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Active networks

Rate equation: ṗ = Wp p(t) = pNESS +
∑
λψλe−λt Wψλ = −λψλ

Two sites

b = bond

Stochastic field Eb = ln
(

w−→
b

w←−
b

)
Boltzmann Eb =

E2 − E1

Tb

Network

Affinity ≡
∮
Edl

All affinities are 0⇔ E conservative⇒ λ are real
(Example: detailed balance)

Active Network: Non-zero affinities⇒ λ might be complex, under-damped
relaxation
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Janus particles

Spherical-like “nano-particles” (100nm - 10µm), coated at each of their
two hemispheres with different materials
Placed in solution - diffusion
Due to asymmetry - can be made to self propel (“active particle”)
Sample mechanism: self-propelled when radiated with light by
thermophoresis [1]
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Janus particle - minimal model

Rate equation - quasi 1D
network

Janus 1D ⇔ |n, s〉
Position: n = 1, 2, ..,N
Polarization: s =↑, ↓

Stochastic field on bond (n, s):
Drift: fn = f̄ + [−σf , σf ]
Conservative Stochastic Disorder
(CSD)
Propulsion: φn = φ̄+ [−σφ, σφ]
Topological Stochastic Disorder
(TSD)

En,↑ = fn + φn

En,↓ = fn − φn

Affinity in unit cell = 2φn

W = σx + Whop −
∑

n,s |n, s〉 γn,s 〈n, s|

Whop =
∑

n,s |n+1, s〉〈n, s| e
En,s

2 + |n, s〉〈n+1, s| e−
En,s

2 γn,s = 1 + eEn,s/2 + e−En−1,s/2
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Clean system

Drift = 0, increasing propulsion (φ̄)

No propulsion (φ̄ = 0):
λk,+ = 2− 2 cos(k) k = 2πn/N
λk,− = 4− 2 cos(k)

Adding propulsion (φ̄)

Bloch (two bands): |k, s〉
W(k) = bσx − iaσz + c1
PT symmetry breaking a(k, φ̄) > b

Spectrum is complex for φ̄ > φc

(φc ≈ 0.96)

Eigenstates become polarized
|k,±〉 =

∑
n eikn

(
|n, ↑〉 ± e±iϕ |n, ↓〉

)

Spectrum: Wψ = −λψ
Increasing propulsion (φ̄)

a =
[

2 sinh
(
φ̄
2

)]
sin(k) c =

[
2 cosh

(
φ̄
2

)]
cos(k)−

[
1 + 2 cosh

(
φ̄
2

)]
λk,± = −[c±

√
b2 − a2 ] b = 1 5 / 9
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Adding disorder - Gallery

Spectrum: Wψ = −λψ
Four parameters
Propulsion: φn = φ̄+ [−σφ, σφ]
Drift: fn = f̄ + [−σf , σf ]
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Participation number: M =
[∑

n,s P2
n,s

]−1
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Adding disorder

Adding disorder ⇒ Localization (∼M−1)
CSD (random fn)⇒ Spectrum is real, localization is uniform (one channel)

TSD (φn is random)⇒ Spectrum is complex, no finite threshold for φn

Localization drop: One Channel→ Two channels

Participation number: M =
[∑

n,s P2
n,s

]−1
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Floor level

Large TSD: The eigenvalues λ stretch along the real axis.

25% of the eigenstates stay within the limits 0 < Re[λ] < 2.

These eigenvalues remain real.

A floor-level band is formed: symmetric “virtual transitions” occur between
the floor sites.

Probability of |n, s〉 to be in the floor-band:

p(En,s = −I)× p(En+1,s = J−) =
1
2
× 1

2
=

1
4
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Discussion

Relaxation modes of a stochastic network can be either over-damped or
under-damped depending on whether their λ-s are real or complex.

Without disorder (φn = φ̄), under-damped relaxation require φ̄ > φc

Random φn - No finite threshold for under-damped relaxation

Random φn very different than random fn (complexity, localization)

Complexity and de-localization do not come together (contrary to
Hatano-Nelson)
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