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Scope

◮ Consider a particle hopping on a tight-binding chain or ring

in an Ohmic environment.

◮ The particle can hop due to both stochastic and coherent

transitions.

◮ We find a non-monotonic dependence of the current (I) on

the bias (E).

◮ We highlight counter-intuitive enhancement of disorder due

to coherent hopping.

The Model

The dynamics is generated by a master equation for the

probability matrix (Ohmic master equation):

dρ

dt
= Lρ = −i[H , ρ] + L(B)ρ

Coherent transitions – tight-binding Hamiltonian:

H = U(x)− c cos(p) = −Ex̂− c cos(p)

Stochastic transitions – each bond x is coupled to a bath of

intensity ν and temperature T , resulting in a dissipator:

L(B)ρ = −1

2

∑

x

(ν[Wx, [Wx, ρ]] + η i[Wx, {Vx, ρ}]) +O(η2)

Wx = Dx +D
†
x Vx = i[H ,Wx]

Dx ≡ |x+1〉〈x| η = ν/(2T )

Adding bias generates non-symmetric stochastic transitions:

ω±x = ν

(

1 +
Ex
2T

)

ω−

ω+
≈ e−Ex/T (Boltzmann) Ex ≡ − (U(x + 1)− U(x))

Mixed type transitions – There are many other transitions.

For example “cη” terms and “ν” terms that couple off-diagonal

elements to diagonal and off-diagonal elements of ρ.

Vx = iEx
(

D†
x −Dx

)

− i
c

2
[(Dx+1Dx −DxDx−1)− h.c]

Dynamics of the Pauli-type Master Equation

As a “first-order” approximation one can drop the coupling be-

tween the diagonal and off diagonal terms of ρ in the dissipator

L(B) – obtaining a Pauli-like master equation.

L(B,Pauli)ρ = −(ω+ + ω−)ρ +
∑

x

(

ω+D
†
xρDx + ω−DxρD

†
x

)

c = 0: Take ρ(t=0) Gaussian with momentum k0, then ρ(t) at

the Wigner picture is

ρw(R,P, t) = e−γ0t
[

Gc(R,P )−G0(R,P )
]

+ Gt(R,P )

Gc(R,P ) =
2

L
exp

(

−1

2

R2

σ20
− (P − k0)

2σ20

)

Gt(R,P ) =
1√
2π

1
√

σ20 + 2Dt
exp

(

−1

2

(R− vt)2

σ20 + 2Dt

)

With drift and diffusion:

v = (ω+ − ω−) = 2ηE
D = (ω+ + ω−)/2 = ν

c 6= 0: Solving Lρ = −λρ. The relaxation eigenvalues are [2]

λq,0 = γ0 −
√

γ2q − 4c2 sin2 (q/2)

γq = γ + ω+e−iq + ω−eiq

Drift is the same. Diffusion gains another term:

D =
1

2
(ω+ + ω−) +

c2

2γ0
= ν +

(c/2)2

ν + (γ/2)

In this approximation D is independent of E .

Expression for the Current

To express the current, the system is partitioned at the n-th

bond. Define:

Q =
∑

x>n

|x〉〈x|

The current flowing from left to right is I = ˙〈Q〉 = Tr[QLρ]:

I = ~I − ~I + c Im[ρn(1)] +O(η2)

~I = ω+n pn − cηn
2

Re[ρn−1(1)]

~I = ω−n pn+1 −
cηn
2

Re[ρn+1(1)]

ρx(r) ≡ 〈x|ρ|x + r〉

Non-Equilibrium Steady State and Current

The current is obtained by solving the steady state in first

order in η, and applying I [ρ].

ρ(NESS) =
1

L

(

11 + α0e
+ip + α∗0e

−ip
)

α0 =
3ν − iE
3ν2 + E2 ηc

NESS current is non-monotonic:

Ix =
1

L

(

(ω+x − ω−x ) + c Im(α0)
)

=
1

L

[

1 +
c2

6ν2 + 2E2

]

2ηE

0 2 4 6 8 10

E

0.0

0.1

0.2

0.3

0.4

I

Theory c = 5 c = 10 σE = 8 σE = 20

Relaxation Spectrum for the Clean Ring

The Lindblad operator for a uniform field Ex = E is translation

invariant.

Block-diagonal in Fourier: ρq(r) = FT [ρx(r)]
(ρx(r) ≡ 〈x|ρ|x + r〉)

Schematic transitions for a given q (q ≪ 1):

- -

Eigenvalues for q = 0 and η = 0 (Lρ = −λρ):

λq=0,0 = 0 (NESS)

λq=0,± = 2ν ±
√

ν2 − E2
λq=0,s = 2ν + iEs, (s = ±2,±3, ...)

Typical spectrum for η 6= 0:
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η-Correction for the Diffusion

The diffusion in zero order in η satisfies FDT: v = D(E/T ).
What is the η-correction for the diffusion?

Naive treatment – The Drude type term in the expression for

the diffusion is
〈

v2k
〉

τ . For finite T and E = 0:

〈

v2k

〉

=

∫ π

−π
[c sin (k)]2p(k)dk ≈

[

1− 1

8
(βc)2

]

c2

2
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Boltzmann Numerics

Exact treatment – Diffusion is obtained from the eigenvalues:

λq,0 = ivq +Dq2

v =

[

1 +
c2

6ν2 + 2E2

]

2ηE

D =

[

1 +
c2

6ν2 + 2E2

]

ν + (ηc)2D(c̄)

For E = 0:

D = ν +
[

1− 6η2
] c2

6ν
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Disordered Enhanced-Current

Disorder may increase the current for the same total bias.

Adding disorder:

Ex = [−σE , σE ] + E
The non-monotonicity of I(E) explains the enhanced current.

A rough estimate:

I =

[

∑

x

1

v(Ex)

]−1
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Effective Disorder

Increasing the hopping (c), for a given disorder, increases the

effect of disorder on the relaxation spectrum.

Using a three-band model:

Reducing to an effective one-band:

Heff(λ) = H0 +W ′G(λ)W

Resulting in a tight-binding probability-conserving model, with

an added Hermitian disorder:

w±
n = ν + νn ± ηEn

νn =
c2

2

ν − λ

(2ν − λ)2 + E2n − ν2

The spectrum becomes complex when the inverse localization

length (κ) of the corresponding Hermitian matrix is smaller

than ηE :

κ(λ) ≈ 1

4

(σ⊥
ν

)2 λ

ν

Choosing a representative point in the spectrum (λ = 2):

wn ≈ ν
c2

2(ν2 − E2)
(

1 + Bδn + Cδ2n

)

σ2⊥ = Var (wn) ≈
(

c2ν

2(ν2 − E2)

)2
(

C2 σ
2
E + C4 σ

4
E
)

The spectrum becomes real because of the Hermitian

disorder ∼ c2 which is independent of temperature.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Re(λ)

−0.2

−0.1

0.0

0.1

0.2

Im
(λ

)

The classical-relaxation spectrum with disorder. The green-diamond and blue-x

correspond to c=0 and c=2. The red-dot and grey-line are the three-band and

one-band approximations. (L=31, E=2, σE=1.5, ν=1, η=0.01).

Conclusions

1. The NESS current is the sum of stochastic and

quasi-coherent terms.

2. It displays non-monotonic dependence on the bias, due to

crossover from Drude-type to hopping-type transport.

3. Disorder may increase the current due to convex property.

4. The interplay of stochastic and coherent transitions is

reflected in the relaxation spectrum.

5. In the presence of disorder the quasi-coherent transitions

enhance the localization of the relaxation modes.
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