Localization due to topological stochastic disorder in active networks

Dekel Shapira

Ben-Gurion University

[1] DS, Dganit Meidan and Doron Cohen (Phys. Rev. E 98, 012107)

Active networks

Rate equation: $\dot{\boldsymbol{p}}=\boldsymbol{W} \boldsymbol{p} \quad \boldsymbol{p}(t)=\boldsymbol{p}^{\mathrm{NESS}}+\sum_{\lambda} \boldsymbol{\psi}_{\lambda} e^{-\lambda t} \quad \boldsymbol{W} \boldsymbol{\psi}_{\lambda}=-\lambda \boldsymbol{\psi}_{\lambda}$

Two sites

Stochastic field $\mathcal{E}_{b}=\ln \left(\frac{w_{b}}{w_{\stackrel{\rightharpoonup}{b}}}\right)$
Boltzmann $\quad \mathcal{E}_{b}=\frac{E_{2}-E_{1}}{T_{b}}$

Network

- Affinity $\equiv \oint \varepsilon d l$
- All affinities are $0 \Leftrightarrow \mathcal{E}$ conservative $\Rightarrow \lambda$ are real (Example: detailed balance)

Active Network: Non-zero affinities $\Rightarrow \lambda$ might be complex, under-damped relaxation

Active networks

Rate equation: $\dot{\boldsymbol{p}}=\boldsymbol{W} \boldsymbol{p}$

$$
\boldsymbol{p}(t)=\boldsymbol{p}^{\mathrm{NESS}}+\sum_{\lambda} \boldsymbol{\psi}_{\lambda} e^{-\lambda t} \quad \boldsymbol{W} \boldsymbol{\psi}_{\lambda}=-\lambda \boldsymbol{\psi}_{\lambda}
$$

Two sites

Stochastic field $\mathcal{E}_{b}=\ln \left(\frac{w_{\vec{b}}}{w_{\bar{b}}}\right)$
Boltzmann $\quad \mathcal{E}_{b}=\frac{E_{2}-E_{1}}{T_{b}}$

Network

- Affinity $\equiv \oint \mathcal{E} d l$
- All affinities are $0 \Leftrightarrow \mathcal{E}$ conservative $\Rightarrow \lambda$ are real
(Example: detailed balance)
Active Network: Non-zero affinities $\Rightarrow \lambda$ might be complex, under-damped relaxation

Janus particles

- Spherical-like "nano-particles" ($100 \mathrm{~nm}-10 \mu \mathrm{~m}$), coated at each of their two hemispheres with different materials
- Placed in solution - diffusion
- Due to asymmetry - can be made to self propel ("active particle")
- Sample mechanism: self-propelled when radiated with light by thermophoresis [1]

Jiang, Hong-Ren, Natsuhiko Yoshinaga, and Masaki Sano. "Active motion of a Janus particle by self-thermophoresis in a defocused laser beam." PRL 105.26 (2010): 268302.

Janus particles

- Spherical-like "nano-particles" ($100 \mathrm{~nm}-10 \mu \mathrm{~m}$), coated at each of their two hemispheres with different materials
- Placed in solution - diffusion
- Due to asymmetry - can be made to self propel ("active particle")
- Sample mechanism: self-propelled when radiated with light by thermophoresis [1]

[1] Jiang, Hong-Ren, Natsuhiko Yoshinaga, and Masaki Sano. "Active motion of a Janus particle by self-thermophoresis in a defocused laser beam." PRL 105.26 (2010): 268302.
[3] Ben Yellen, Duke University

Janus particle - minimal model

- Rate equation - quasi 1D network
- Janus 1D $\Leftrightarrow|n, s\rangle$

Position: $n=1,2, . ., N$
Polarization: $s=\uparrow, \downarrow$
Stochastic field on bond (n, s) :
Drift: $f_{n}=\bar{f}+\left[-\sigma_{f}, \sigma_{f}\right]$
Conservative Stochastic Disorder (CSD)

- Propulsion: $\phi_{n}=\bar{\phi}+\left[-\sigma_{\phi}, \sigma_{\phi}\right]$ Topological Stochastic Disorder (TSD)

$\mathcal{E}_{n, \uparrow}=f_{n}+\phi_{n}$
$\mathcal{E}_{n, \downarrow}=f_{n}-\phi_{n}$
Affinity in unit cell $=2 \phi_{n}$

Janus particle - minimal model

- Rate equation - quasi 1D network

- Janus 1D $\Leftrightarrow|n, s\rangle$

Position: $n=1,2, . ., N$
Polarization: $s=\uparrow, \downarrow$
Stochastic field on bond (n, s) :

- Drift: $f_{n}=\bar{f}+\left[-\sigma_{f}, \sigma_{f}\right]$

Conservative Stochastic Disorder (CSD)

- Propulsion: $\phi_{n}=\bar{\phi}+\left[-\sigma_{\phi}, \sigma_{\phi}\right]$ Topological Stochastic Disorder (TSD)

Affinity in unit cell $=2 \phi_{n}$

$$
\begin{aligned}
& \boldsymbol{W}=\boldsymbol{\sigma}_{\boldsymbol{x}}+\boldsymbol{W}_{\text {hop }}-\sum_{n, s}|n, s\rangle \gamma_{n, s}\langle n, s| \\
& \boldsymbol{W}_{\text {hop }}=\sum_{n, s}|n+1, s\rangle\langle n, s| e^{\frac{\mathcal{E}_{n, s}}{2}}+|n, s\rangle\langle n+1, s| e^{-\frac{\mathcal{E}_{n, s}}{2}}
\end{aligned}
$$

$$
\gamma_{n, s}=1+e^{\mathcal{E}_{n, s} / 2}+e^{-\mathcal{E}_{n-1, s} / 2}
$$

Clean system

Drift $=0$, increasing propulsion $(\bar{\phi})$

- No propulsion $(\bar{\phi}=0)$:

$$
\begin{aligned}
& \lambda_{k,+}=2-2 \cos (k) \quad k=2 \pi n / N \\
& \lambda_{k,-}=4-2 \cos (k)
\end{aligned}
$$

- Spectrum: $\boldsymbol{W} \boldsymbol{\psi}=-\lambda \boldsymbol{\psi}$
- Increasing propulsion ($\bar{\phi}$)

$a=\left[2 \sinh \left(\frac{\bar{\phi}}{2}\right)\right] \sin (k) \quad c=\left[2 \cosh \left(\frac{\bar{\phi}}{2}\right)\right] \cos (k)-\left[1+2 \cosh \left(\frac{\bar{\phi}}{2}\right)\right]$
$\lambda_{k, \pm}=-\left[c \pm \sqrt{b^{2}-a^{2}}\right] \quad b=1$

Clean system

Drift $=0$, increasing propulsion $(\bar{\phi})$

- No propulsion $(\bar{\phi}=0)$:

$$
\begin{aligned}
& \lambda_{k,+}=2-2 \cos (k) \quad k=2 \pi n / N \\
& \lambda_{k,-}=4-2 \cos (k)
\end{aligned}
$$

Adding propulsion $(\bar{\phi})$

- Bloch (two bands): $|k, s\rangle$
$\boldsymbol{W}^{(k)}=b \boldsymbol{\sigma}_{x}-i a \sigma_{z}+c \mathbf{1}$
- PT symmetry breaking $a(k, \bar{\phi})>b$
- Spectrum is complex for $\bar{\phi}>\phi_{c}$ ($\phi_{c} \approx 0.96$)
- Eigenstates become polarized

$$
|k, \pm\rangle=\sum_{n} e^{i k n}\left(|n, \uparrow\rangle \pm e^{ \pm i \varphi}|n, \downarrow\rangle\right)
$$

- Spectrum: $\boldsymbol{W} \boldsymbol{\psi}=-\lambda \boldsymbol{\psi}$
- Increasing propulsion $(\bar{\phi})$

$a=\left[2 \sinh \left(\frac{\bar{\phi}}{2}\right)\right] \sin (k) \quad c=\left[2 \cosh \left(\frac{\bar{\phi}}{2}\right)\right] \cos (k)-\left[1+2 \cosh \left(\frac{\bar{\phi}}{2}\right)\right]$
$\lambda_{k, \pm}=-\left[c \pm \sqrt{b^{2}-a^{2}}\right] \quad b=1$

Adding disorder - Gallery

- Spectrum: $\boldsymbol{W} \boldsymbol{\psi}=-\lambda \boldsymbol{\psi}$
- Four parameters

Propulsion: $\phi_{n}=\bar{\phi}+\left[-\sigma_{\phi}, \sigma_{\phi}\right]$
Drift: $\quad f_{n}=\bar{f}+\left[-\sigma_{f}, \sigma_{f}\right]$

Participation number: $M=\left[\sum_{n, s} P_{n, s}^{2}\right]^{-1}$

Adding disorder

|ロロ|

Adding disorder \Rightarrow Localization $\left(\sim M^{-1}\right)$

- $\operatorname{CSD}\left(\operatorname{random} f_{n}\right) \Rightarrow$ Spectrum is real, localization is uniform (one channel)

- $\operatorname{TSD}\left(\phi_{n}\right.$ is random $) \Rightarrow$ Spectrum is complex, no finite threshold for ϕ_{n}
- Localization drop: One Channel \rightarrow Two channels

Participation number: $M=\left[\sum_{n, s} P_{n, s}^{2}\right]^{-1}$

Adding disorder

+

Adding disorder \Rightarrow Localization $\left(\sim M^{-1}\right)$

- $\operatorname{CSD}\left(\operatorname{random} f_{n}\right) \Rightarrow$ Spectrum is real, localization is uniform (one channel)

- TSD (ϕ_{n} is random) \Rightarrow Spectrum is complex, no finite threshold for ϕ_{n}
- Localization drop: One Channel \rightarrow Two channels

Participation number: $M=\left[\sum_{n, s} P_{n, s}^{2}\right]^{-1}$

Floor level

Large TSD: The eigenvalues λ stretch along the real axis.

- 25% of the eigenstates stay within the limits $0<\operatorname{Re}[\lambda]<2$.
- These eigenvalues remain real.

A floor-level band is formed: symmetric "virtual transitions" occur between the floor sites.

Probability of $|n, s\rangle$ to be in the floor-band:

Q - Probability to be in the floor-band

Floor level

Large TSD: The eigenvalues λ stretch along the real axis.

- 25% of the eigenstates stay within the limits $0<\operatorname{Re}[\lambda]<2$.
- These eigenvalues remain real.

A floor-level band is formed: symmetric "virtual transitions" occur between the floor sites.

Probability of $|n, s\rangle$ to be in the floor-band:
$p\left(\mathcal{E}_{n, s}=\rightarrow\right) \times p\left(\mathcal{E}_{n+1, s}=\longleftarrow\right)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$

Q - Probability to be in the floor-band

Discussion

- Relaxation modes of a stochastic network can be either over-damped or under-damped depending on whether their λ-s are real or complex.
- Without disorder ($\phi_{n}=\bar{\phi}$), under-damped relaxation require $\bar{\phi}>\phi_{c}$
- Random ϕ_{n} - No finite threshold for under-damped relaxation
- Random ϕ_{n} very different than random f_{n} (complexity, localization)
- Complexity and de-localization do not come together (contrary to Hatano-Nelson)
[1] DS, Dganit Meidan and Doron Cohen (Phys. Rev. E 98, 012107)

