. Gefen, IJMP B9, 751 (1995)

G = GDrude + weak-localization corrections

GDrude =
e2

2πh̄
M `

L

We would like to find

the conductance of ballistic rings

Ballistic ring: `� L

Diffusive ring: `� L

L = system size

` = mean free path



Take-home messages

• In the mesoscopic regime the leading order

result for the conductance of ballistic rings

is not Drude.

• In classical treatment we do get Drude.



Conductance Scheme

Diffusive RingBallistic Ring

Open system

This is an example of a scatterer.

We will choose a corresponding S matrix.



The Model System

S

Ballistic Ring Network

S

In our S matrix:

gR
ab =

∣∣∣SR
ab

∣∣∣2 = ε2

gT
ab =

∣∣∣ST
ab

∣∣∣2 =
(
1−M ε2

)
δab

gT = 1−M ε2 0 < gT < 1

S =

(
ε exp(2πi ab

M)
√

1−Mε2δa,b√
1−Mε2δa,b −ε exp(−2πi ab

M)

)

a, b : mode index

M : number of open modes



The notion of conductance

We define:

Conductance = energy absorption coefficient.

”Joule’s law”

dE

dt
= G Φ̇2

In the mesoscopic regime it is assumed that

Relaxation processes � EMF driven transition

This assumption takes us beyond the LRT regime.



Landauer and Drude

The Landauer conductance for open system

GLandauer =
e2

2πh̄

∑
ab

gT
ab

For the opened version of our model we get

GLandauer =
e2

2πh̄
MgT

In a recent work we found

the classical conductance for a close ballistic ring

G =
e2

2πh̄

∑
ab

[
2gT/(1− gT + gR)

]
ab

For the closed version of our model we get

G =
e2

2πh̄
M gT

1− gT

Note that ` ≈ L
1−gT

for gT ∼ 1

G ≈ e2

2πh̄
M `

L
= GDrude



Classical Kubo

Kubo formula

G = %F ×
1

2

∫ ∞
−∞

〈〈I(τ)I(0)〉〉 dτ

The Drude assumption

〈〈I(τ)I(0)〉〉 =
(
e

L
vE

)2

e−(vE/l)τ

Using it we get Drude

GDrude =
e2

2πh̄
M `

L

Do we get the same in the
quantum case?



Outline
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Quantum Kubo

Quantum version of Kubo

GKubo = πh̄%2
F ×

〈〈
|Inm|2

〉〉

%F = ML/(πh̄vF )

Inm ≡ current operator elements

〈〈· · ·〉〉 stands for algebraic average

Kubo derivation assumes:

1. FGR transition rates.

2. All elements are comparables.

The latter assumption is problematic!

(we shall see that later)



Landauer?

If all the eigenfunctions were ergodic,

all the Inm elements would be comparable.

GKubo =
e2

2πh̄
M = GLandauer

But the ergodic assumption is wrong.

Let us see how the Inm look like.



Eigenstates of our system

The eigenfunction of the ring

|ψ〉 =
∑
a

Aa sin(kx+ ϕa)⊗ |a〉

a ≡ mode index = 1, · · · ,M

For a given gT we find a set of values

(kn, ϕ
(n)
a , A(n)

a ) n = level index
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Ergodicity measure

Participation ratio

PR ≡
[∑

a

(
La

2
A2

a

)2
]−1

=

{
1 Localized

M Ergodic
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non-trivial ballistic regime

1/M � (1− gT ) � 1

No “quantum chaos” ergodicity



Current Operator

The matrix elements of the current operator are

Î = ev̂δ(x̂− x0) (symmetrized)

Inm ≈
∑
a

La

2
A(n)

a A(m)
a sin(ϕ(n)

a − ϕ(m)
a )

a ≡ mode index = 1, · · · ,M

Small PR of wavefunctions implies

‘sparsity’ of Inm

1−gT=0.1

n

m
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What is the Kubo result?

GKubo = πh̄%2
F ×

〈〈
|Inm|2

〉〉

If we make an algebraic average we get

GKubo = GDrude

where we assumed

1

1− gT

�M

mean free time � Heisenberg time

But the conductance depends on the possibility to

make a connected sequence of transitions.

Therefore, algebraic average is not correct.



Resistor network

+J

−J

EJ

En

level index n node n

transition rate wnm inverse resistor gnm

master equation Kirchhoff

conductance G inverse resistivity g

Master equation

dpn

dt
=
∑
m

wnm(pm − pn)

Kirchhoff

Jn =
∑
m

gnm(Vn − Vm)



The mesoscopic conductance

The FGR transition rate

wnm = 2πh̄
|Inm|2

(En − Em)2
Φ̇2 δΓ(En − Em)

Dimensionless transition rate

gnm =
|Inm|2

(n−m)2

1

γ
F

(
n−m

γ

)
γ = Γ/∆ ≡ hopping range 1 < γ �M

G =
e2

2πh̄
× 2M2g

g−1 resistivity of the network.

Approximation via harmonic average

(”resistor in series”)

g =

 1

N

N∑
n

[
n∑
m

(m− n)2gnm

]−1
−1



The results

The coarse-grained conductance

G =
e2

2πh̄
× 2M2g
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Conclusion

• Ballistic rings are not quantum ergodic

• The perturbation matrix is sparse

• Kubo formula does not hold in mesoscopic

regime

• Therefore, we do not get Drude formula

• Finding the conductance is analogous to

solving a resistor network problem

• Conductance is typically not larger than the

number of open modes


