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Abstract

The Landauer conductance, the conductance of open mesoscopic systems, equal in

the weak scattering limit to the number of open modes. In this work we will ask what is

the corresponding result if we close the system into a ring. Will it still be bounded by the

number of open modes? We have found two results for this question. The first one [1] applies

if we assume very short coherence time, therefore the treatment is essentially classical one.

Using a scattering approach we find an expression for the conductance, which we call the

Drude conductance. We will also make a distinction between various environmental effect

and analyze a model for a multimode ring with a specific scatterrer and demonstrate that

unlike the conductance for an open system, in closed system the conductance is not bounded

by the number of open modes.

In the second part of our work [2] we will consider an essentially coherent ring where

driving cause weak level broadening, as a result energy absorption due to Fermi golden rule

transitions occur. We find that if the environmental induce relaxations processes are much

weaker compare to the driving, the result will be a new type of conductance which we named

mesoscopic conductance. That conductance is much smaller compared with the classical one,

this is a result of nonuniversal structures of the perturbation matrix, which are a generic

ingrediant for quantum chaotic systems.

The conductace is define via Jouls law, as the coeffecient of energy dissipation rate, and

the nonuniversal structures, or sparcity in the matrix may create bottelnecks that suppress

the dissipation. We determine the conductance using the analogy with percolation problem,

only in our case the percolation is in energy space. We also make a distinction between this

mesoscopic conductance to the much larger spectroscopic conductance which is created if

the relaxations processes are stronger.

In the third part of our work we have varify the generality of our statement by analyzing

a realistic model in which the ring is modeled as a waveguide with a semidisc scatterer.
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Chapter 1

Introduction

The theory for the conductance of closed mesoscopic rings [4, 5, 6, 7, 8, 9] has attracted a

lot of interest in past years. In a typical experiment [10] a collection of mesoscopic rings are

driven by a time dependent magnetic flux Φ(t) which creates an electro-motive-force (EMF)

−Φ̇ in each ring. Assuming that Ohm’s law applies, the induced current is I = −GΦ̇ and

consequently Joule’s law gives

Rate of energy absorption = G Φ̇2 (1.1)

where G is called the conductance. For diffusive rings the Kubo formula leads to the Drude

formula for G. A major challenge in past studies was to calculate the weak localization

corrections to the Drude result, taking into account the level statistics and the type of

occupation [9]. It should be clear that these corrections do not challenge the leading order

Kubo-Drude result.

It is just natural to ask what is the conductance if the mean free path ` increases, so

that we have a ballistic ring, where the total transmission is gT ∼ 1. To be more precise, we

assume that the mean free path

` ≈ 1

1− gT

L (1.2)
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is much larger than the perimeter L of the ring. In such circumstances “quantum chaos”

considerations become important.

We want to make clear distinction between classical and quantal effects. This helps

to develop a better intuition for the physics of such devices. Here ”classical” as opposed to

“quantum” should be understood in the sense of Boltzmann picture. In the “classical” case

the interference within the arm of the ring is ignored, while both the Fermi statistics and

the single scattering events are treated properly.

In the first part of this work we are interested in circumstances such that the leading

result for the conductance is of classical nature. This is completely analogous to the discus-

sion of diffusive rings in circumstances such that the leading result is given by the Drude

formula. We are going to assume that the coherence time is much shorter than the time that

it takes for an electron to encircle the ring. Thus, as far as the dynamics is concerned, our

analysis is essentially of classical nature.

The approach in this part is that the scattering “cross section”, which is possibly of

quantum mechanical nature, is taken as an input, while the overall dynamics is assumed to

be of classical nature.

In the second part of this work we will discuss the implications of quantum interference.

Following [11] we argue that the calculation of the energy absorption in Eq.(1.1) is somewhat

similar to solving a percolation problem. The “percolation” is in energy space rather than

in real space. This idea was further elaborated in [12].

In the standard derivation of the Kubo formula [13] it is assumed that the leading

mechanism for absorption is Fermi-golden-rule transitions. These are proportional to the

squared matrix elements |Inm|2 of the current operator. Still, the theory of [11] does not

lead to the Kubo formula. This is because the rate of absorption depends crucially on

the possibility to make connected sequences of transitions, and it is greatly reduced by the

presence of bottlenecks. It is implied that both the structure of the |Inm|2 band profile and

its sparsity play a major role in the calculation of G. This issue will also be treated by the
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scattaring approach, using S matrix.

This approach to the problem of conductance has a practical appeal. The reason for the

popularity of the scattering approach in mesoscopic physics is its ”plug and play” feature.

The experimentalist is able to characterize the scattering properties of his/her device, and

then he/she is able to make a prediction regarding the conductance. It is only natural to

extend this ”plug and play” approach to the analysis of conductance of closed rings. This

extension is far from being trivial.

In the second part of the work we will consider a schematic S matrix which couple

several bonds in a ring geometry. In the last part of this work we analyze a more realistic

model. In that part of the work we will consider a waveguide, close to a ring, which support

several open channels. We find an S matrix which describe a semi disc shaped scatterer which

couple those modes together. We will show that all the main ingredients in the calculation

of he conductance can be found in our previous, simplified model.

1.1 The long time scenario

Some people find it inappropriate to define conductance for a closed system because the

problem does not possess a stationary solution. Namely, it is clear that without a contact

to a thermal bath the driven system is gradually heated up. However, we find this objection

of no relevance. The practical point of view of an electrical engineer is demonstrated in

Fig.1c. It is clear that at any moment the engineer is inclined to characterize the ring by its

conductance. This is true irrespective of whether there is a contact with a thermal bath or

not. In the absence of such contact it is evident that the system is heated up and therefore

the conductance becomes time-dependent.

It is true that the overall scenario is (formally) beyond linear response, but it is also

true that at a given instant of time it is feasible to have a valid linear response description.

The validity condition is having an ergodization time which is much smaller than the time
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that it takes to have a significant change in the (evolving) energy distribution of the system.

This reasoning leads to “slowness conditions” that are further discussed in Ref.[13].

(a) (b)

g
x0 x1

(d)
(c)

−

+

Fig.1 Panel (a) displays the standard Landauer (open) geometry of connecting a conductor to a left and a

right reservoirs. In this illustration the conductor is a rectangular waveguide to which a cavity is attached. In

panel (b) the leads are joined together so as to form a ring. The motion in the ring is assumed to be chaotic

due to the scattering in and out of the cavity. Panel (c) is the schematic electrical engineering representation

of the system. In panel (d) the system is modeled as a network. The scattering region is described by the

transition matrix gab. In (c) and in (d) we indicate the presence of the environment by the gray shading.

In fact (a) can be regarded as a special case of (b) provided one assumes that the effect of the environment

is to randomize the velocity within the wire region. The current is measured via the section x = x1. The

Electro motive force (EMF) is realized by time dependent Aharonov Bohm flux. The voltage drop can be

concentrated anywhere along the ring (say across x = x0). Setting a chemical potential difference in the

setup of panel (a) can be regarded as such particular option.
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1.2 Relation of the work to past works

In this section we will clarify on the physical conditions assumed in our work and their

relation to other works. we begin with the following scheme which present the energy as a

function of the mean free path l (the elastic length).

Fvh
L

τl

MLλE

τerg

EF

∆

hω

L
diffusive

l

τL

τH

trivialballistic

Fig.2 Energy and time scales in the diffusive and ballistic regimes

where τl = l/vF is the mean free time, vF is the Fermi velocity. τL = L/vF is the time

for encircling the ring, the inverse of the level spacing of a single mode. τH is the Heisenberg

time, the inverse of the level spacing. Using the Fermi velocity we can characterize those

time scale either by their characteristic lengths or their energy scales.

τerg = L2/D is the ergodic time. It describe the time it take for an electron to spread

out in the system, where D = l2/τl is the diffusion coefficient. This time scale, also known

as the Thouless time is an important time scale in the physics of diffusive conductors. Our

work in focused on the ballistic regime in which the mean free path is

L� l�ML (1.3)

Two other regimes are, the trivial regime where ML � l in which there is no mixing of

modes, and as a result the conductance of the ring in mesoscopic conditions will vanish, this
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issue is explained in section 4.10.

The diffusive regime, where l� L has been studied extensively. In a review by Kmenev

and Gefen [9] the authors considered the case of a closed diffusive system. They emphasis

that for a diffusive system the leading order results for the conductance are the Drude results,

plus other, weak localization corrections. Where the Drude results are the Thouless energy,

the inverse of τerg, divided by the mean level spacing [[42]], and the quantum corrections

reduce the conductance of the system.

The authors analyze in there work the conductance of a close diffusive systems, and

the conductance dependence on flux. They found that two ingredients are crucial for this

analysis. First, the ratio between the mean level spacing and the inelastic broadening, the

broadening of the level due to coupling to an outside environment. They distinguish between

the continuous spectrum limit, due to the level broadening, and the discrete spectrum limits.

Second, the emphasis the importance of the type of statistical ensemble employed, they

distinguish between canonical and grand canonical ensembles. In their work the authors

stress that of the two common approaches for calculating the conductance of a quantum

system, the Landauer approach and the Kubo approach, only the latter is suitable when

considering a leadless geometry.

The relation among the important energy scales in the diffusive regime, as can be seen

clearly in the above figure are as follow.

∆ � τerg
−1 � τl

−1 � EF (1.4)

Those energy/time scales are related to the geometry of the system.

We will clarify on the effect of the environment and the driving on the system’s behav-

ior. We consider two relevant energy scale, the first one is Γ, which describe the broadening

of the levels due to non adiabatic driving, or due to interaction with a noisy environment, we

elaborate on this issue in chapter 2. This Γ can be also describe by its characteristic length

the coherence length.
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In the first part of our work, chapter 3 we assume that this length is very short, so

we can treat the problem as a classical one, while ignoring interference effects, this issue is

discussed in 1.3.

In the main part of our work, chapters 4 and 5 we treat Γ as a phenomenological

parameter which is larger then the mean level spacing ∆, so we have some level broadening,

but still the level are not smeared. So Γ is still much smaller then ∆b = M∆, the energy

scale related to the time scale τL. Conductance will be the result of transitions between

energy levels due to this parameter. We elaborate on this issue in section 2.3.

The second relevant energy scale is that of the relaxation γrlx. It describe the release

of energy in the system to the environment, its characteristic time is the inelastic time.

We explain this physical picture in the following diagram. On the one hand the driving

source induce transitions between energy levels of the system, leading to absorption of energy

with some rate Ẇ which depend on the level broadening parameter Γ. On the other hand

the system can release energy to the environment, which lead to a ”heat flow” with some

rate Q̇, this depend on γrlx.

In the lower panel we plot how Ẇ depends on time. If γrlx is small enough then there

is transient to a slower absorption rate. This issue will be explained in 4.4.

W

strong
relaxation

relaxation
weak

bathsystem
γ

stblt

time

driving
source

tΦ(   )

.

.

.
ΓW(   ) Q(   )
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Fig.3 The phenomenology of energy absorption

Two other, rival, dissipation mechanisms, that should be mentioned are the Landau-

Zener transition [8] and the Debye relaxation [5]. Both mechanisms describe condition where

the mean level spacing ∆ is larger the both Γ and γrlx. Landau-Zener describe conditions

where

γrlx � Γ � ∆ (1.5)

In this case the main source for dissipation are transitions between pairs of nearly degenerate

energy level. As the energy levels are change with the change of some driving parameter X,

there are regions in X, where the level spacing is very small. Those regions, the avoided

crossings, enable transition even when Γ � ∆.

Debye relaxation mechanism describe condition where

Γ � γrlx � ∆ (1.6)

In this case the environment induce relaxation processes which result in a Boltzmann dis-

tribution of particle among the energy levels. Changing the parameter X will change the

distribution of energy levels, as the inelastic relaxation time is much shorter compared with

the adiabatic variation of the energy levels a time lag between the driving and the adjustment

of the occupation probabilities will cause dissipation in the system.

In our case we assume that the broadening parameter Γ is larger then the mean level

spacing ∆, and Fermi golden rule transitions cause the dissipation. We also assume that

γrlx � Γ. So the release of energy to the environment is negligible. the traditional Kubo

derivation assumes ∆ � γrlx. This is explained in section 4.4.

Some authors describe the contributions to the conductance as either diagonal, when

the particles remain on the same energy levels, as in Debye relaxation. or off-diagonal where

the conductance is a result of levels transitions as in Landau-Zener and also in our system,

where Fermi golden rule transitions are the source of dissipation.
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1.3 The role of the environment

In this section we will clarify the different physical circumstances we consider for the case of

a semiclassical calculation. Our first step is to define a feasibility condition for the validity

of a semiclassical treatment. Assuming that the total transmission of the device is gT ∼ 1

the time for the randomization of the velocity is

τcl ≈
(

1

1− gT

)
× L

vF

(1.7)

where L is the length of the ring, and vF is the Fermi velocity. On the other hand the time

that it takes to resolve the quantized energy levels of the ring is

tHeisenberg ≈ M× L

vF

(1.8)

Where M is the number of open modes. Hence the quantum-to-classical correspondence

condition is

M � 1

1− gT

(1.9)

which is always satisfied in the classical limit. Note that the limit M→∞ is analogous to

~ → 0.

In the case of a single mode ring (a one dimensional ring with a delta scatterer) a

classical treatment of the dynamics does not make any sense in view of the correspondence

condition. The analysis should be purely quantum mechanical issues such as Landau-Zener

transitions [8], Debye relaxation mechanism [5] should be taken into account.

In the case of multi mode diffusive ring the leading order result for the conductance

is as expected just the classical Drude expression. The typical calculation [6] assumes that

the levels are “broadened” due to the interaction with the environment. In the major case

of interest the level broadening Γ is assumed to be larger than the mean level spacing ∆

but much smaller than any semiclassical energy scale. Hence it barely affects the Drude

result. Still it determines the quantum weak localization correction, which are of the order
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∆/Γ. The weak localization correction depends on the levels statistics and therefore on the

magnetic flux. Hence it can be detected in an actual experiment [10].

In chapter 3 We consider a multi mode ballistic ring rather than a diffusive ring. This

means that the time to randomize the velocity can be much larger than the time L/vF to

make one round along the ring. This implies that in our configuration the conductance (in

natural units) can be larger than the number of open modes.

We assume that the environment induces level broadening Γ which is larger than ~vF/L.

Hence we derive the leading (classical) term and do not take into account the implications of

quantum interference. To put this assumption in a larger perspective we make the following

classification:

1. Isolated system (no environment).

2. The bath induces only decoherence effect.

3. The bath induces velocity randomization.

4. Bath limited dynamics.

The first case of fully coherent dynamics will be analyzed in chapter 4. We would like to

further explain why the second case is physically typical, and to make some comments on

the other two cases.

It is typical to assume that the fluctuations of the environment are of large spatial

correlation length compared with W , the width of of the waveguide. An extreme case is the

Caldeira-Leggett modeling which assumes an infinite correlation length. The matrix elements

of the position variable scale like W for inter-mode transitions and like L for intra-mode

transitions. Hence inter-mode transitions are rare compared with intra-mode transitions,

the ratio being (W/L)2. Therefore it is realistic to consider circumstances such that velocity

randomization due to the environmental “noise” can be neglected, while intra-mode tran-

sitions cannot be neglected. The latter lead to decoherence. The simplest estimate for the
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decoherence rate is Γ = ηkBTL
2/~, where η characterizes the coupling to the environmental

modes, and T is the temperature. Thus we see that case 2 is physically typical.

If the fluctuations are strong enough inter-mode transitions cannot be ignored. This

would lead to randomization of the velocity in the wire region. The scenario of having a

bath that just randomizes the velocity, but does not affect the transmission of the ring is

apparently not of much physical interest. Still such effect can be realized artificially, and it

is of pedagogical importance, it will be discuss in section 3.5.

If the interaction with the environment determines the transmission of the ring, we get

to case 4. The most obvious example is the analysis of conductance in room temperatures.

The scattering and hence the diffusion of the particles is dominated by bath induced inelastic

scattering by phonons.

The main point regarding case 4 is that the bath cannot be eliminated from the model

analysis. Another example for such circumstances is provided by the Debye dissipation

mechanism.

1.4 Wavefunction statistics

Quantum graphs, have been used successfully for many years as simple dynamical systems

in which to study complex wave behavior. For appropriate parameter values, graphs can be

made to display generic chaotic, disorder, or integrable motion, and at the same time the

quantum mechanics of this systems has the simplifying advantage of being semiclassically

exact.

Quantum graph is a system of vertices, connectend by a one dimensional bonds on

which an electrons can travel from one bond to another, and scattered by the vertices. A

Sinai billiard is one example in which quantum graphs is used, where different modes are

represented by the various bonds.

The statistics of the eigenfunction in such system has long been studied. In an early
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work Berry [15] conject that the quantum eigenfunctions of a classical chaotic system look

like a random superposition of plane waves with fixed energy. contrary to that Heller [16]

has developed the scar theory, which state that many eigenfunctions in the system display

a concentration of amplitude around short classical unstable periodic orbits, which result in

excess density much greater then that expected by the fluctuation in random matrix theory.

One has to distinguish between scarring in the intensities for an energy window of

nearby eigenstate, meaning scarring in the position representation. Bogomolny [17] has

computed an expression for scar intensity in that representation.

A diffrent case is scarring in an individual eigenstate in which a single, or a few bonds

has a very large intensity, while all other bonds are very weak. Agam & Fishman [18]

developed a criterion for predicting scarring. Bäker & Schuber suggest considering scars in

momentum space [19].

A theorem by Schnirelma [20] stated that the classical expectation value converge to

the microcanonical average, this is in agreement with scarring because the size of the scar

scale ha ~ and therefore vanish in the semiclassical limit.

Kaplan & Heller [21] has extended the theory of scars to the nonlinearizeable regime,

there claim is that scarring is a weak localization phenomenon that occur when a wave

packet centered on the unstable periodic orbit overlaps with the eigenstate of the system.

They have also claim [22] that even without considering scars, the total amount of localization

in a billiard is much larger then that expected by random fluctuation. Berkolaiko, Keating

& Winn [23] reach similar conclusions when they study billiard chaotic systems. Schanz

& Kottos [24] have shown that short periodic orbit and scarring can, in principle rely on

different mechanisms.
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1.5 Outline

In chapter 2 we discuss the issue of linear response and Kubo formula, it will be explained

that the purpose of the “linear response analysis” is to find the stationary-like state of the

driven system. The procedure is to assume that in the absence of driving the system would

be in a (strict) stationary state, which we regard as the zero order solution. Then we try to

find a first order solution (in the EMF) to the time dependent problem.

In sections 2.1 and 2.2 we discuss the Kubo approach to linear response. We take the

simplest route following Refs.[8, 13, 27, 28] leading to the fluctuation-dissipation version of

the Kubo formula.

In section 2.3 we outline the procedure used in the calculation of the conductance in

circumstances such that the motion inside the ring is coherent (quantum interference within

the bonds is not ignored).

In chapter 3 we present the main work done in [1]. We define the model system in

sections 3.1 and 3.2. In sections 3.3 and 3.4 we present the application of the Kubo formula to

the analysis of the single mode conductance, The relation to the Landauer result is clarified

in section 3.5.

We show that the conductance of a single mode ring (M = 1) with a stochastic scatterer

that has transmission gT is given by the expression which we call the Drude conductance

GDrude =
e2

2π~

[
gT

1− gT

]
(1.10)

It turns out that the derivation of the multi-mode conductance formula becomes more trans-

parent by adopting a master equation approach. This is carried out in section 3.6. with the

results that the generalization of last formula is:

GDrude =
e2

2π~
∑
nm

[
2gT/(1− gT + gR)

]
nm

(1.11)
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where gT
nm and gR

nm are the M ×M transmission and reflection blocks of the transition

matrix.

In section 3.7 we analyze a specific example for a scatterer, a cavity connected to a

closed wire (Fig.1a) and find that unlike the case of the Landauer conductance, the result

does not reflect the number of open modes. This is because the contribution of the low

modes is singular in the limit of small α. Furthermore, the conductivity (conductance per

channel) diverges logarithmically in the classical limit. The Landauer results

GLandauer ≈
e2

2π~

[
1− 1

4
α

]
M (1.12)

where α is the dimensionless size of the opening to the cavity. In contrast to that for the

Drude conductance of the corresponding ring structure (Fig.1b) is

GDrude ≈
e2

2π~

[
1

α
(1 + ln(2M))

]
M (1.13)

In chapter 4 we present the main work done in [2]. We will discuss the modeling of ballistic

rings, clarify the procedure which is involved in the calculation of the conductance, and

analyze the simplest example.

In sections 4.1 we distinguish between

• Disordered rings (e.g. Anderson model)

• Chaotic rings (e.g. billiard systems)

• Network models (also known as “graphs”)

In particular we motivate the analysis of a simple prototype network model for a multimode

ring. This model has all the essential ingredients to demonstrate the major theme of this

paper.

In sections 4.2-4.5 we continue with the procedure which is used for the calculation

of the conductance. This is not merely a technical issue, since new concepts [11, 12] are

involved. We make a distinction between:
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• The previous classical results

• The (quantum) spectroscopic conductance of a ring

• The (quantum) mesoscopic conductance of a ring

for a prototype model we get the following results: Given that the device has M open

modes and its total transmission is gT < 1, the Landauer conductance is [29]

GLandauer =
e2

2π~
M gT (1.14)

The Drude result for the closed ring is

GDrude =
e2

2π~
M gT

1− gT

(1.15)

and the associated quantum results are

Gspec ≈ e2

2π~
M×maximum

[
gT

1− gT

,M
]

(1.16)

Gmeso =
e2

2π~
2M2 gmeso (1.17)

The calculation of gmeso involves a complicated coarse graining procedure that we discuss in

section 4.5. The spectroscopic result Gspec describes via Eq.(1.1) both the initial (transient)

rate and also the long time (steady state) rate of energy absorption, provided the environment

provides a strong relaxation mechanism. The mesoscopic result describes the (slower) long

time rate of energy absorption if the environmentally induced relaxation is weak. See [11]

for an extended quantitative discussion.

The outcome for Gmeso may differ by orders of magnitude from the conventional Kubo-

Drude result. The calculation procedure implies that Gmeso < Gspec ≤ GDrude. In sections

4.6-4.10 we demonstrate this point via the analysis of the prototype model. Our numerical

results suggest that typically Gmeso < GLandauer. The results of the calculation are contrasted

with those of the conventional Kubo approach,

20



In chapter 5 we will repeat the calculation for this more realistic model, in order to

show that the results obtained are applicable to

In section 5.1 we describe the waveguide model and its properties. We will calculate the

classical probabilities transitions, the g matrix. We continue with the quantum S matrix in

section 5.2, and compare those results in section 5.3. In sections 5.4 and 5.6 we will use that

S matrix for the calculation of the matrix elements in the Kubo formula. We will discuse

the result in section 5.7.
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Chapter 2

Linear response theory

The simplest route to linear response theory [8, 13, 27, 28] takes the relation dH/dt = ∂H/∂t

as a starting point. It follows that the change in the energy of a particle is given with no

approximation by the formula

H(t)−H(0) = −Φ̇

∫ t

0

F(t′)dt′ (2.1)

By squaring and averaging over initial conditions we get that the second moment as a double

time integral over 〈F(t′)F(t′′)〉. Within linear response this correlation is approximated by

the stationary correlation function

C(t′ − t′′) = 〈F(t′)F(t′′)〉E (2.2)

where the average on the right hand side is taken with a zero order microcanonical solution.

Thus one concludes that there is a diffusion in energy, with the coefficient

DE = Φ̇2 × 1

2

∫ ∞
−∞

C(τ)dτ (2.3)

Next one wants to see what happens in the more general case of an arbitrary f(E). On

long times it is argued that the probability distribution ρ(E) satisfies the following diffusion

equation:

∂ρ

∂t
=

∂

∂E

(
g(E)DE

∂

∂E

(
1

g(E)
ρ

))
(2.4)
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The energy of the system is 〈H〉 =
∫
Eρ(E)dE. It follows that the rate of energy absorption

is

d

dt
〈H〉 = −

∫ ∞
0

dE g(E) DE
∂

∂E

(
ρ(E)

g(E)

)
(2.5)

For zero temperature Fermi occupation we get

d

dt
〈H〉 =

[
g(E)DE

]
E=EF

= GΦ̇2 (2.6)

This is the mesoscopic version of Joule law. The expression for the conductance is

G = g(EF )× 1

2

∫ ∞
−∞

C(τ)dτ (2.7)

2.1 The Kubo formula

The above is apparently the simplest and most illuminating derivation of the Fluctuation-

Dissipation version of the Kubo formula. A more complicated treatment [28, 30, 31] allows

to write a generalized version Namely,

G = g(EF )×
∫ ∞

0

C(τ)dτ (2.8)

with

C(τ) = 〈I(τ)F(0)〉E (2.9)

where F is the generalized force which is associated with the driving. In the present applica-

tion F is just the current operator, hence C(τ) is symmetric, and therefore the generalized

version Eq.(2.8) is equivalent to Eq.(2.7).

It is also important to make a connection with the more traditional treatment of con-

ductance in case of disordered metals. If we set a(x) = 1/L for the vector potential we get

(e/L)v̂ as the current operator. Hence we get from Eq.(2.7)

G = g(EF )× 1

2

( e
L

)2
∫ ∞
−∞
〈v(τ)v(0)〉dτ (2.10)
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The conventional derivation of the Drude formula is based on the assumption of exponential

decay of the velocity-velocity correlation function. The latter formula is (formally) valid in

any case, but in case of a disordered sample it has special appeal because it implies the

Einstein relation between the conductance and the spatial diffusion. Namely, if we have a

diffusive ring then it is natural to write G = Ĝ/L and to define ĝ(EF ) = g(EF )/L. Then we

can rewrite Eq.(2.10) as

Ĝ = e2ĝ(EF )Dspace (2.11)

The more conventional derivations of this expression is based on the phenomenological rela-

tion J = −D∇(density)− Ĝ∇(potential) and the argument that J = 0 at equilibrium.

The “classical” Kubo formula implies in this context that the current-current corre-

lation function is evaluated classically, ignoring quantum interference. In the case of hard

chaos system this correlation function decays exponentially. The Drude expression is the

simplest classical approximation:

〈I(τ)I(0)〉 =
1

d

( e
L
vF

)2

exp
[
−2
(vF

`

)
τ
]

(2.12)

Substitution into the Kubo formula leads to

GDrude =
e2

2π~
M `

L
(2.13)

where we have dropped the d dependent prefactor which equals 1 for networks (d = 1).

In the case of a ballistic ring with a restricted scattering region (as in Fig. 1d) it is more

convenient to characterize the device by its total transmission 0 < gT < 1 instead of the

mean free path. The envelope of the current-current correlation function is

|2gT − 1|#rounds ⇔ exp
[
−2
(vF

`

)
|τ |
]

(2.14)

With the identification of #rounds as t/(L/vF) we deduce that for gT ∼ 1 the mean free

path is ` ≈ L/(1− gT ).
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2.2 Implications of the Kubo formula

From the Kubo formula Eq.(2.8) it is not obvious that the result for G is independent of

where we measure I. In general it can be proved [32] that for a different choice of I the

corresponding Kubo conductance may differ at most by eg(EF )〈F〉. But if F is a current

operator then 〈F〉 = 0 and therefore the conductance becomes independent of x1.

Also it seems that the Kubo conductance is proportional to the density of states.

Therefore, if we had doubled the volume of the cavity, would we get larger conductance?

Furthermore, does the result for G depends merely on the transition matrix, and not (say)

on the dwell time inside the scattering region?

To answer these questions, and to establish the x1 independence of G, let us write the

Kubo formula in a more illuminating way. By definition we have∫ ∞
−∞
〈I(τ)F(0)〉dτ =

∑
r

prFrQr

≡ 1

g(E)

∫
δ(E −H(r,p))

drdp

(2π)d
F (r,p)Q(r,p) (2.15)

where r is an index that labels phase space cells (different initial conditions), and pr corre-

sponds to a microcanonical distribution. We have introduced the notation

Q(r,p) =

∫ ∞
−∞
I(τ ; r,p)dτ (2.16)

Namely Q(r,p) is the total charge which is obtained by integrating the current which is

induced by a particle that goes through the point (r,p) at t = 0. It is in fact (for e = 1)

the winding number of the associated trajectory, and therefore it gives a result which is

independent of the chosen section. Note however that Q(r,p) obtains a meaningful value

only upon course graining, else it is erratic. Now we can write the Kubo formula as

G =
1

2

∫
δ(E −H(r,p))

drdp

(2π)d
F (r,p)Q(r,p) (2.17)

This expression has several advantages. One advantage we have mentioned: the result is

manifestly independent of the definition of the current operator. The second advantage is
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that it shows that the global density of states is in fact not important. We can double

the volume of the cavity, still we would get the same result provided that the scattering

probabilities are not affected. In particular we see that time delays are not important.

2.3 The quantum Kubo formula and beyond

In this section our objective is to find the conductance of the closed ring in circumstances

such that the motion inside the ring is coherent (quantum interference within the bonds is

not ignored). The calculation is done using the quantum version of Eq.(2.8) which involves

the matrix elements Inm of the current operator:

G = π~ %2
F × 〈〈|Inm|2〉〉 (2.18)

This equation would be the traditional Kubo formula if 〈〈...〉〉 stood for a simple algebraic

average over near diagonal matrix elements at the energy range of interest. By near diagonal

elements we mean |En − Em| . Γ, where Γ is level broadening parameter. The levels of the

system are effectively “broadened” due to the non-adiabaticity of the driving [33] or due to

the interaction with the noisy environment [6]. In what follows we assume

∆ � Γ � ∆b (2.19)

where ∆ = 1/%F is the mean level spacing, and ∆b = π~vF/L is the Thouless energy.

(Note that ∆b/∆ = M). Contrary to the naive expectation it has been argued in [11]

that depending on the physical circumstances the definition of 〈〈...〉〉 may involve a more

complicated coarse graining procedure. Consequently the result for G may differ by orders

of magnitude from the traditional Kubo-Drude result. We shall discuss this key observation

in later sections.

For a network system %F = ML/(π~vF). Furthermore it is convenient to define a scaled

matrix Inm via the relation

Inm = −i(evF/L)Inm (2.20)
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so as to deal with real dimensionless quantities. Thus we re-write Eq.(2.18) as:

G =
e2

2π~
2M2 g (2.21)

where g ≡ 〈〈|Inm|2〉〉. In later sections we shall discuss the recipe for the g calculation. It is

important to realize (see section 4.2) that g < 1. This implies a quantum mechanical bound

on G.
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Chapter 3

The classical conductance for a

multi-mode ring

3.1 Setting up the model

Consider non-interacting spinless electrons in a ring, as in Fig.1b. The one-particle Hamil-

tonian is

H =
1

m
(p− eΦa(r))2 + V (r) (3.1)

where m and e are the mass and the charge respectively. The vector potential which is

associated with the flux Φ is described by∮
a(r) · dr = 1 (3.2)

The dimensionality of the ring is d. The ring consists of a “wire” region and a scattering

region. The motion of the particle inside the ring is assumed to be globally chaotic. The

coordinate along the wire will be denoted as x. The scattering region is located at x ∼ 0.

In the geometry of Fig.1b the “wire” is a d = 2 waveguide of width W . Later we

describe the waveguide as a set of d = 1 wires (Fig.1d) such that each “wire” corresponds to
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an open mode of the waveguide. The length of the ring L is assumed to be large compared

with the scattering region so as to allow meaningful definition of a scattering matrix in the

quantum mechanical analysis (evanescent modes are ignored).

The ring is driven by a time dependent Aharonov-Bohm flux. The EMF −Φ̇ is assumed

to be constant. There are various ways to introduce the EMF into the ring. One possibility

is to have all the voltage drop over a section at x = x0. Namely,

a(x) = δ(x− x0) (3.3)

For sake of later analysis we define a generalized force which is associated with the flux:

F = −∂H
∂Φ

= ev̂δ(x̂− x0) (3.4)

where v is the velocity in the x direction. In the quantum mechanical case a symmetrization

is implicit. This is in fact a current operator. Obviously we do not have to measure the

current at the same point where we apply the voltage. So for sake of generality we introduce

the notation

I = ev̂δ(x̂− x1) (3.5)

We also note that with uniform averaging over x1 we get (e/L)v̂ which is essentially the

velocity operator.

In the absence of driving the “pure” stationary states of the system are the micro-

canonical states. We use classical language but also have in mind a semiclassical picture.

Each microcanonical state occupy a shell whose phase space volume is (2π~)d. The density

of states is

g(E) =

∫ ∫
drdp

(2π~)d
δ(E −H(r,p)) (3.6)

The zero order stationary state is characterized by an occupation function f(E). Later we

shall take it to be the Fermi function. Thus

dN = ρ(r,p)
drdp

(2π~)d
= f(E)

drdp

(2π~)d
(3.7)
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where E = H(r,p) is the energy. The distribution of the particles in energy is

ρ(E) = g(E)f(E) (3.8)

and the total number of particles is

N =

∫ ∫
ρ(r,p)

drdp

(2π~)d
=

∫ ∞
−∞

ρ(E)dE =

∫ ∞
−∞

f(E)g(E)dE (3.9)

3.2 Network modeling

A network is defined as a set of 1D wires that are connected in vertices. The network Hamil-

tonian is ill defined in the classical limit because the the scattering in each vertex is described

by a scattering matrix. In particular for the model of Fig.1d the scattering is described by

a scattering matrix Sab, and we define the corresponding transition matrix as gab = |Sab|2.

Thus the classical description of the system is stochastic rather than deterministic.

Still we can regard networks as an effective way to describe the chaotic dynamics

[34]. The reason is that upon coarse graining a chaotic system looks like a stochastic model.

Specifically, in the case of the system of Fig1b, quantum mechanics introduces “coarse grain-

ing” in a most natural way. Each mode in the scattering problem can be regarded as a 1D

wire with the dispersion relation

vn =
1

m

√
2mE −

(
π~
W
n

)2

(3.10)

where E is the energy of the particle, and W is the width of the waveguide. The open modes

are those for which vn is a real number. We shall denote the number of open modes by M

hence the number of open channels in the open geometry is 2M.

The density of states of the system can be written as a sum over single-mode expres-

sions:

g(E) = gdot(E) + 2
M∑

n=1

L

(2π~)

1

vn(E)
(3.11)
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where the factor of two takes into account both clockwise and anticlockwise motion. A

stationary state of the system is described by the distribution functions ρ→n (E) of the clock-

wise moving particles and ρ←n (E) of the counter-clockwise moving particles. The index n

distinguishes different modes. The normalization is such that

N =

∫
ρdot(E)dE + L

∑
n

∫
(ρ→n (E) + ρ←n (E))dE (3.12)

The density of particles per unit length in a given mode is implied by Eq.(3.8):

ρ→n (E)dE = ρ←n (E)dE =
dE

(2π~)vn(E)
f(E) (3.13)

Note that for a microcanonical distribution dE can be regarded as a fixed parameter that

defines an energy window or a width of an energy shell.

The scattering is described by a 2M×2M transition matrix that has a block structure:

gab =

(
gR gT

gT gR

)
(3.14)

It consists of the reflection matrix gR
nm and the transmission matrix gT

nm. Note that the

channel index a contains both mode specification and left/right lead specification. We assume

time reversal invariance, so as to have a symmetric matrix. For clarification we note that if

N particles incident in channel b, then gabN particles emerge in channel a. This means that

gab is the ratio between ingoing and outgoing fluxes. In the ergodic state Eq.(3.13) implies

that ρa ∝ 1/va. Therefore we have detailed balance:

gab ρbvb = gba ρava [no summation] (3.15)

Namely, for a stationary state the transitions from a to b are exactly balanced by the tran-

sitions from b to a.

3.3 Conductance of a single mode ring (part 1)

In this section we show how the Kubo formula for a closed ring leads to a Landauer-alike

formula for the conductance provided the effect of the environment is to completely random-
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ize the velocity within the wire region without affecting its transmission. To simplify the

presentation we consider the single mode case.

For the Kubo formula we have to evaluate the correlation function C(τ) of Eq.(2.9),

and to calculate the integral in Eq.(2.8). As explained the result of the calculation should

be independent of the how we define the current operators. The simplest choice is to define

F as the current through a section x = x0 on the left of the scattering region, while I is the

current through a section x = x1 on the right of the scattering region. C(τ) comes out as a

sum of delta functions. The shortest time correlation is associated with the time τ1 to cross

the scattering region. For example, if there is no time delay then τ1 = (x1−x0)/vE. We can

regularize F as a rectangular of width ε. The probability to have there a particle moving in

the right direction, such that F(0) = evE/ε is (ε/L)/2. The current that we get in the other

side of the barrier is I = eδ(τ − τ1). Assuming that this is the only correlation, and taking

into account the time reversed correlation for τ < 0, we get

C(τ) = e2
vF

L

∑
±

1

2
gT δ(τ ∓ τ1) (3.16)

Note that if we had chosen x1 = x0 we would get three delta functions: a self correlation

delta function δ(τ) and reflection peaks. Namely,

C(τ) = e2
vF

L

[
δ(τ)− 1

2
(1− gT )

∑
±

δ(τ ∓ τ0)

]
(3.17)

where τ0 is the scattering time. Obviously the integral over the new C(τ) is the same as the

integral over the former one. Irrespective of our choices we get from Kubo

G =
e2

2π~
gT (3.18)

which looks like the (single mode) Landauer formula.
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3.4 Conductance of a single mode ring (part 2)

If the velocity is not randomized within the wire, then there are other correlations that

involve the time L/vE to encircle the ring. For the following calculation it is simplest to

assume that 0 < x0 < x1. What we have is to calculate the integral∫ ∞
0

〈I(τ)F(0)〉dτ =
∑

r

prFrQr (3.19)

Note that we find it convenient here to set τ = 0 as the lower bound of the integral.

Recall that r is an index that labels phase space cells (different initial conditions), and pr

corresponds to a microcanonical distribution. Note that F is non-zero only if r is located at

x = x0. The total charge which is transported through the section x = x1 is defined here as

Qr =

∫ ∞
0

〈I(τ)〉rdτ (3.20)

where the current is evaluated under the assumption that the particle is launched at point r.

There are two relevant possibilities: Either the particle is launched at x = x0 in the clockwise

direction, or it is launched at x = x0 in the anti-clockwise direction. Observe that the (net)

charge that goes through the section x = x1 after a round trip is suppressed by a factor

(2gT − 1) due to the scattering (we sum the clockwise and the anticlockwise contributions).

Thus we get that the total charge that goes through the section is

Q→ = e
[
1 + (2gT − 1) + (2gT − 1)2 + ...

]
= e

[
1

2(1− gT )

]
(3.21)

for a particle that is launched clockwise, and

Q← = −e
[

1

2(1− gT )
− 1

]
(3.22)

for a particle that is launched anti-clockwise Thus we get∫ ∞
0

〈I(τ)F(0)〉dτ =
1

2L
(+evE)Q

→ +
1

2L
(−evE)Q

← = e2
vE

L

[
gT

1− gT

]
(3.23)

leading to

G =
e2

2π~

[
gT

1− gT

]
(3.24)
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3.5 Relation to the Landauer formula

As explained in section 3.3 we get from the Kubo formula a Landauer look-alike formula if

we assume that the environment induces velocity randomization in the wire region without

affecting its transmission. In fact we can get to the same conclusion by modeling the “loss

of memory” in the wire region as a scatterer with transmission gwire = 1/2. It is well know

that the G of Eq.(3.24) obeys Ohm law for addition of resistors in series. Hence

G =
e2

2π~

(
gT

1−gT

)
=

e2

2π~

[(
g0

1−g0

)−1

+

(
gwire

1−gwire

)−1
]−1

=
e2

2π~
g0 (3.25)

We would like to emphasize that the purpose of this section is purely pedagogical. As

stated in section 1.3 an environment that just randomize the velocity without affecting the

transmission is apparently of no physical interest. Still if one insists it can be constructed

artificially. Simply cut the wire and connect the two ends to a chaotic cavity. A particle

that moves in the wire gets into the cavity and after a time delay gets out either clockwise

or anti-clockwise with equal probabilities. Hence in such arrangement gwire = 1/2.

The pedagogical importance of the above discussion is in making a bridge between the

reservoir philosophy of the Landauer construction and the Kubo formalism of closed systems.

The memory loss device that we have described above provides the same “service” as the

reservoirs in the Landauer picture.

3.6 Conductance of a multi-mode ring

Let us assume that the EMF −Φ̇ is concentrated across the scattering region (x0 = 0). When

a particle goes through x = 0 it gains momentum (p 7→ p− eΦ̇/v), where v = |p|/m. Hence

the change is energy is E 7→ E ∓ eΦ̇ for right and left movers respectively. The state of

the system is described by the distribution functions ρ→n (E) and ρ←n (E) of Eq.(3.12). The

index n distinguishes different modes. It is implicit from now on that we look for an ergodic-
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like solution, such that the density of the particles along the ring is uniform. The balance

equations are:

∂ρ→n
∂t

= − [ρ→n vn] +

[∑
m

gT
nmρ

→
mvm

]
E+eΦ̇

+

[∑
m

gR
nmρ

←
mvm

]
(3.26)

∂ρ←n
∂t

= − [ρ←n vn] +

[∑
m

gT
nmρ

←
mvm

]
E−eΦ̇

+

[∑
m

gR
nmρ

→
mvm

]
(3.27)

It can be verified that the zero order (Φ̇ = 0) stationary solution of this equation is given by

Eq.(3.13), where f(E) is an arbitrary function. We are looking for a first order stationary-like

solution. The linearized equation for the clockwise moving particles is[∑
m

(1− gT )nmδρ
→
mvm

]
−

[∑
m

gR
nmδρ

←
mvm

]
=

e

2π
Φ̇
∂f(E)

∂E

∑
m

gT
nm (3.28)

A similar equation exist for the counter-clockwise particles. Subtracting the corresponding

equations we get

∑
m

[(1− gT ) + gR]nm[ρ→v − ρ←v]m = 2
e

2π
Φ̇
∂f(E)

∂E
gn (3.29)

with the solution

[ρ→v − ρ←v]n =
e

2π
Φ̇
∂f(E)

∂E

∑
n′

[
2

(1− gT ) + gR

]
nn′

gn′ (3.30)

The current is

I =
∑

n

∫ ∞
0

dE (ρ→n − ρ←n )evn

= Φ̇
e2

2π

∫ ∞
0

∑
nm

[(
2

1− gT + gR

)
gT

]
nm

∂f(E)

∂E
dE (3.31)

With the assumption of Fermi occupation we get Eq.(1.11). Note that upon summation the

order of matrix multiplication is not important because gnm is symmetric.
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3.7 The wire with cavity model system

We consider a ring (Fig.1b) which is formed by folding a rectangular waveguide (i.e. imposing

periodic boundary conditions). A chaotic cavity is attached to the waveguide at one “point”.

A particle has some probability to enter the cavity, where memory is “lost”, and then it gets

out again with equal probability to either side. A particle that travels in mode n of the

waveguide has a transverse momentum ±(π~/W )n where W is the width of the waveguide.

The distance between subsequent hits of the same wall is

step =

√
2mE − ((π~/W )n)2

(π~/W )n
2W =

√
M2 − n2

n
2W (3.32)

The number of open modes M is implicitly defined via the latter equality. The probability

to get into the cavity via an opening of size Lop is:

pn =
Lop

step
= minimum

[
α√

(M/n)2 − 1
, 1

]
(3.33)

where α = Lop/(2W ). The crossover from pn < 1 to pn = 1 happens at

nc =
1√

1 + α2
M (3.34)

We are going to treat M as a free parameter. Hence we have two parameters that charac-

terize the scattering: the classical (geometrical) parameter α, and the quantum-mechanical

parameter M. Note that the classical limit is M→∞.

Let qn be the probability to get out of the box to mode n, either to the right going

channel or to the left going channel. It follows that gR
nm = (1/2)qnpm. From gnm = gmn we

conclude that qn/pn = c is the same for all channels. Taking into account that
∑

n qn = 1

we get c = 1/(
∑

n pn), and hence

gR
nm =

1

2
qnpm =

c

2
pnpm (3.35)

gT
nm =

1

2
qnpm + (1− pm)δnm =

c

2
pnpm + (1− pm)δnm (3.36)
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Thus, given the input parameters α and M, we can calculate gnm. It is useful to define the

total probability of transmission for a particle that comes in channel n as:

gn ≡
∑
m

gT
mn = 1− 1

2
pn (3.37)

For sake of later estimates we note that for M � 1, sums over n can be approximated by

an integral over x = n/M. Using the obvious notation xc = nc/M we get

1

M
∑

pn ≈ α

∫ xc

0

[(1/x)2 − 1]−1/2dx+ [1− xc]

= α
1

2

[
1− (1− x2

c)
1/2
]
+ [1− xc]

= 1 +
1

2
α− (1 + α2)−1/2

(
1 +

1

2
α2

)
≈ 1

2
α+O(α4) (3.38)

and

1

M
∑ 1

pn

≈ 1

α

∫ xc

1/M
[(1/x)2 − 1]1/2dx+ [1− xc]

=
1

α

[
ln

(
2xc

1 + (1− x2
c)

1/2
M
)
−
(
1− (1− x2

c)
1/2
)]

+ [1− xc]

=
1

α

[
ln

(
2

α+ (1 + α2)1/2
M
)
− 1

]
+ 1

≈ [ln(2M)− 1]
1

α
+O(α) (3.39)

We now turn to the calculation of the conductance. First of all, let us calculate the

Landauer conductance. Thanks to the simple structure of the gT
nm matrix, the calculation is

quite easy

GLandauer =
e2

2π~
∑
n,m

gT
nm =

e2

2π~
∑

n

gn (3.40)
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Each channel has total transmission in the range (1/2) < gn < 1 and therefore the conduc-

tance (in normalized units) roughly equals to the number of open modes. Substitution of

(3.37) leads to:

GLandauer =
e2

2π~
∑

n

(1− (pn/2)) =
e2

2π~
[1− 1

4
α+O(α4)]M (3.41)

For the multimode conductance of Eq.(1.11) the calculation is more complicated. At

first sight it seems that the calculation should be done numerically as in Fig. 4. The numerical

calculation in Fig. 4 (circles) is done in a way which is inspired by a similar type of calculation

within the Landauer formalism. We define hnm = ([2gT/(1− gT + gR)]nm)1/2 and write the

sum in Eq.(1.11) as trace
[
h†h
]
. Then we make singular value decomposition of h and sum

over the squares of its eigenvalues.

The other way to calculate the multimode conductance starts with an attempt to make

a zero order evaluation of the sum. This means setting c = 0 in Eq.(3.36). The resulting

estimate gives a rough approximation as seen from Fig.4 (crosses). The main source of error

are evidently the low modes. Surprisingly it turns out that the calculation can be carried

out to infinite order in c, thanks to miraculous cancellations. Using the expansion

1

A− cB
=

1

A
+ c

1

A
B

1

A
+ c2

1

A
B

1

A
B

1

A
+ ... (3.42)

with Anm = pnδnm and Bnm = (1/2)pnpm, we get the result[
1

1− gT

]
nm

=
1

pn

δnm + (c/2)
1

pn

pnpm
1

pm

+

+ (c/2)2
∑

k

1

pn

pnpk
1

pk

pkpm
1

pm

+ ... =
1

pn

δnm + c (3.43)

where in the last step we have made a geometric summation over all orders. Now we can

calculate the conductance

G =
e2

2π~
∑
n,m

[
gT

1− gT

]
nm

=
e2

2π~

[(∑
n

1

pn

)
+ cM2 −M

]
(3.44)
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Recall that c = 1/
∑

n pn. Hence this expression requires merely the evaluation of the sums∑
n pn and

∑
n(1/pn). If we have pn ≈ 1 for all modes, then we get simply G = (e2/(2π~))M

which reflects that number of open modes. But the interesting case is when α is small:

G ≈ e2

2π~

[
1

α
(1 + ln(2M))− 1 +O(α)

]
M (3.45)

Unlike the case of the Landauer conductance, the result does not reflect the number of open

modes. The contribution of the low modes is singular in the limit of small α. Furthermore,

the conductivity (conductance per channel) diverges logarithmically in the classical limit.
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Fig.4 The left panel displays pn for a system with α = 0.7 and M = 200 open modes. The crosses in the

right panel are for the cumulative sum over (1− pn)/pn. The circles are calculated from the exact formula.

Namely, the matrix h is diagonalized, and the cumulative trace over the square of its elements is displayed.
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Chapter 4

The conductance of multimode

ballistic rings

4.1 Model for ballistic rings

We now turn to consider the case of a coherent ring, a simple model for a ballistic ring can

be either of the“disordered type” or of the “chaotic type”. Let us visualize the disordered

potential as arising from a set of scatterers which are distributed all over the ring (Fig 5a).

Depending on the scattering cross section of the individual scatterers we can have ` � L

for strong disorder or ` � L for weak disorder, where ` is the mean free path for velocity

randomization, and L is the perimeter of the ring.

Another possibility is not to make all the scatterers smaller, but rather to dilute them.

Eventually we may have a chaotic ring where the scattering is induced by a single scatterer

(Fig 5b). For example the scatterer can be a disc or a semi-disc as in Fig 6. These variations

of Sinai billiard (billiard with convex wall elements) are known to be chaotic. It is important

to remember that “chaos” means that complicated ergodic classical dynamic is generated by

a simple Hamiltonian (no disorder!).
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In our view chaotic rings are more interesting for various reasons. Ballistic devices

are state-of-art in mesoscopic experiments. For example it is quite common to fabricate

Aharonov-Bohm devices. In such devices it is possible to induce local deformation of the

potential by means of a gate voltage. Hence one has a full control over the amount of

scattering. Also from theoretical point of view it is nice to have a well defined scattering

region: This allows to use the powerful S-matrix point of view that has been initiated by

Landauer. In particular we can ask what is the conductance of a device depending on whether

it is integrated in an open geometry as in Fig. 5e or in a closed geometry as in Fig. 5d. We

believe that “chaos” and “disorder” lead to similar physics in the present context, but this

claim goes beyond the scope of the present work.

A multimode ring can be visualized as a waveguide of length L and width W . In such

case the number of open modes is M∝ (kFW )d−1 where d = 2, 3 is the dimensionality. We

label the modes as

a = mode index = 1, 2, ...,M (4.1)

The scattering arise due to some bump or some deformation of the boundary, and can

be described by an 2M × 2M scattering matrix S. For the semi-disc model analytical

complicated expressions are available [35, 36]. The “classical” transitions probability matrix

g is obtained by squaring the absolute values of the S matrix elements.

Disregarding the closed channels, the ballistic ring is described as a set of M open

modes, and a small scattering region that is characterized by its total transmission gT .

Optionally the ballistic ring can be regarded as a network: Each bond corresponds to an

open mode. Let us consider the simplest model where the scattering is the same for an

incident particle that comes from the left or from the right:

g =

(
[gR]a,b [gT ]a,b

[gT ]a,b [gR]a,b

)
(4.2)

where gR is the reflection matrix and gT is the transmission matrix. The simplest model
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that one can imagine is with

[gR]a,b = ε2 (4.3)

[gT ]a,b = (1−Mε2)δa,b (4.4)

such that the total transmission is

gT = 1−Mε2 (4.5)

Such “classical” transitions probability matrix can arise if we take the S matrix as

SD =

(
ε exp

(
i 2π a b

M

) √
1−Mε2δa,b

√
1−Mε2δa,b −ε exp

(
−i 2π a b

M

)) (4.6)

There a lot of simplifications that were involved in construction this S matrix.

• The forward scattering is to the same mode only

• The back scattering is “isotropic”

• The scattering is energy independent

• The scattering phases are not random

One can wonder whether this S matrix still qualifies as ‘generic’, or maybe the model is

over-simplistic. In order to illuminate this point let us look at the Sinai billiard models

of Fig. 6. These models are fully qualified as “quantum chaos” systems. One observes

that the specific g matrix of Eq.(4.3-4.4) is inspired by that of Fig. 6a. In this billiard an

incident particle is equally likely to be scattered to any mode in the backward direction,

but the forward scattering is only to the same mode (same angle). As for the phases: we

already have explained that our interest is not in disordered ring, but rather in chaotic one.

Therefore to have random phases in the S matrix is not an essential feature of the model.

The phases are effectively randomized simply because the wavenumber ka is different in each
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mode. Optionally, it is more convenient to assume that all the ka are the same, and to have

instead bonds with different lengths La. This provides the required phase randomization.

Let us see what do we get for GLandauer and for GDrude in the case of the prototype

system that we have defined. The calculation of GLandauer is trivial and leads to Eq.(1.14).

The calculation of GDrude is more complicated since it involves matrix inversion. Still g is

sufficiently simple to allow a straightforward calculation that leads to Eq.(1.15). The rest of

this section is devoted to the details of this calculation.

We write gT = τ 21 and gR = ε2Υ, where τ and ε are defined via gT = τ 2 = 1−Mε2,

and where we have introduced the following M×M matrices

1 =



1 0 0 · · ·

0 1 0 · · ·

0 0 1 · · ·

· · ·

· · ·


and Υ =



1 1 1 · · ·

1 1 1 · · ·

1 1 1 · · ·

· · ·

· · ·


(4.7)

Note that the two matrices commute. Using these notations we get

2gT

1− gT + gR

=
2τ 2

1− τ 2

1

1 + ε2

1−τ2Υ
(4.8)

=
2τ 2

1− τ 2

1

1 + cct
=

2τ 2

1− τ 2
1− ε2τ 2

(1− τ 2)2
Υ (4.9)

where we have defined the normalized column vector

ca =
ε√

1− τ 2
a = 1, 2, · · ·M (4.10)

and we have used the identity

1

1 + cct
= 1− 1

1 + ctc
cct = 1− 1

2
cct (4.11)

Observing that
∑

ab 1ab = M and
∑

ab Υab = M2 we get the desired result Eq.(1.15).

Though the arguments above, are quite compelling, we were careful to verify that all

the results that we find for the simplified network model are also applicable in the case of the
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Sinai-type system of Fig. 6b where the scatterer is a semi-disc. This issue will be consider

in chapter 5 We prefer in the present work to analyze the network model of Fig. 6d with

Eq.(4.6) and not the semi-disc model of Fig.6b because the mathematics is much simpler,

and the quality of the numerics is much better.

4.2 The quantum bound on G

We start the calculation of the conductance by writing the channel wavefunctions as Ψa(x) =

Aa sin(kx + ϕ), where a labels the modes. In our simplified network model the modes are

re-interpreted as bonds, and we assume that the wavevector k = (2mE)1/2 is the same for

all bonds. For the matrix elements of I we have the expression

Inm ≈ −ievF

∑
a

1

2
A(n)

a A(m)
a sin(ϕ(n)

a − ϕ(m)
a ) (4.12)

were the approximation takes into account that our interest is in the couplings between

levels with kn ≈ km ≈ kF. From this expression we deduce that the scaled matrix elements

of Eq.(2.20) are bounded as follows:

Inm <
∑

a

L

2
A(n)

a A(m)
a < 1 (4.13)

Therefore, irrespective of the details of the averaging or coarse graining procedure, it is clear

that g < 1 as stated at the end of the previous section. Consequently

G
∣∣∣
maximal

=
e2

2π~
M2 (4.14)

In the last expression we have omitted a factor of 2. This is not a typo. We shall explain

this point in section 4.10.
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4.3 The ergodic result for G

The simplest hypothesis is that all the wavefunctions are ergodic random waves. This is

in the spirit of Mott’s derivation [37, 38], where it has been demonstrated that a random

wave assumption recovers (via Eq.(2.18)) the Drude result. If indeed the wavefunctions were

spread equally over all the bonds, it would imply |Aa|2 ∼ 2/(ML). If this were true we would

get

|Inm|2 =

∣∣∣∣∣ 1

M
∑

a

sin(ϕ(n) − ϕ(m))

∣∣∣∣∣
2

≈ 1

2M
(4.15)

This would imply

G
∣∣∣
ergodic

=
e2

2π~
M (4.16)

We would like to argue that this result is wrong. Moreover, it must be wrong. The result

is wrong because the eigenfunction of a ballistic ring are not ergodic. This we discuss in

section 4.8. The result must be wrong because it violates quantum-classical correspondence,

which we discuss in the next section.

4.4 The quantum conductance and Drude

In this section we define the distinction between mesoscopic and spectroscopic conductance

and further discuss the latter. In section 4.5 we elaborate on the calculation procedure of

both. We would like to clarify in advance that the spectroscopic conductance is the outcome

of the traditional Kubo calculation. Moreover, it is only the spectroscopic conductance which

obeys quantum-classical correspondence considerations.

Mesoscopic conductance: If the environmentally induced relaxation can be ne-

glected, the rate of energy absorption depends on having connected sequences of transitions

between levels [11]. In section 4.5 we explain the proper procedure for calculating the con-
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ductance in such circumstances. The result that comes out from such calculation is what we

call the mesoscopic conductance Gmeso.

Spectroscopic conductance: Within the framework of linear response theory, it is

assumed that the EMF-induced transitions are very slow compared with the environmentally

induced relaxation. Then one can argue that Eq.(2.18) is valid with 〈〈|Inm|2〉〉 interpreted

as an algebraic average over the matrix elements. This is what we called in section 2.3 the

traditional Kubo formula. Optionally, if applicable, one may perform an algebraic average

over realizations of disorder. The latter is a very common procedure in diagrammatic cal-

culations. The outcome of the (traditional) calculation is what we call the spectroscopic

conductance Gspec. For further discussion of the conditions that justify a “spectroscopic”

calculation see Ref. [11].

The spectroscopic conductance is not very sensitive to Γ. In fact the Γ dependence

of the result is nothing else but the weak localization correction [9]. It scales like ∆/Γ for

diffusive rings, where ∆ is the mean level spacing (note Eq.(2.19)).

Disregarding weak localization corrections it can be argued [11] that the obtained result

for Gspec is GDrude provided some reasonable quantum-to-classical correspondence conditions

(see below) are satisfied. It follows that the ergodic hypothesis of the previous section cannot

be correct, because GDrude is definitely not bounded by the number of open modes - it can

be much larger.

The necessary condition for quantum-classical correspondence can be deducted by tak-

ing into account the quantum bound of section 4.2. As gT becomes closer to 1, the Drude

expression diverges. Quantum-to-classical correspondence is feasible provided the quantum

bound is not exceeded:

1

1− gT

� M (4.17)

This can be re-phrased as

`

L
<M (4.18)
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or as

tcl � tH (4.19)

where tcl = `/vF is the ballistic time, and tH = M× (L/vF) is the Heisenberg time (the

time to resolve the quantized energy levels). In order to establish quantum-to-classical

correspondence in a constructive manner one should express the Kubo formula using Green

functions, leading to a double summation over paths. Then one should argue that energy

averaging justify the use of the diagonal approximations. The procedure is the same as

in [39].

4.5 The calculation of G

Within the framework of semi-linear response theory the recipe for calculating G is implied

by the Fermi golden rule (FGR) picture. The Hamiltonian of the ring in the adiabatic basis

is H 7→ Enδnm + Wnm where Wnm = iΦ̇~Inm/(En−Em), and −Φ̇ is the EMF. The FGR

transition rate between level n and level m is

wnm =
2π

~
δ(En − Em)|Wnm|2 (4.20)

Since we are dealing with a closed system one should take explicitly into account the broad-

ening of the delta function:

δ(En−Em) → 1

Γ
F

(
En − Em

Γ

)
(4.21)

The normalized kernel F () reflects either the power spectrum or the non-adiabaticity of the

driving. For the purpose of numerical demonstration we assume F (r) = exp(−2|r|) as in [12].

The level broadening Γ is identical with Γ of Ref.[11, 33] and with ~ω0 of Ref.[12]. As in the

conventional derivation of linear response theory, also here we regard Γ as a free parameter

in the theory. It is convenient to use dimensionless quantities, so we re-write Eq.(4.21) as:

wnm = %F

e2

π~
M2gnmΦ̇2 (4.22)
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where the dimensionless transition rates are

gnm =
|Inm|2

(n−m)2

1

γ
F

(
n−m

γ

)
(4.23)

and γ = Γ/∆ is the dimensionless broadening parameter. There is an implicit approximation

in Eq.(4.23), namely (En − Em)/∆ ≈ (n − m), that underestimates exceptionally large

couplings between almost degenerated levels. In practice it is not going to be reflected in

the Gmeso calculation (see below), because the latter is determined by the bottlenecks.

The FGR transitions between levels lead to diffusion in energy space. We would like

to calculate the coarse grained diffusion coefficient D without assuming that all the wnm are

comparable. For this purpose it is useful to exploit the following resistor network analogy [12]

w−1
nm ⇐⇒ resistor between node n and node m (4.24)

D−1 ⇐⇒ resistivity of the network (4.25)

In dimensionless units wnm is denoted as gnm as defined via Eq.(4.22) In dimensionless

units D is denoted as g and it is defined via the following equation:

D = %−1
F

e2

π~
M2gΦ̇2 (4.26)

The extra %−2
F factor compared with Eq.(4.22) arise because the resistivity D−1 is calculated

per unit “energy length” while the scaled resistivity g−1 is per unit site.

A standard numerical procedure is used for extracting g for a given resistor network

gnm. The steps are as follows: (i) Cut an N site segment out of the network (Fig. 7). (ii)

Define a vector Jn(n = 1..N) whose elements are all zero except the first and the last that

equal J1 = +J and JN = −J . (iii) Solve the matrix equation

Jn =
∑
m

gnm(Vn − Vm) (4.27)

This equation should be solved for Vn. In practice it is easier to write this equation as J =

−g̃V where g̃nm = gnm − δnm

∑
m′ gnm′ . The difference V1− VN is obviously proportional to
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the injected J . (iv) Find the overall resistance of the truncated network gN = J/(VN − V1).

And finally: (v) Define the resistivity as g−1 = g−1
N /N . For a locally homogeneous network

it has been argued in Ref.[11] that g can be obtained via an harmonic average:

g
∣∣∣
meso

≈

 1

N

N∑
n

[
1

2

∑
m

(m− n)2gnm

]−1
−1

(4.28)

The internal sum reflects addition of resistors in parallel, while the harmonic average reflects

addition of resistors in series. This should be contrasted with the algebraic average which is

used in order to calculated the spectroscopic result:

g
∣∣∣
spec

=

[
1

N

N∑
n

[
1

2

∑
m

(m− n)2gnm

]]
(4.29)

From the diffusion-dissipation relation it follows that the rate of energy absorption

equals %FD. Then it is implied by Eq.(1.1) that the conductance G is given by Eq.(2.21).

The procedure above can be summarized by saying that g can be calculated form |Inm|2

via an appropriate “averaging procedure”. The appropriate averaging procedure is algebraic

Eq.(4.29) in the case of the spectroscopic conductance. The appropriate averaging procedure

is harmonic-type (as discussed above) in the case of mesoscopic conductance. Schematically

we write in both cases

g = 〈〈|Inm|2〉〉 (4.30)

It should be clear that in both cases (spectroscopic, mesoscopic) the “averaging” requires

the specification of the smoothing scale Γ as implied by Eq.(4.23). It is also clear that the

mesoscopic result is much more sensitive to the value of Γ. Unlike the spectroscopic result

where this sensitivity to Γ is merely a “weak localization correction”, in the case of the

mesoscopic result the dependence on Γ is a leading order effect.
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4.6 The eigenstates of the network model

The network model that we have presented in section 4.1 is defined in terms of the scattering

matrix SD, and the free propagation matrix SW,

SD =

(
ε exp

(
i 2π a b

M

) √
1−Mε2δa,b

√
1−Mε2δa,b −ε exp

(
−i 2π a b

M

)) (4.31)

SW =

 0 eikLa δab

eikLa δab 0

 (4.32)

The wavefunction can be written as

|ψ〉 7−→
M∑
a=1

(
ALae

i k (x−La) + ARae
−i k x

)
⊗ |a〉. (4.33)

The set of amplitudes AL and AR that can be arranged as a column vector of length 2M.

The linear equation for the eigenstates is AL

AR

 = SW SD

 AL

AR

 (4.34)

and the associated secular equation for the eigenvalues is

det[ SW SD − 1 ] = 0 (4.35)

In the absence of driving we have time reversal symmetry, and the unperturbed eigen-

functions can be chosen as real (see 4.7):

|ψ〉 7−→
M∑
a=1

Aa sin(kx+ ϕa) ⊗ |a〉. (4.36)

The wavefunction is normalized as

M∑
a=1

∫ La

0

A2
a sin2(kx+ ϕa) dx = 1 (4.37)
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which implies

M∑
a=1

La

2
A2

a ≈ 1 (4.38)

For a given gT we can find numerically the eigenvalues and the eigenstates, thus obtaining a

table

(kn, ϕ
(n)
a , A(n)

a ) n = level index (4.39)

For the numerical study we have chosen a network system consisting of M = 50 bonds. The

length of each bond is randomly selected in the range La = 1±0.1. We select the eigenvalues

with kn ∼ 2000. The numerical results over the whole range of gT values are presented in

Figs. 8-11. In the following sections we discuss and analyze these results.

It is of course possible to determine analytically what are the eigenvalues and the

eigenstates in the gT → 1 limit. The combined scattering matrix is

SW SD =

 τ eikLaδa,b −ε ei(kLa− 2π
Ma×b)

ε ei(kLa + 2π
Ma×b) τ eikLaδa,b

 (4.40)

where we use the notation τ = (1 −Mε2)1/2. For gT = 1 this matrix becomes diagonal.

Then it has M distinct eigenvalues, each doubly degenerate. We are interested in the non-

degenerate case in the limit ε→ 0. The eigenstates are still localized each in a single a bond,

but the degeneracy is lifted. Within the framework of degenerate perturbation theory we

have to diagonalize the 2× 2 matrix τ eikLa −ε ei(kLa− 2π a2

M )

ε ei(kLa + 2π a2

M ) τ eikLa

 (4.41)

whose eigenvalue are determined by the associated secular equation

(ε2 + τ 2)e2ikLa − 2τeikLa + 1 = 0 (4.42)
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Hence we get the following approximations

kn ≈
(

2π × integer± 1√
M

ε

)
1

La

(4.43)

ϕ(n)
a ≈ − a2

M
π − 1

2
knLa +

 π/4

3π/4
(4.44)

We have verified that the numerical results of Fig. 8 and Fig. 11 agree with these estimates.

We note that for hard wall scatterer each ϕa would become either 0 or π/2 in the gT → 1

limit.

4.7 Implications of time reversal symmetry

We can decompose the eigenstate equation as follows: BLa

BRa

 = SD

 ALa

ARa

 (4.45)

 ALa

ARa

 = SW

 BLa

BRa

 (4.46)

Above BLa and BRa are the amplitudes of the outgoing waves from x = 0, while ALa and ARa

are the amplitudes of the ingoing waves. Conventional time-reversal-symmetry implies that

both ψ(x) and its complex-conjugate ψ(x)∗ satisfy the same Schrödinger equation. Complex

conjugation turns out the incoming wave into outgoing one and vice verse, and therefore A∗La

A∗Ra

 = SD

 B∗La

B∗Ra

 (4.47)

 B∗La

B∗Ra

 = SW

 A∗La

A∗Ra

 (4.48)

It is not difficult to see that the two sets of equations are equivalent provided

Stransposed

D = SD (4.49)

Stransposed

W = SW (4.50)
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If we have this (conventional) time reversal symmetry, the unperturbed eigenfunctions can

be chosen as real in position representation:

|ψ〉 =
M∑
a=1

Aa sin(kx+ ϕa) ⊗ |a〉. (4.51)

where

Aa = 2|ALa| = 2|ARa| (4.52)

ϕa =
1

2
(π + arg(ALa/ARa)− kLa) (4.53)

4.8 The non-ergodicity of the eigenfunctions

In Fig. 9 we display images of the column vectors A
(n)
a for two representative values of gT so

as to illustrate the crossover from localized to ergodic wavefunctions. Each eigen-function

can be characterized by its participation ratio:

PR =

[∑
a

(
La

2
A2

a

)2
]−1

(4.54)

This constitutes a measure for the ergodicity of the eigen-functions. By this definition

PR ≈

{
1 for a single bond localized state

M for a uniformly distributed state
(4.55)

We distinguish between 3 regimes depending on the value of the total transmission gT ,

• The trivial ballistic regime (1− gT ) � 1/M for which PR ∼ 1

• The non-trivial ballistic regime 1/M� (1− gT ) � 1.

• The non-ballistic regime where gT is not close to 1 and PR ∼M
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In the trivial ballistic regime the eigenstates are like those of a reflection-less ring with

uncoupled modes, hence PR ∼ 1. Once (1 − gT ) becomes larger compared with 1/M first

order perturbation theory breaks down, and the mixing of the levels is described by a Wigner

Lorentzian. The analysis is completely analogous to that of the single mode case of Ref.[11],

leading to PR ∝ (1 − gT ) ×M. For gT values that are not close to 1 the eigen-functions

become ergodic with PR ∼M. From RMT we expect [40] PR ∼M/3. A satisfactory global

fit, that works well within the non-trivial ballistic regime is (Fig. 12):

PR ≈ 1 +
1

3
(1− gT )M (4.56)

Our interest is focused in the non-trivial ballistic regime 1/M � (1 − gT ) � 1, where we

have strong mixing of levels (PR � 1), but still the mean free path ` ≈ L/(1 − gT ) is very

large compared with the ring’s perimeter (` � L). It is important to realize that in this

regime we do not have “quantum chaos” ergodicity. Rather we have PR �M meaning that

the wavefunctions occupy only a small fraction of the classically accessible phase space.

4.9 The calculation of matrix elements

Given a set of eigenstates, it is straightforward to calculate the matrix elements of the current

operator (Figs. 13-16). We recall that the scaled matrix elements are

Inm ≈
∑

a

La

2
A(n)

a A(m)
a sin(ϕ(n)

a − ϕ(m)
a ) (4.57)

with the associated upper bound

Īnm ≈
∑

a

La

2
A(n)

a A(m)
a (4.58)

For n = m we have Īnm = 1 due to normalization, and Inm = 0 due to time reversal

symmetry. From now on we are interested in n 6= m. There are several extreme cases that
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allow simple estimates:

Īnm ≈


0 for pair of states localized on different bonds

1 for pair of states localized on the same bond

1 for pair of ergodic states

If we take the phases into account we get

|Inm|2 ≈


0 for pair of states localized on different bonds

1 for pair of nearly degenerated states on the same bond

1/(2M) for pair of uncorrelated ergodic states

We have already explained in section4.3 that the “ergodic” hypothesis is wrong in the ballistic

case. It should be clear that the small PR of the eigenfunctions implies sparsity of Inm: The

matrix elements are very small for any pair of states that are localized on different sets of

bonds. This observation is demonstrated in Figs. 13-16. As the reflection 1−gT is increased,

more and more elements become non-negligible, and the matrix becomes less structured and

less sparse.

4.10 Numerical results for the conductance

Once we have the matrix elements |Inm|2 we can calculate Gspec using the algebraic average

recipe Eq.(4.29). We can also calculate Gmeso using either the resistor network procedure or

the harmonic average approximation Eq.(4.28). Fig. 17 displays the results for an M = 50

network model. The dependence on Γ is plotted in Fig. 18, and the rough accuracy of the

harmonic average approximation is demonstrated in Fig. 19.

The dependence of G on the smoothing parameter Γ is easily understood if we keep in

our mind the band profile which is illustrated in Fig. 14. In order to improve our intuition

we show in Fig. 16 the average value of |In,n+r|2 for r = 1, 2, 3, 4, 5 as a function of 1 − gT

for r = 1, 2, 3, 4, 5.
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It should be clear that the large r = 1 elements originate from the pairs of almost

degenerate states that were discussed in section 4.6. Their contribution to the spectroscopic

conductance is dominant. The upper bound Eq.(4.14) on G is implied by the upper bound

on |In,n+1|2. It was already pointed out in section 4.9 that the maximal value |Inm| = 1

is attained for the nearly degenerate states. The algebraic average with the interlacing

vanishingly small couplings leads to the factor of 1/2 that was mentioned after Eq.(4.14).

On the other hand, the large r = 1 couplings almost do not affect the mesoscopic

conductance. This is because they do not form connected sequences. Moreover, as implied

by our calculation recipe, large value of Γ cannot help to overcome the bottlenecks. In order

to get a classical result the environment should induce not only level broadening (which is

like the 1/T2 rate of pure dephasing in NMR studies), but also a relaxation effect (analogous

to the 1/T1 rate in NMR).
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(e)

(b)(a)

(d)(c)

S

S

Fig.5: (a) A ring with disorder. The mean free path can be either ` � L for diffusive ring or ` � L for

ballistic ring, where L is the length of the ring. (b) A chaotic ballistic ring. Here we have a single scatterer.

The annular region supports M open modes. (c) Another version of a chaotic ring. Here the scattering

is due to a deformation of the boundary. (d) A chaotic ring can be regarded as a network. Namely, each

bond corresponds to an open mode. In the numerics the lengths of the bonds (0.9 < La < 1.1) are chosen

in random. The scattering is described by an S matrix. (e) The associated open (leads) geometry which is

used in order to define the S matrix and the Landauer conductance.
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Fig.6: (a) upper panel: a waveguide with convex scatterer. This geometry has inspired our simple network

model. (b) lower panel: the semi disc model. For this geometry we have some preliminary numerical results.

+J

−J

EJ

En

Fig.7: Within the framework of the Fermi golden rule picture the flow of the probability current in a

multi level system is analogous to the flow of current via a resistor network. Thus the inverse of the course

grained diffusion coefficient can be re-interpreted as the resistivity of the network. On the right we display

a truncated segment, where +J is the current injected from one end of the network, while −J is the same

current extracted from the other end. The injected current to all other nodes is zero. The resistance of each

“resistors” in the network corresponds to g−1
nm.
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reflection 1 − gT . We consider here a network model with M = 50 bonds. The length of each bond was

chosen in random within 0.9 < La < 1.1.
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Fig.9: Each column is a gray level image of one eigenvector |A(n)
a |2, where a = 1..M is the bond index. We

display the eigenvectors in the range 2000 < k < 2031. Left panel: gT = 0.999. Right panel: gT = 0.5.
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Fig.10: The amplitudes |A(n)
a |2 with a = 1...M

of one representative state (kn ≈ 2011) as a func-

tion of the reflection. The wavefunction is local-

ized on a single bond for small reflection, and

becomes ergodic for large reflection.
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Fig.11: The phases ϕ
(n)
a for the same eigenstate

of Fig. 8. The solid lines are the values which are

implied by Eq.(4.44). The crosses indicate the

phases within the bond a where most of the wave-

function is localized. Indeed in the limit gT → 1

this phase coincides with one of the predicted

values.
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Fig.12: For each value of gT we calculate the participation ratio (PR) for all the eigenstates. We display

a set of randomly chosen representative value. The solid line is the average PR, and the dotted line is

Eq.(4.56).
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Fig.13: Images of |Īnm|2. The main diagonal is eliminated from the image. In left upper panel we display

a relatively large representative piece for gT = 0.9. In the other panels we display zoomed images for

gT = 0.999, 0.9, 0.5. As the reflection 1− gT becomes larger, more elements become non-negligible, and the

matrix becomes less structured and less sparse.
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Fig.14: Images of |Inm|2. The main diagonal is zero due to time reversal symmetry. In left upper panel we

display a relatively large representative piece for gT = 0.9. In the other panels we display zoomed images

for gT = 0.999, 0.9, 0.5. As the reflection 1 − gT becomes larger, more elements become non-negligible, and

the matrix becomes less structured and less sparse.
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Fig.15: The n-averaged value of 2M|Īn,n+r|2 as a function of 1− gT for r = 1, 2, 3, 4, 5. The ergodic value

for this quantity (2M) is indicated by the solid horizontal line. We also indicate the value M by a dashed

horizontal line. The left panel is normal scale, while the right panel is log-log.
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Fig.16: The n-averaged value of 2M|In,n+r|2 as a function of 1− gT for r = 1, 2, 3, 4, 5. The ergodic value

for this quantity (1) is indicated by the solid horizontal line. We also indicate the maximal value M by a

dashed horizontal line. The left panel is normal scale, while the right panel is log-log.
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Fig.17: (a) Left panel: The mesoscopic conductance G in units of e2/(2π~) as a function of 1 − gT . The

curves from bottom to top are for γ = 1, 2, 3, 4, 5. The total number of open modes is M = 50. The dotted

line is GLandauer while the dashed line is GDrude. (b) Right panel: The mesoscopic conductance (lower solid

line) is compared with the spectroscopic conductance (upper solid line). Here γ = 3. The dotted and the

dashed lines are as in the left panel.
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Fig.18: The mesoscopic conductance as a function of γ. The curves from top to bottom are for

gT = 0.8, 0.7, 0.5. The number of open channels is M = 50.
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Fig.19: Left panel. The results for the meso-

scopic conductance (solid line), as obtained

via the resistor network procedure, are com-

pared with the harmonic average approximation

(crosses). The energy broadening parameter is

γ = 3.
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Fig.20: The mesoscopic conductance divided

by the number of channels as a function of

gamma. The curves are from bottom to

top M = 50, 100, 150, 200, 250, 300, 350, 400, 450.

The transition is gT = 0.8, and the length of the

network segment is N = 400. We were not able

to determine wethere the conductance over the

number of open modes saturate to a limit or is it

weakly diverge
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Chapter 5

Ballistic conductance of a ring with a

semidisc scatterer

One can wonder whether the S matrix we have used in the previous chapter is ’generic’, or

maybe that model is over simplistic. In order to illuminate this point we consider the Sinai

billiard models of Fig.6(a). These models are fully qualified as ”quantum chaos” system as

explained in previous chapter.

5.1 The model

Instead of a network consist of M wires connected at a single point by an S matrix as in

the previous section, we consider waveguide of width W and length L closed to a ring, and

W � L.

The width of the waveguide can supportM open modes, each with different wavenum-

ber in the transverse direction kt
a = pi

W
a, where a is the mode index. The wavenumber alone

the ring will be
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ka =

√
2mE −

( π
W
a
)2

a = 1, 2, ...M (5.1)

Alone the waveguide we have a semidisc scatterer of radius ε. We work with units such that

W = m = ~ = 1, so the free parameters are M, ε and L. We use the notation kE =
√

2mE.

Given a desired number M and desired number of energy levels N , we can define an energy

window.

Emin =
1

2m

( π
W
M
)2

(5.2)

Emax = Emin +N
1

g(E)
(5.3)

Where g(E) is the density of states. To find it we notice that the total number of energy

level up to levels n, a is

E =
1

2m

(
(
πa

W
)2 + (

2πn

L
)2

)
(5.4)

For a constant energy this an ellipse equation with area

Σ(E) =
mEWL

2π
(5.5)

The density of state is g(E) = ∂EΣ(E) divided by 4 to consider positive indices, and multiply

by 2 to consider the degeneracy of the ring.

g =
mWL

2π
(5.6)

(5.7)

5.2 Classical transition matrix

In this section we calculate the classical transition matrix. The classical propagation angle

as in the following plot is

tan(θa) =
a√

2mE(W/π)2 − a2
(5.8)

67



θa

ε

Fig.21 Classical trajectory of a particle in the waveguide

We calculated the trajectories of an incoming particle in channel a. The step size of

that particle is 2W cot(θa), the effective length for scattering from the semidisc is 2ε
sin(θa)

. So

the probability of that particle to be scattered is ε
W cos(θa)

.

We consider the section of the step from which the particle is scattered, separate this

section to small segments, for each segment we calculate the particle trajectory after it hit

the scatterer. We check weather it is reflected or transmitted from the semidisk, or, if the the

particle is still in the scattering area we consider the trajectory of a second scattering, and

so on until the particle is transmitted or reflected from the semidisc. We repeat this numeric

procedure for each segment in the section and for each mode a. Combining the results we

can find the total probability of an incoming particle to be either reflected, transmitted or

not to be scattered, as a function of the disk radius ε.

An approximate calculation can be done by neglecting the possibility for multipole

scattering. Then we can calculate the transition matrix g directly. For that we can find, for

each incoming particle with mode a the points on the section from which it is reflected to

mode b. That points are at

qa(b)
± =

ε

sin(θa)
sin

(
±θb − θa

2

)
(5.9)

Then gR
ab, the probability to be reflected from mode a to mode b, is the sum of the derivatives

of those point with respect to b divided by the total length of the step. In similar way we

can find gT
ab, and add to it the unscattering probability, with the results.
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gR
ab = ε/(2Wm) cos(θa) tan(θb) cos(θa/2) cos(θb/2) (5.10)

gT
ab =

 ε/(2Wm) cos(θa) tan(θb) sin(θa/2) cos(θb/2) For a > b

ε/(2Wm) cos(θa) tan(θb) cos(θa/2) sin(θb/2) + δab(1− ε/(W cos(θa)) For a ≤ b
(5.11)

In the following we plot a representative transition matrix.

g =

(
gR gT

gT gR

)
(5.12)
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Fig.22 The transition matrix g for ε = 0.1

In the following we plot the calculated probabilities, we can see that for small sized ε,

which is the region we are interested, the approximation is satisfactory.
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Fig.23 The probability to be reflected (circles), transmitted (crosses) and unscattered (dots) as a function

of the semidisc radius ε. The thick lines are the corresponding probabilities using the approximation.

5.3 Quantal S matrix

In previous section we have calculate the scattering with semiclassical consideration, now we

repeat the calculation for fully quantize system.

We are consider the waveguide with Dirichlet boundary condition on both sides, and

a semidisc with Dirichlet boundary condition and radius ε center at x = y = 0, as in the

following figure.

S ab
R

S ab
T

ε
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Fig.24 The semidisc system

The wavefunction in the system’s different regions, when we assume in general an incoming

mode a from the left direction and use polar coordinate decomposition for the region near

the semidisc.

Ψa(x < −ε, y) =
1√
ka

χa(y)e
ikax +

∞∑
b=1

SR
ab

1√
kb

χb(y)e
−ikbx (5.13)

Ψa(x > +ε, y) =
∞∑

b=1

ST
ab

1√
kb

χb(y)e
ikbx (5.14)

Ψa(r < W, φ) =
+∞∑

l=−∞

aalRl(r)e
ilφ (5.15)

Where we define χ(y) as the transverse wave function

χa(y) =

√
2

W
sin(

aπ

W
y) (5.16)

ka =
√

2mE − (πa/W )2 is the wavenumber and ST
ab, SR

ab are the elements of the scattering

S matrix. In the coordinate decomposition we write the wavefunction as a sum of incoming

and outgoing waves

Rl(r) = Jl(kEr) + TlH
+
l (kEr) (5.17)

Where T , the elastic reaction matrix, which is diagonal in the angular representation.

Tll′ = i(Sll′ − δll′) = ieiσl sin(σl)δll′ (5.18)

And σl is the scattering phase shift which for hard wall is

tan(σl) = − Jl(kEε)

Nl(kEε)
(5.19)
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We will find the coefficients aal as in [36] by substituting into Lippman-Schwinger equation

the radial wavefunction equation and the green function equation found at Ref. A of [35]

G(r, r′) = π

∞∑
ll′=−∞

(δll′Hl′(kEr) + Fl−l′(2WkE)Jl(kr)) Jl′(kEr
′)ei(lφ−l′φ′) (5.20)

Fl(2WkE) = 2
∞∑

n=1

cos(l
π

2
)Hl(2nWkE) (5.21)

The Lippman-Schwinger equation

Ψa(r) =
1√
ka

eikr − m

2π

∫
d2rG(r, r′)V (r′)Ψa(r

′) (5.22)

We expand the free waves term, where cos(θa) = ka/kE is the wavenumber angle

eikr =
∑

l

ilJl(kEr)e
il(φ−θa) (5.23)

And get the linear equation for the coefficient

+∞∑
l′=−∞

(δll′ − Fl−l′(2WkE)Tl) aal′ = ileilθa (5.24)

We reduce the sum on l to a sum on positive integers, using the antisymmetric sin and

the properties of the Bessel function.

Ψa(r, φ) =

√
2

Wka

∞∑
l=1

(aal − (−1)lan−l)Rl sin(lφ) (5.25)

The Cartesian wavefunctions are defined as antisymmetric with respect to the x axis. Now

we can match the wavefunctions in the different regions by using the relation

0 =

∫
ds

(
Ψa

∂

∂r
Ψb −Ψb

∂

∂r
Ψa

)
(5.26)

We can now integrate alone the dashed line in the above sketch, the third line is on y = W ,

where the wavefunction vanish. We consider Ψa, the wavefunctions we have derive above in

the various regions, and Ψ±b =
√

2
W

e±ik′bx sin( b′π
W
y), a general solution that we can write in

both Cartesian and radial form. Writing the last equation as Iφ + Iy + 0 = 0 where Iy is an
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integral on the strait lines at x = ±W , and Iφ is on a semidisc at r = W . The first integral

is

Iy =

∫ W

0

(
Ψa

∂

∂x
Ψb −Ψb

∂

∂x
Ψa

) ∣∣∣
x=W

(5.27)

(5.28)

Calculating it on both sides separately, using the orthogonality of the sin

IR
y = i

1√
kb

ST
ab(±kb − kb) (5.29)

IL
y = i

1√
ka

δab(±kb − ka) + i
1√
kb

SR
ab(±kb + kbm) (5.30)

The integral Iy = IL
y − IR

y for the different signs are

Iy(Ψ
−
b ) = −2i

√
kaδab + 2i

√
kbS

T
ab (5.31)

Iy(Ψ
+
b ) = +2i

√
kbS

R
ab (5.32)

For the second integral, on the dashed half circle line in the region (0, π) we expand Ψ±b in

the radial basis

Ψ±b (r, φ) =

√
2

W
e±ikbx sin(

bπ

W
y) =

−i√
2W

(
e±ikbx+i( bπ

W
)y − e±ikbx−i( bπ

L
)y
)

= (5.33)

= ±
√

2

W

∞∑
l=−∞

(±i)lJl(kEr)e
ilφ sin(lθb) (5.34)

We sum on positive integers by J−l(x) = (−1)lJl(x)

Ψ±b (r, φ) = ±2i

√
2

W

∞∑
l=1

(±i)lJl(kEr)i
l sin(lφ) sin(lθb) (5.35)

The second integral is

Iφ =

∫ π

0

Wdφ

(
Ψa

∂

∂r
Ψb −Ψa

∂

∂r
Ψb

)
r=W

(5.36)

Substituting the wavefunctions, using the orthonormality of sin

Iφ = ± 2πi√
ka

∞∑
l=1

(±i)l(aal − (−1)laa−l) sin(lθb)(Rl∂rJl − Jl∂rRl)
∣∣∣
r=W

(5.37)
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Using (5.17) and the Wronskian of the Bessel functions Jl∂rNl −Nl∂rJl = 2
πr

the integral is

Iφ = ∓ 4√
kaW

∞∑
l=1

(±i)lTl(aal − (−1)laa−l) sin(lθb) (5.38)

As we seen the two integral sum is zero therefore Iy = −Iφ and we can find the expressions

ST
ab = δab +

2i√
kakbW

∞∑
l=1

(−i)lTl sin(lθb)(aal − (−1)laa−l) (5.39)

SR
ab =

−2i√
kakbW

∞∑
l=1

ilTl sin(lθb)(aal − (−1)laa−l) (5.40)

Note that we assume a long enough waveguide so there is no incoming evanescent modes.

Then the S submatrix of the open modes fully describe the open modes scattering, without

any need to consider the outgoing evanescent modes.

For the matrix to satisfy the TRS condition as in section 4.7, we require that S =

Stransposed. Each of the above submatrices fullfill that condition. The calculation for incoming

particle in the oposite direction lead to the same result, hence the S matrix is of the form.

S =

(
SR ST

ST SR

)
(5.41)

The following figures present the absolute values of four representative S matrices.
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Fig.25 From left up to bottom right, S matrices for ε = 0.01, 0.1, 0.7, 1

5.4 Classical Kubo formula and Drude

With the classical transition matrix of section 5.2 we have created the transition matrix g.

With its quatum counterpart gQM
ab = |Sab|2 we can find the Landauer and Drude conductance,

using Eq.(3.40) and Eq.(1.11).

In the following we plot those conductance as function of the radius ε.
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Fig.26 The classical conductance, in log and normal scale. The dotted line and dashed line are for

Landauer and Drude conductance respectively in the classical approximation. The dots are the

corresponding quantum results.
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5.5 System’s eigenvalues

As in the network, the waveguide system is define by the scattering matrix S of previous

section and the free propagation matrix SW .

SW =

(
0 eikaLδab

eikaLδab 0

)
(5.42)

By solving the secular equation.

det[ SW S − 1 ] = 0 (5.43)

and the linear equation for the eigenstates AL

AR

 = SW SD

 AL

AR

 (5.44)

we obtain numerically for any size of ε a table

(En, ϕ
(n)
a , A(n)

a ) n = level index a = mode index (5.45)

For the numerical study we have chosen a waveguide system withM = 50 modes. We choose

the length of the waveguide to be L = 100.32, and an energy window with N = 400 levels.

For each energy level n the wavefunction in the waveguide is

Ψn(x, y) =
∑

a

Aa sin(k(n)
a x+ φ(n)

a )

√
2

L
sin(aπy/W ) (5.46)

The semidisc system is symmetric to reflection on the disc. Therefore each eigenstate will

either symmetric or anti symmetric for all modes. Therefore at x = L/2, point opposite to

the location of the scatterer, the phase in the sin of the wavefunction will be either ±π/2

for a symmetric wavefunction, or 0 for antisymmetric one. We found the expression for ϕ
(n)
a

at Eq.(4.53), now it is re-written as

ϕ±a =

 −1
2
kaL± π

2
For a symmetric wavefunction

−1
2
kaL For an anti-symmetric wavfunction

(5.47)
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Using this structure it will more convnient to calculate the current operator not at x = 0 as

in the previous chapter, but at x = L/2 where the phase of the wavefunction is simple.

In the following we plot the energy levels as a function of the reflection. If the reflection

is small enough each pair of states, a symmetric state and an antisymmetric one. will be

nearly degenerate. This structure will be lost as we increase the reflection.
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Fig.27 The energy levels within a small energy window near E = 12500 are shown as a function of ε. The

circles indicate energy levels with symmetric eigenvectors. The crosses with antisymmetric levels.

In the following we plot the phases ϕ
(n)
a and amplitudes A

(n)
a of the system for a single

energt level n, as a function of the reflection ε. If the reflection is small enough the wave-

function will be localize on a single mode a, in the level we choose that mode is a = 7. The

result for that mode are indicated by crosses. We ploted the phses of the wavefunction at

x = L/2. namely ϕ
(n)
a +k

(n)
a L/2, we can see that the eigenstate we chose is a symmetric one,

the phase in all modes are either π
2

or −π
2
. The phase in the localized mode is π

2
.

The amplitudes have structure similar to that in section 4.6. Where the wavefunction

is localized on a single mode for small reflection and become ergodic if the reflection is

increase. Note that the amplitudes are multiply by
√
L/2, so the amplitude of the localizes

mode equal 1.

77



10
−4

10
−3

10
−2

10
−1

10
0

−1

−0.5

0

0.5

1

ε

(φ
−

k aL/
2)

/π

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

ε

A
m

pl
itu

de
s 

(A
a)

Fig.28 Right panel: The phases ϕ
(n)
a + k

(n)
a L/2 of one representative eigenstate. The crosses indicate the

phase in the mode a = 7, where most of the wavefunction is localized for ε→ 0. Left panel: The

amplitudes A
(n)
a multiply by

√
L/2 for the same state as a function of ε. The wavefunction is localized on a

single bond for small reflection and become ergodic for large reflection.

5.6 The calculation of the matrix elements

Using the the density of state in the waveguide we re-write the Kubo formula

G = π%2
F × 〈〈|Inm|2〉〉 (5.48)

as G = 〈〈Gnm〉〉, where 〈〈·〉〉 indicate the coarse graining procedure as in the previous chapter

and

Gnm = π%2
F |Inm|2 (5.49)

=
e2

2π~
× W 2

2

∣∣∣∣∣L2 ∑
a

kaA
(n)
a A(m)

a sin(φ(n)
a − φ(m)

a )

∣∣∣∣∣
2

(5.50)

We can calculate those matrix elements at any point alone the ring. As explained in the

previous section we will calculate it at x = L/2 where the phases are known. We note that

for any pair of states n,m with the same symmetry the expression φ
(n)
a − φ(m)

a will be either

0 or π, in both case the Gnm matrix elements vanish.
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On the other hand, for a pair of states with different symmetry this expression equal

either π/2 or −π/2, depending on the symmetry of the specific mode.

In the limit ε → 0, we will get pairs of states, both localize on the same mode, with

different symmetry. Those state are the result of the even-odd degeneracy we expect on a

reflectionless single ring, the matrix elements for those pair are

Gnm =
e2

2π~
× W 2

2
ka

2 (5.51)

Where a is the localized mode. In that region other states are localized on different modes,

therefore other matrix elements vanish. In order to calculate the ergodic value we remind

that the amplitude for ergodic wavefunction are, as in section 3.2,

Aa ∝ 1/
√
ka (5.52)

Using the normalization demand L/2
∑

aA
2
a = 1, we can find that in the ergodic limit

A2
a ≈

4

WLka

(5.53)

For this calculation we assume E ≈ Emin and we replace the sum by the integral.∑
a

1

ka

≈
∑

a

W

π
√
M2 − a2

≈ W

π

∫ M
0

1√
M2 − a2

=
W

2
(5.54)

With this results we can find the matrix elements, we can assume the phase sign is

random.

Gnm =
e2

2π~
× 2

∣∣∣∣∣∑
a

sin(±π/2)

∣∣∣∣∣
2

= 2M (5.55)

In summary the limiting values for the matric elements are.

Gnm =
e2

2π~
×



0 for a pair of states, localized on different modes

W 2

2
ka

2 for a pair of state, localize on the same mode and have different symmetry

0 for a pair of ergodic states with the same symmetry

2M for a pair of ergodic states with different symmetry

(5.56)
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The next plot presents the the average values of the first near diagonals as a function of the

reflection. The first diagonal reach, in the limit of small reflection ε→ 0 to the value of

〈Gn,n+1〉 =
e2

2π~
× 1

2

W 2

2
〈ka

2〉 (5.57)

Where the 1
2

indicate that in that limit half of the states are correlated on the same mode

a and half are not correlated. The ergodic avarage value is 〈Gn,m〉 = e2

2π~ ×M, half of the

matrix elements equal zero as they have the same symmetry the other half equal 2M.
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Fig.29 The average value of Gn,n+r for r = 1, 2, 3, 4, 5 as a function of ε (doted line). The ergodic M value

is represented with solid line.

5.7 Numerical results

With all the ingredients we can now calculate the conductance, the following are analog to

Fig.17 in the previous chapter, and they dispaly similar results.
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Fig.30: (a) Left panel: The mesoscopic conductance G in units of e2/(2π~) as a function of ε. The

curves from bottom to top are for γ = 1, 2, 3, 4, 5. The total number of open modes is M = 50. The dotted

line is GLandauer while the dashed line is GDrude.

In this chapter we have shown that the results obtaind in the simplistic model of the

previous chapter, fit well with the realistic model we have presented.
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Chapter 6

Summary

In our work we have studied the conductance of close mesoscopic system. In chapter 3 the

treatment was essentially classical as we assume short coherence time. Within the framework

of the scattering approach, we have found an expression for this conductance which we named

the Drude conductance. This expression can be regarded as a generalization of the Landauer

formula. Our starting point was the Kubo formalism, we also used a master equation for the

derivation. Calculation of the conductance in waveguide with attached cavity as a general

example for multimode Drude conductace has showed that the unlike the Landauer result

the conductance in a closed ring is not bounded by the number of channels.

In chapter 4 we have studied the mesoscopic conductance of an essentially coherent

ballistic ring. The specific calculation has been done for a network model, but all its main

ingredients are completely generic. Ballistic rings are not typical ”quantum chaos” systems.

Their eigenfunctions are not ergodic over the whole accessible phase space and cannot be

regarded as an extended “random wave”. Consequently the perturbation matrix Inm is

highly structured and sparse, and the Kubo formula is no longer valid. Then one has to

adopt an appropriate coarse graining procedure in order to calculate the true mesoscopic

conductance.
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The ”averaging” over the matrix elements of the current operator should be done

according to the appropriate prescription: resistor-network scheme for the mesoscopic con-

ductance Gmeso. which is relevant when all relaxation processes are much weaker compared

with the driving in the system, and algebraic scheme for spectroscopic conductance Gspec.

The latter correspond with the classical, Drude conductance. The calculation procedure

implies that

Gmeso < Gspec ≤ GDrude (6.1)

while our numeric further suggests that typically

Gmeso < GLandauer (6.2)

For an optimal value of γ, such that Gmeso is maximal, we still have Gmeso . GLandauer.

Our conjecture is that this statement is true in general. We did not find a mathematical

argument to establish this conjecture, except the very simple case of a single mode ballistic

ring[11] where the calculations of G can be done analytically. It is still an open challenge to

derive an estimate for the mesoscopic conductance in terms of gT . It was possible to derive

such an expression in the single mode case. There it was found that Gmeso ∝ (1− gT )2gT . In

the general case (M > 1) the calculation is more complicated.

We suspect that our expression for the participation ratio Eq.(4.56) constitutes an

important step towards this goal. In any case we were not able to derive a reliable closed

analytical expression. We did calculate the conductance for a larger number of M up to

450, Fig 16. But, We could not determine weather the conductance saturate to a limit or

has some weak divergance as M→∞.

Another open question is the quantum classical correspondane in the limit gT → 0.

The classical Kubo calculation will result in zero conductance in that limit. However, in

our quantum calculation we found that in this limit the conductance is proportional to the

number of open modes.
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In the chapter 5 We have tested the generality of our statements by analyzing another,

more realistic model, where the ring is modeled as a waveguide with a semi-disc scatterer. We

have found the g matrix for this model and calculate the Drude and Landauer conductance.

We also found the S matrix for this model and calculate the mesoscopic and spectroscopic

conductance. We have verified that the pertubation matrix elements has roughly the same

expected dependence on gT as in our simple model of chapter 4. And verified that the results

for the mesoscopic conductance are qualitatively the same in both cases.

Note that in Both the semi-disc model, and the network model, that the participation

ratio does not exhibit anomalous saturation as typical, say, for a “star graph” [24].

It should be emphasized that if the mesoscopic conductance that we have discussed

apply only when there is neither a very effective relaxation nor a decoherence process. In

the presence of such effect one can justify, depending on the circumstances, either the use of

the traditional Kubo-Drude result, or the use of the Landauer result.
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Appendix A

Numerical routines

The numerical work was done using Matlab routines. the main routine is called Net-

work system.m. This is the primary routine, it define the input variables of the model.

It accept as input the number of open modes M, kmin, kmax which are lowest and highest

value of wavenumber k. And a list of reflection sizes rT , which is define as

rT = 1− gT (A.1)

The routine construct J , a permutation matrix that describe connection of the bonds in the

system. And L = diag(La), diagonal matrix of the lengths of the bonds. The lengths of the

bond are random number in the region (1.1, 0.9). Both matrices are 2M× 2M For example

for M = 2 those matrices will be

J =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 L =


1.034 0 0 0

0 0.987 0 0

0 0 1.034 0

0 0 0 0.987

 (A.2)
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Using the input variables The routine calculate N the number of levels to be found and Nr

the number of reflection sizes.

Then the routine runs a ’for’ loop for all reflection sizes. for each size of the reflection

it calls the functions S matrix.m, Find.m and CreateInm.m.

The S matrix.m function create the S matrix of the scatterer, as specify in section 4.1.

The function take as input the reflection size.

Find.m is a function created by Rosenberg [41] it find a set of eigenvalues kn in the

specify region that solve the secular equation of 4.35, and find the corresponding eigenvectors

A
(n)
La and A

(n)
Ra of 4.33 for each level n and mode a. The function input is the matrices S, L,

J and the k limits kmin and kmax. Note that

SD = S (A.3)

SW = JeikL (A.4)

Where SD and SW are define at 4.31 4.32. The combined matrix SWSD in the equation is

created by the sub routine Umatrix.m.

Now the main routine call the function CreateInm.m. This function use the output of

Find.m and the L matrix to calculate the amplitude and phase of 4.52 and 4.53. It also use

those variables to calculate the PR of 4.54 and the matrices elements Inm and Īnm of 4.57

and 4.58.

After the loop the routine call the function DataAnalysis.m, it use rT , M , and the

matrices elements Inm and Īnm to calculate the various types of conductance. Namely,

Gmeso, both as it define in 4.27 and as define in 4.28, Gspec, as it define in 4.29, GLandauer as

it was calculated at 1.14 and GDrude as it was calculated at 1.15.

In the following table we plot the variable, there names in the routines, there matrices

sizes and a description for each of them.
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M Input.Channels Scalar Number of Open modes

kmax Input.kmax Scalar Lowest kn

kmin Input.kmin Scalar Highest kn

rT Input.a 1×Nr Reflection size

J Input.J 2M× 2M Permutation matrix

L Input.L 2M× 2M Bond lengths

N Input.N Scalar Number of levels

Nr Input.Nr Scalar Number of sizes rT

S Input.S 2M× 2M S matrix

k Output.k 1×N Eigenvalues

n Output.n 1×N Eigenvalues indices

A
(n)
La , A

(n)
La Output.Amplitude N × 2M Eigenvectors

A
(n)
a Output.NormalizeAmplitudes N ×M Amplitudes

φ
(n)
a Output.phi N ×M phases

IPR Output.IPR 1×N IPR= (PR)−1

Inm Output.Inm N ×N

Īnm Output.Cnm N ×N

GDrude Output.G Drude 1×Nr

GLandauer Output.G land 1×Nr

Gmeso Output.Gmeso 1×Nr

Gmeso Output.Gha 1×Nr Harmonic average

Gspec Output.Gspec 1×Nr

Other, technical variables are

Input.kTol The tolerance in the k values

Input.k0 describe the zero value for k

87



A block diagram of the main routine:

Network system

M, kmin, kmax, rT .

M =⇒ L, J

’For’ loop on rT

M, rT =⇒ S matrix.m =⇒ S

S, L, J , kmin, kmax, =⇒ Find.m =⇒ kn, A
(n)
Ra , A

(n)
La

L, kn, A
(n)
Ra , A

(n)
La =⇒ CreateInm.m =⇒ φ

(n)
a , A

(n)
a , PR, Īnm, Inm

end

rT , Inm =⇒ DataAnalysis.m =⇒ Gmeso, Gspec, GDrude, GLandauer.

In chapter 5 we have calculate the conductance in a waveguide closed to a ring instead of

the network model. The numerics equire some trivial modification which are not elaborated.

We only add the numerical calculation of the S matrix which is describe in 5.3. This routine

use the energy E and the semidisc radius ε to calculate the S matrix of the system.

E, ε =⇒ semidisc.m =⇒ S

These are the printouts of the routines.

A.1 Network system.m

clear global Input Output
clear Result_Outputs
global Input Output
Input.a=exp(-10:.5:0);
% Number of Channels
Input.Channels = 50;
% Number of Energy levels
Input.N = 200;
Input.Nr=length(Input.epsilon);
% L
l=1+.1*(1-2*rand(1,N));
L=diag([l,l]);
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Input.L = L_matrix(Input.Channels,range);
% J
Input.J = [zeros(Input.Channels, Input.Channels), eye(Input.Channels);

eye(Input.Channels), zeros(Input.Channels, Input.Channels)];
% The handle to the function that updates returns U(E)
Input.UMatrix =@UMatrix;
% The tolerance in k
Input.kTol = 1e-3;
Input.kmin = 2000;
Input.kmax = Input.kmin+pi*Input.N/Input.Channels;
Input.k0=0;
for j=1:Input.Nr;

clear global Output
global Output
tic;
Input.S=S_matrix(Input.epsilon(j),Input.Channels);
Output.S=Input.S;
% Find routine
Find;
% CreateInm routine
CreateInm;
Result_Outputs(j)=Output;

end
DataAnalysis(Input,Result_Outputs)
save([date,’-d’])

A.2 S matrix.m

function S=S_matrix(epsilon,N)

for n=1:N
for m=1:N

R(n,m)= sqrt( epsilon /N) * exp(2*pi*i*(n*m)/N);
if (n==m)

T(n,m)=sqrt(1-epsilon);
end

end
end
S=[R,T;T,-R’];
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A.3 Find.m

global Input Output
% Find the total length of the system
Output.TotalLength = trace(Input.L);
% Calculate Phi(k0)
Input.Phi0 = sum(Angle(eig(Input.UMatrix(Input.k0))));
% Save S(k0)^dagger
Input.S0dag = conj(Input.S);
% The length of the segments we will divide (Input.kmin,Input.kmax) into.
dk = 2*pi/(Output.TotalLength);
% Initialize the number of k’s found so far
Output.NumFound = 0;
% Initialize the result arrays
Output.k = [];
Output.n = [];
Output.Amplitudes = [];
% Initialize the counter that counts the number of runs of Lions
Output.Runs = 0;
% The first time the loop runs, we make as if there was a segment that
% ended at Input.kmin
n2 = n(Input.kmin);
% The beginning of the first interval
BeginInterval = Input.kmin;
% Initialize the end of the first interval, to make sure that we enter the
% while loop
EndInterval = 0;
% The main loop: for every interval
% While there is still another interval to work on
while(EndInterval < Input.kmax)

% If we are within dk of Input.kmax
if (Input.kmax - BeginInterval) < dk

% End the interval at Input.kmax
EndInterval = Input.kmax;

else
% The interval is of length dk
EndInterval = BeginInterval + dk;

end;
% The new level numbers of the limits of the segment

n1 = n2;
n2 = n(EndInterval);

% If there is at least one k in the current segment
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if (n2 - n1) > Input.nTol
% Increment the runs counter
Output.Runs = Output.Runs + 1;

% Find the k’s in this segment, by using binary search
Lions(BeginInterval, EndInterval, n1, n2);

end;
% The beginning of the next interval
BeginInterval = BeginInterval + dk;

end; % End of main loop
% If the draw flag is set, display the results
if Input.Draw > 0

% Display the results
disp([’Number of k’’s found: ’ num2str(Output.NumFound)]);
disp([’Number of Runs (Lions): ’ num2str(Output.Runs)]);
disp(’k:’)
disp(Output.k)
disp(’n:’)
disp(Output.n)
disp([’Time elapsed: ’ num2str(toc) ’ sec.’]);

end;
% Output the variables
evalin(’base’, ’global Input Output’);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function Lions(k1, k2, n1, n2)
% Lions finds k’s in a given range.
% (k1, k2) is the range to look in
% (n1, n2) are the "level numbers" that correspond to k1 and k2 (note that
% they are not necessarily whole!)
global Input Output
% If the segment is of length kTol or smaller
if (k2-k1) <= Input.kTol

% The k’s we have found
Currentk = (k1+k2)/2;
% The number of the level
Currentn = n2;
% If we need to calculate the amplitudes
if Input.CalculateAmplitudes

% Get the eigenvectors and eigenvalues
[EigenVectors, SingularValues] = eig(Input.UMatrix(Currentk));
EigenValues = diag(SingularValues);

end;
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% Find the number of k’s in this segment.
% If Input.nTol is much smaller than the real size of the jump, we
% might get the wrong value here.
NumKs = floor((n2-n1)/Input.nTol);
% For each k in this segment
for j=1:NumKs

% Increment the number of k’s found
Output.NumFound = Output.NumFound + 1;
% If we need to calculate the amplitudes
if Input.CalculateAmplitudes

% We want to find the eigenvector that corresponds to the eigenvalue
% that has an angle closest to 0
% Choose only the eigenvalues with real > 0
Filter = real(EigenValues)>0;

% Find their absolute imaginary part
AbsImag = abs(imag(EigenValues(Filter)));
% This gives us the final filter = real > 0 and min imaginary
% part
Filter = (abs(imag(EigenValues)) == min(AbsImag)) & real(EigenValues)>0;
% Store the eigenvector
%ADDED when the degeneracy is exact numerically we will
%use to distinguish eigenvalues, choosing only the first one.
if sum(Filter)>1

Filter2=zeros(length(Filter),1);
Filter2(min(find(Filter)))=1;
Filter=Filter2==1;

end
Output.Amplitudes(:, Output.NumFound) = EigenVectors(:, Filter);
% If there is more than one root, get rid of the eigenvector and
% eigenvalue that we have already stored.
% The reason for this is that if there are n k’s in this segment,
% we must get n different eigenvectors.
if (NumKs>1)

try,
EigenVectors = EigenVectors(:, ~Filter);
EigenValues = EigenValues(~Filter);

catch,
error([’Lions:NumOfEigenVectors’, ...

’The number of eigenvectors found was larger than’ ...
’expected. \n You probably need to make Input.nTol’...
’closer to the real size of the jump, or make’ ...
’Input.kTol smaller.’])
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end;
end; end;

% Save the k and level number
Output.k(Output.NumFound) = Currentk;
Output.n(Output.NumFound) = Currentn;

end;
% There is nothing left to do, so return
return;

end;
% Find the k and n for the middle of this segment
k12 = (k1+k2)/2;
n12 = n(k12);
% If there are k’s in the left half
if (n12 - n1) > Input.nTol

% Increment the runs counter
Output.Runs = Output.Runs + 1;
% Invoke Lions on the left half
Lions(k1, k12, n1, n12);

end;
% If there are k’s in the right half
if (n2 - n12) > Input.nTol

% Increment the runs counter
Output.Runs = Output.Runs + 1;
% Invoke Lions on the right half
Lions(k12, k2, n12, n2);

end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function n = n(k)

% n calculates the number of the level associated with k
global Input Output
% Calculate Phi (the sum of thetas)
Phi = sum(Angle(eig(Input.UMatrix(k))));
% This term must be calculated in advance, so that we can get rid of
% possible jumps of 2*pi resulting from the difference in definition of
% the range of angles ([-pi, pi] as opposed to [0, 2*pi])
Y = imag(log(det(Input.S0dag*Input.S)));
if Y < -Input.NumericalError

Y = Y + 2*pi;%
end;
% The number of the level.
% We use abs to get rid of tiny imaginary parts that sometimes show up.
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n = abs((Input.Phi0-Phi+(k-Input.k0)*Output.TotalLength+Y)/(2*pi));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function phi = Angle(z)
% Angle finds the phase angle of z in the [0,2*pi] segment
% z is a scalar or vector
% Get the components of z
re = real(z);
im = imag(z);
% Find theta
theta = atan(im./re);
% For each element of z
for j=1:length(z)

% According to the quadrant, find phi
% Left half
if (re(j) < 0)

phi(j) = pi + theta(j);
% Right half
else

% First quadrant
if (im(j) > 0)

phi(j) = theta(j);
% Fourth quadrant
else

phi(j) = 2*pi + theta(j);
end;

end;
end;

A.4 Umatrix.m

function UE = UMatrix(k)
global Input Output

% Calculate U(k) for this k, and return it
UE = Input.J*expm(i*k*Input.L)*Input.S;

A.5 CreateInm.m

global Input Output

Nm=Output.NumFound;
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Output.phi=zeros(1,Nm);
Output.IPR=zeros(1,Nm);
NormalizeFactor=zeros(1,Output.NumFound);
for n=1:Output.NumFound;

%for each energy level
for a=1:Input.Channels;

%for each mode
%calculate phi, depend on the mode and channel, claculate
%separately for each mode and channel
phi=angle(Output.Amplitudes(a+Input.Channels,n)/Output.Amplitudes(a,n));
%The new amplitude, after gauge.
NewAmplitude(a,n)=2*abs(Output.Amplitudes(a,n));
Output.teta(a,n)=mod(-Output.k(n)*Input.L(a,a)/2+phi/2+pi/2,pi);
%calculate the Amplitude factor, the factor is calculated for each
%channel seperatley.
NormalizeFactor(n)=NormalizeFactor(n)+...

NewAmplitude(a,n)^2*(Input.L(a,a)/2+...
sin(2*Output.teta(a,n))/(4*Output.k(n))-sin(2*(Output.teta(a,n)+...
Output.k(n)*Input.L(a,a)))/(4*Output.k(n)) );

end
%calculate the normalize amplitude
Output.NormalizeAmplitude(:,n)=NewAmplitude(:,n)./sqrt(NormalizeFactor(n));
%The IPR
for a=1:Input.Channels;
Output.IPR(n)=Output.IPR(n)+(Output.NormalizeAmplitude(a,n)^2*Input.L(a,a)/2 )^2;
end
Localized_mode=find(max(abs(Output.NormalizeAmplitude(:,n))) ==...
abs(Output.NormalizeAmplitude(:,n)));
Output.Localized_psi1(n)=...
angle(Output.Amplitudes(Localized_mode+Input.Channels,n)...
/Output.Amplitudes(Localized_mode,n));
Output.Localized_psi2(n)=Output.k(n)*Input.L(Localized_mode,Localized_mode);
Output.Localized_teta(n)=...
mod(-Output.Localized_psi2(n)/2+Output.Localized_psi1(n)/2+pi/2,pi);

end
Inm=zeros(Nm);
Cnm=zeros(Nm);
%for each energy level
for n=1:(Nm);

for m=1:(Nm);
if 1%(abs(n-m)<Input.Channels)

for a=1:Input.Channels;
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Cnm(n,m)=Cnm(n,m)+Input.L(a,a)/2*Amplitude(a,n)*Amplitude(a,m);
Inm(n,m)=Inm(n,m)+Input.L(a,a)/2*Amplitude(a,n)*Amplitude(a,m)*...

sin(teta(a,n)-teta(a,m));
end
Output.Inm(n,m)=abs(Inm(n,m))^2;
Output.Cnm(n,m)=abs(Cnm(n,m))^2;

end
end

end
Output.q_E=zeros(1,length(Inm));
for n=1:Nm;

Output.mean_IPR=mean(Output.IPR(filter));
end

A.6 DataAnalysis.m

function DataAnalysis(Input,Result_Outputs)
Nr=Input.Nr;
close all
gamma=[1,2,3,4,5];
for k=1:length(gamma);

N=Input.N-5;
for j=1:Nr;

Inm=Result_Outputs(j).Inm(1:N,1:N);
F=zeros(length(Inm));
for n=1:length(Inm)

for m=1:length(Inm)
if (n~=m)
F(n,m)=1/(n-m).^2*1/gamma(k)*exp(-2*abs((n-m)/gamma(k)));
end

end
end
g_nm=2*Input.Channels^2*Inm.*F;
S=ones(length(g_nm),1)*sum(g_nm);
g_nm=g_nm-eye(length(g_nm)).*S;
I=zeros(length(g_nm),1);
I(length(g_nm))=-1;
I(1)=1;
V=pinv(g_nm)*I;
Output.Gmeso(j)=1/(V(length(V))-V(1))*length(V);
%%%%%G2 issue - simplify recipe
alg_sum=zeros(1,length(Inm));
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for n=1:length(Inm)
for m=1:n

alg_sum(n)=alg_sum(n)+(m-n)^2*g_nm(n,m);
end end
Output.Gha(j)= 1/sum(1./alg_sum(2:length(Inm)))*length(V);
%%%%%Gspec issue - harmonic->algebric
alg_sum=zeros(1,length(Inm));
for n=1:length(Inm)

for m=1:n
alg_sum(n)=alg_sum(n)+(m-n)^2*g_nm(n,m);

end
end
Output.Gspec(j)=sum(alg_sum(2:length(Inm)))/length(V);

end
end
Output.G_land=Input.Channels.*(1-Input.epsilon);
Output.G_drude=Input.Channels.*(1-Input.epsilon)./Input.epsilon;

A.7 semidisc.m

function S=semidisc(E,a)
mass=1;
L=1;
size=floor(L/pi *sqrt(2*mass*E));
lSize=l_size(a,size);
lvalmin=lSize.*ones(size);
k=sqrt(2*mass*E);
r=zeros(size);
t=zeros(size);
for l=1:lSize;

Tvec(l)=T(l,k,a);
end
for n=1:size;

kvec(n)=sqrt( k^2-(n*pi/L)^2 );
end
[Fmatb,Fmatc]= Fmatrix(k,a,lSize,Tvec);
Rmat=R(k,kvec,size,lSize);
for n=1:size;

[b,c]=b(Fmatb,Fmatc,Rmat,lSize,n);
for m=1:size;

Sumlt=0;
Sumlr=0;
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lt=zeros(1,lSize/2);
lr=zeros(1,lSize/2);
for l=2:2:(lSize);

lt(l/2)=Tvec(l)*b(l)*(Rmat(m,lSize+1+l)-Rmat(m,lSize+1-l))
+Tvec(l-1)*c(l-1)*(Rmat(m,lSize+1+(l-1))+Rmat(m,lSize+1-(l-1)));

lr(l/2)=-Tvec(l)*b(l)*(Rmat(m,lSize+1+l)-Rmat(m,lSize+1-l))
+Tvec(l-1)*c(l-1)*(Rmat(m,lSize+1+(l-1))+Rmat(m,lSize+1-(l-1)));

end
Sumlt=sum(lt);
Sumlr=sum(lr);
r(n,m)=1/(L*sqrt((kvec(n))*((kvec(m)))))*Sumlr;
t(n,m)=1/(L*sqrt((kvec(n))*((kvec(m)))))*Sumlt;

end
end
S=[(r),(t)+eye(n);(t)+eye(n),(r)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [b,c]=b(Fmatb,Fmatc,Rmat,lSize,n)

Rvecb=zeros(lSize,1);
Rvecc=zeros(lSize,1);

%vector of R_n,-l - R_n,l
for l=1:lSize;

Rvecb(l)=Rmat(n,lSize+1-l)-Rmat(n,lSize+1+l);
Rvecc(l)=Rmat(n,lSize+1-l)+Rmat(n,lSize+1+l);

end
b=inv(Fmatb)*Rvecb;
c=inv(Fmatc)*Rvecc;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Fmatb,Fmatc]=Fmatrix(k,a,lSize,Tvec)

L=1;
%create the matrix
Fmatb=zeros(lSize);
Fmatc=zeros(lSize);
%filling all the possibile values for the structure function, there
for l3=-lSize:2:lSize*2;

StrucFun(l3+lSize+1)=SF(2*L*k,l3);
end
for l1=1:lSize;
for l2=1:lSize;
Fmatb(l1,l2)=(l1==l2) + ( StrucFun(l1+l2+lSize+1)-StrucFun(l1-l2+lSize+1) )*Tvec(l2);
Fmatc(l1,l2)=(l1==l2) - ( StrucFun(l1+l2+lSize+1)+StrucFun(l1-l2+lSize+1) )*Tvec(l2);
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end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Rmat=R(k,kvec,size,lsize)

mass=1;
L=1;
for n=1:size

for l=-lsize:1:lsize;
% Rmat(n,lsize+l+1)=( (-sign(l)*i*kn(n)+n*pi/L)/k )^(abs(l)) ;
Rmat(n,lsize+l+1)=i^l*exp(-i*l*(pi-acos(kvec(n)/k))) ;
end

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function T=T(l,k,a)

rho=pi-atan(-besselj(l,k*a)/bessely(l,k*a));
%rho=pi-atan( - (besselj(l-1,k*a)-besselj(l+1,k*a))/(bessely(l-1,k*a)-bessely(l+1,k*a)) );
%rho=pi-rho;
T=i*exp(i*rho)*sin(rho);
%T=-besselj(l,k*a)/(besselj(l,k*a)+i*bessely(l,k*a));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function F = SF(x,l)
%the structure function F

M=50;
L=1;
if ( l/2==round(l/2) )

%only for even l
for n=1:M;

F1(n)=(besselj(l,x*n));
F2(n)=(bessely(l,x*n));

end
for n=(M-20):1:M;

J(n)=sum(F1(1:n));
Y(n)=sum(F2(1:n));

end
rst1=mean(J((M-20):M));
rst2=mean(Y((M-20):M));
f=rst1+i*rst2;
F=2*f*cos(pi*l/2);

else
F=0;

end
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תאריך:הסטודנט: 

תאריך:אישור המנחה:

תאריך:אישור יו"ר הועדה המחלקתית:



 . ההולכה של מערכות מזוסקופיות פתוחות, שווה, בגבול הפיזור החלש למספר הערוציםLandauerמוליכות 

 הפתוחים. בעבודה זו נשאל מה תהיה ההולכה אם נסגור המערכת לטבעת? האם היא עדיין תהיה חסומה על ידי מספר

 ] ישימה אם אנו מניחים זמן קוהרנטיות קצר, ולכן1הערוצים הפתוחים? מצאנו שתי תשובות עבור שאלה זו. הראשונה [

 . כמוDrudeהטיפול הינו קלסי במהותו. תוך שימוש בגישת פיזור אנו מוצאים ביטוי עבור מוליכות זו אותה כינינו מוליכות 

 כן נבחין בין סוגים שונים של השפעות סביבתיות וננתח מודל עבור מפזר ספציפי ונדגים כי בניגוד להולכה במערכות

פתוחות במערכות סגורות ההולכה איננה חסומה על ידי מספר הערוצים.

 ] נניח טבעת קוהרנטית במהותה, שבה הנעה גורמת להרחבת רמות חלשה, וכתוצאה2בחלקה השני של העבודה [

 מכך בליעת אנרגיה נוצרת עקב מעברי רמות של חוק הזהב של פרמי. אנו מוצאים כי אם תהליכי רפיה כתוצאה מהסביבה

 הינם מאוד חלשים בהשוואה להנעה, התוצאה תהיה סוג חדש של מוליכות שנכנה אותה מוליכות מזוסקופית. מוליכות זו

 היא חלשה בהרבה בהשוואה לתוצאה הקלסית, הדבר נובע ממאפיינים לא אוניברסליים של מטריצת ההפרעה. מאפיינים אלו

הינם רכיב גנרי במערכות קוונטיות כאוטיות.

 המוליכות מוגדרת דרך חוק ג'אול, כמקדם קצב בליעת האנרגיה. המאפיינים הלא אוניברסליים במטריצת ההפרעה

 יכולים ליצור צוורי בקבוק המקטינים את בליעת האנרגיה. אנו מוצאים את ההולכה באמצעות אנלוגיה עם בעית

 הפרקולציה, אלא שבמקרה זה הפרקולציה הינה במרחב האנרגיה. אנו מבחינים בין המוליכות המזוסקופית הזו לבין

המוליכות הספקטרוסקופית הגדולה ממנה בהרבה שנוצרת כאשר תהלכי הרפייה הינם חזקים.

 בחלק השלישי של העבודה אנו מוודאים את הכלליות של מסקנותינו על ידי ניתוח מודל ריאליסטי שבו הטבעת רבת

הערוצים ממודלת כמוליך גל עם מפזר בצורת חצי מעגל.

 


