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» Consider a particle hopping on a tight-binding chain or ring
in an Ohmic environment.

» The particle can hop due to both stochastic and coherent
transitions.

» We find a non-monotonic dependence of the current (1) on
the bias (£).

» We highlight counter-intuitive enhancement of disorder due
to coherent hopping.

The Model

The dynamics is generated by a master equation for the
probability matrix (Ohmic master equation):
dp
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Coherent transitions — tight-binding Hamiltonian:
H =U(x) — ccos(p) = —Ex — ccos(p)

Stochastic transitions — each bond z is coupled to a bath of
Intensity v and temperature T, resulting in a dissipator:
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Adding bias generates non-symmetric stochastic transitions:
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Mixed type transitions — There are many other transitions.

For example “cn” terms and “v” terms that couple off-diagonal
elements to diagonal and off-diagonal elements of p.
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Dynamics of the Pauli-type Master Equation

As a “first-order” approximation one can drop the coupling be-
tween the diagonal and off diagonal terms of p in the dissipator
£B) — obtaining a Pauli-like master equation.
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c = 0: Take p(t=0) Gaussian with momentum k), then p(¢) at
the Wigner picture is

pu(R, Pt) = ¢ 0" [G(R,P) = G'(R, P)| + G'(R,P)
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With drift and diffusion:
v=(wT —wT)=2m&
D=(w+w)/2=v

c # 0: Solving Lp = —Ap. The relaxation eigenvalues are [2]
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Drift is the same. Diffusion gains another term:
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In this approximation D is independent of £.

Expression for the Current

To express the current, the system is partitioned at the n-th

bond. Define:

Q = > |x)z

Tr>n

The current flowing from left to rightis I = (Q) = Tr|QLp]:

I = f—?+c|m[pn(1)]+0(772>
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Non-Equilibrium Steady State and Current

Disordered Enhanced-Current

The current is obtained by solving the steady state in first Disorder may increase the current for the same total bias.
order in n, and applying I|p].
Adding disorder:
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ne The non-monotonicity of /(£) explains the enhanced current.
3v2 + £2

A rough estimate:
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& = 6 for the triangles and circle.

Effective Disorder

Increasing the hopping (c), for a given disorder, increases the
effect of disorder on the relaxation spectrum.

Relaxation Spectrum for the Clean Ring

The Lindblad operator for a uniform field £, = £ is translation

invariant.

. . . Using a three-band model:
Block-diagonal in Fourier: p,(r) = FT'|px(r)]

(px(r) = (x|plz + 7))

Schematic transitions for a given ¢ (¢ < 1):
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Reducing to an effective one-band:
Eigenvalues forg=0andn =0 (Lp = —\p):
Ag=00 = 0 (NESS)

N=0,+ = 2V =% \/V2 — &2
N=0.s = 2v+i€s, (s = +2,43,...)
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Resulting in a tight-binding probability-conserving model, with
an added Hermitian disorder:

Typical spectrum for n # 0:
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The spectrum becomes complex when the inverse localization
length () of the corresponding Hermitian matrix is smaller
than né&:
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Choosing a representative point in the spectrum (A = 2):
o s el (1+ Boy + C})
n-Correction for the Diffusion 2(v? — &) Z
2
The diffusion in zero order in n satisfies FDT: v = D(&/T). o4 = Var(w,) ~ ( 20 v : ) (02 o2 + Oy Og)
What is the n-correction for the diffusion? 2(v° — &)

The spectrum becomes real because of the Hermitian

Naive treatment — The Drude type term in the expression for _ S
yP P disorder ~ ¢? which is independent of temperature.

the diffusion is <v]%> r. For finite T and £ = 0:
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Exact treatment — Diffusion is obtained from the eigenvalues: The classical-relaxation spectrum with disorder. The green-diamond and blue-x

correspond to c=0 and c=2. The red-dot and grey-line are the three-band and

_ 2
Ao = wq+Dg one-band approximations. (L=31, £=2, 6¢=1.5, v=1,17=0.01).
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o2 ) 1. The NESS current is the sum of stochastic and

2 .
D = |1+ 62 + 9E2 v+ (ne) D' guasi-coherent terms.
- - 2. It displays non-monotonic dependence on the bias, due to
For & = 0: : crossover from Drude-type to hopping-type transport.
D — 4+ {1 . 6772} c 3. Disorder may increase the current due to convex property.
6 4. The interplay of stochastic and coherent transitions is
000 - reflected in the relaxation spectrum.
5 5. In the presence of disorder the quasi-coherent transitions
'§ 0.975 - enhance the localization of the relaxation modes.
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