Localization due to topological stochastic disorder in active networks

[1] DS, Dganit Meidan and Doron Cohen (Phys. Rev. E 98, 012107)

Active networks

• Affinity $\equiv \oint \mathcal{E} dl$

 All affinities are 0 ⇔ *E* conservative ⇒ λ are real (Example: detailed balance)

Active Network: Non-zero affinities $\Rightarrow \lambda$ might be complex, under-damped relaxation

Active networks

- Affinity $\equiv \oint \mathcal{E} dl$
- All affinities are 0 ⇔ *E* conservative ⇒ λ are real (Example: detailed balance)

Active Network: Non-zero affinities $\Rightarrow \lambda$ might be complex, under-damped relaxation

Janus particles

- Spherical-like "nano-particles" ($100nm 10\mu m$), coated at each of their two hemispheres with different materials
- Placed in solution diffusion
- Due to asymmetry can be made to self propel ("active particle")
- Sample mechanism: self-propelled when radiated with light by thermophoresis [1]

- Jiang, Hong-Ren, Natsuhiko Yoshinaga, and Masaki Sano. "Active motion of a Janus particle by self-thermophoresis in a defocused laser beam." PRL 105.26 (2010): 268302.
- [3] Ben Yellen, Duke University

Janus particles

- Spherical-like "nano-particles" ($100nm 10\mu m$), coated at each of their two hemispheres with different materials
- Placed in solution diffusion
- Due to asymmetry can be made to self propel ("active particle")
- Sample mechanism: self-propelled when radiated with light by thermophoresis [1]

- Jiang, Hong-Ren, Natsuhiko Yoshinaga, and Masaki Sano. "Active motion of a Janus particle by self-thermophoresis in a defocused laser beam." PRL 105.26 (2010): 268302.
- [3] Ben Yellen, Duke University

Janus particle - minimal model

- Rate equation quasi 1D network
- Janus 1D \Leftrightarrow $|n, s\rangle$ Position: n = 1, 2, ..., NPolarization: $s = \uparrow, \downarrow$

Stochastic field on bond (n, s):

- Drift: $f_n = \overline{f} + [-\sigma_f, \sigma_f]$ Conservative Stochastic Disorder (CSD)
- Propulsion: $\phi_n = \bar{\phi} + [-\sigma_{\phi}, \sigma_{\phi}]$ Topological Stochastic Disorder (TSD)

 $\begin{aligned} \mathcal{E}_{n,\uparrow} &= f_n + \phi_n \\ \mathcal{E}_{n,\downarrow} &= f_n - \phi_n \end{aligned}$

Affinity in unit cell = $2\phi_n$

$$\begin{split} W &= \sigma_x + W_{\mathrm{hop}} - \sum_{n,s} |n,s\rangle \; \gamma_{n,s} \left\langle n,s \right| \\ W_{\mathrm{hop}} &= \sum_{n,s} |n+1,s\rangle \left\langle n,s \right| e^{\frac{\mathcal{E}_{n,s}}{2}} + |n,s\rangle \left\langle n+1,s \right| e^{-\frac{\mathcal{E}_{n,s}}{2}} \end{split}$$

$$\gamma_{n,s} = 1 + e^{\mathcal{E}_{n,s}/2} + e^{-\mathcal{E}_{n-1,s}/2}$$
4/9

Janus particle - minimal model

- Rate equation quasi 1D network
- Janus 1D \Leftrightarrow $|n, s\rangle$ Position: n = 1, 2, ..., NPolarization: $s = \uparrow, \downarrow$

Stochastic field on bond (n, s):

- Drift: $f_n = \overline{f} + [-\sigma_f, \sigma_f]$ Conservative Stochastic Disorder (CSD)
- Propulsion: $\phi_n = \bar{\phi} + [-\sigma_{\phi}, \sigma_{\phi}]$ Topological Stochastic Disorder (TSD)

$$\begin{split} \mathbf{W} &= \mathbf{\sigma}_{\mathbf{x}} + \mathbf{W}_{\text{hop}} - \sum_{n,s} |n,s\rangle \, \gamma_{n,s} \, \langle n,s| \\ \mathbf{W}_{\text{hop}} &= \sum_{n,s} |n+1,s\rangle \, \langle n,s| \, e^{\frac{\mathcal{E}_{n,s}}{2}} + |n,s\rangle \, \langle n+1,s| \, e^{-\frac{\mathcal{E}_{n,s}}{2}} \end{split}$$

 $\begin{aligned} \mathcal{E}_{n,\uparrow} &= f_n + \phi_n \\ \mathcal{E}_{n,\downarrow} &= f_n - \phi_n \end{aligned}$

Affinity in unit cell = $2\phi_n$

$$\gamma_{n,s} = 1 + e^{\mathcal{E}_{n,s}/2} + e^{-\mathcal{E}_{n-1,s}/2}$$
4/9

Clean system

Drift = 0, increasing propulsion $(\bar{\phi})$

• No propulsion $(\bar{\phi} = 0)$: $\lambda_{k,+} = 2 - 2\cos(k)$ $k = 2\pi n/N$ $\lambda_{k,-} = 4 - 2\cos(k)$

Adding propulsion $(\bar{\phi})$

- Bloch (two bands): $|k, s\rangle$ $W^{(k)} = b\sigma_x - ia\sigma_z + c\mathbf{1}$
- PT symmetry breaking $a(k, \bar{\phi}) > b$
- Spectrum is complex for $\bar{\phi} > \phi_c$ ($\phi_c \approx 0.96$)
- Eigenstates become polarized $|k,\pm\rangle = \sum_{n} e^{ikn} (|n,\uparrow\rangle \pm e^{\pm i\varphi} |n,\downarrow\rangle)$

$$a = \left[2\sinh\left(\frac{\bar{\phi}}{2}\right)\right]\sin(k) \qquad c = \left[2\cosh\left(\frac{\bar{\phi}}{2}\right)\right]\cos(k) - \left[1 + 2\cosh\left(\frac{\bar{\phi}}{2}\right)\right]$$
$$\lambda_{k,\pm} = -\left[c \pm \sqrt{b^2 - a^2}\right] \quad b = 1$$

- Spectrum: $W\psi = -\lambda\psi$
- Increasing propulsion $(\bar{\phi})$

Clean system

- Drift = 0, increasing propulsion $(\bar{\phi})$
- No propulsion ($\overline{\phi} = 0$): $\lambda_{k,+} = 2 - 2\cos(k)$ $k = 2\pi n/N$ $\lambda_{k,-} = 4 - 2\cos(k)$
- Adding propulsion $(\bar{\phi})$
- Bloch (two bands): $|k, s\rangle$ $W^{(k)} = b\sigma_x - ia\sigma_z + c\mathbf{1}$
- PT symmetry breaking $a(k, \bar{\phi}) > b$
- Spectrum is complex for $\bar{\phi} > \phi_c$ ($\phi_c \approx 0.96$)
- Eigenstates become polarized $|k,\pm\rangle = \sum_{n} e^{ikn} (|n,\uparrow\rangle \pm e^{\pm i\varphi} |n,\downarrow\rangle)$

$$a = \left[2\sinh\left(\frac{\bar{\phi}}{2}\right)\right]\sin(k) \qquad c = \left[2\cosh\left(\frac{\bar{\phi}}{2}\right)\right]\cos(k) - \left[1 + 2\cosh\left(\frac{\bar{\phi}}{2}\right)\right]\\\lambda_{k,\pm} = -\left[c \pm \sqrt{b^2 - a^2}\right] \quad b = 1$$

- Spectrum: $W\psi = -\lambda\psi$
- Increasing propulsion $(\bar{\phi})$

Adding disorder - Gallery

Participation number: $M = \left[\sum_{n,s} P_{n,s}^2\right]^{-1}$

Adding disorder

Adding disorder \Rightarrow Localization ($\sim M^{-1}$)

• CSD (random f_n) \Rightarrow Spectrum is real, localization is uniform (one channel)

TSD (φ_n is random) ⇒ Spectrum is complex, no finite threshold for φ_n
 Localization drop: One Channel → Two channels

Participation number:
$$M = \left[\sum_{n,s} P_{n,s}^2\right]^{-1}$$

Adding disorder

Adding disorder \Rightarrow Localization ($\sim M^{-1}$)

• CSD (random f_n) \Rightarrow Spectrum is real, localization is uniform (one channel)

- TSD (ϕ_n is random) \Rightarrow Spectrum is complex, no finite threshold for ϕ_n
- Localization drop: One Channel → Two channels

Participation number:
$$M = \left[\sum_{n,s} P_{n,s}^2\right]^{-1}$$

Floor level

Large TSD: The eigenvalues λ stretch along the real axis.

- 25% of the eigenstates stay within the limits $0 < \text{Re}[\lambda] < 2$.
- These eigenvalues remain real.

A floor-level band is formed: symmetric "virtual transitions" occur between the floor sites.

Floor level

Large TSD: The eigenvalues λ stretch along the real axis.

- 25% of the eigenstates stay within the limits $0 < \text{Re}[\lambda] < 2$.
- These eigenvalues remain real.

A floor-level band is formed: symmetric "virtual transitions" occur between the floor sites.

Probability of $|n, s\rangle$ to be in the floor-band:

$$p(\mathcal{E}_{n,s} = \bullet) \times p(\mathcal{E}_{n+1,s} = \bullet) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

$$\circ 0.5 = 0.0 = 0.5$$

$$Q - Probability to be in the floor-band$$

Discussion

- Relaxation modes of a stochastic network can be either over-damped or under-damped depending on whether their λ-s are real or complex.
- Without disorder ($\phi_n = \bar{\phi}$), under-damped relaxation require $\bar{\phi} > \phi_c$
- Random ϕ_n No finite threshold for under-damped relaxation
- Random ϕ_n very different than random f_n (complexity, localization)
- Complexity and de-localization do not come together (contrary to Hatano-Nelson)

[1] DS, Dganit Meidan and Doron Cohen (Phys. Rev. E 98, 012107)