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Dephasing due to the interaction with chaotic degrees of freedom

Doron Cohen
Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel
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We consider the motion of a particle, taking into account its interaction with environmental degrees of
freedom. The dephasing time is determined by the nature of the environment and depends on the particle
velocity. Our interest is in the case where the environment consists of few chaotic degrees of freedom. We
obtain results for the dephasing time and compare them with those of the effective-bath approach. The latter
approach is based on the conjecture that the environment can be modeled as a collection of infinitely many
harmonic oscillators. The work is related to studies of driven systems, quantum irreversibility, and fidelity. The
specific model that we consider requires the solution of the problem of a particle in a box with a moving wall,
whose one-dimensional version is related to the Fermi acceleration problem.

DOI: 10.1103/PhysRevE.65.026218 PACS number~s!: 05.45.Mt, 03.65.Yz, 05.40.Jc
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I. INTRODUCTION

Determining the dephasing~decoherence! time tw for a
particle ~x,p! that interacts with an environmental degree
freedom~Q,P! is a central theme in quantum physics. In t
absence of such interaction thex motion is coherent, and
interference should be taken into account. This means, f
a semiclassical point of view, that at least two trajector
x(t)5xA(t) andx(t)5xB(t) have a leading contribution to
the probability to travel, say, fromx(0) to x(t), as in the
prototype example of the two-slit experiment.

The purpose of this paper is to discuss the case where
particle interacts with few chaotic degrees of freedom. To
more specific we consider a box/piston model that is defi
in Sec. II below. It is already known that in the classic
descriptions such interaction leads to dissipation, and
motion of the particle is described by the standard Lange
equation@1#. Our aim is to explore the quantum-mechanic
consequences of this interaction and, in particular, to de
mine the dephasing time.

A related aim of this paper is to test the effective-ba
conjecture, namely, that any type of environment can
modeled as a large collection of harmonic oscillators. T
conjecture is implied by leading order perturbation theo
@2#. We shall explain how this conjecture can be applied
practice, in order to rederive our results for the dephas
time.

Some readers may wonder whether dephasing is not
the entanglement of the particle with some other degree
freedom. In such a case, even a one-spin environment
provide dephasing~decoherence!. However, we would like to
adopt a more restrictive definition of dephasing, which
volves the notion of irreversibility~see the Appendix!.

At first sight it seems that for having irreversibility on
needs ‘‘infinity.’’ This point of view is emphasized in Re
@3#: Irreversibility can be achieved by having an infinity
the bath~infinitely many oscillators! or of space~a lead that
extends up to infinity!. The present paper is based on t
observation that also chaos provides irreversibility. We
not need infinity in order to have irreversibility. This conce
tual point is further clarified in the Appendix.

The present work is strongly related to so-called stud
1063-651X/2002/65~2!/026218~7!/$20.00 65 0262
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of quantum irreversibility@4# and fidelity @5#, and hence to
studies of wave packet dynamics@6#, decay of the survival
amplitude, and the parametric theory of the local density
states@7–9#. We explain this point in Sec. VII. We would
like to emphasize that all these studies share a common
ceptual framework. The common idea@10# is that we have to
distinguish between perturbative and nonperturbative
gimes, and that the semiclassical~sub! regime is contained
within the nonperturbative regime.

The study of the box/piston model reduces to the analy
of the problem of a driven particle. Namely, the problem o
particle in a box with a moving wall. This is possibly th
simplest example for illustrating the idea of having differe
dynamical regimes. The velocity of the wall isV. We shall
explain that in the one-dimensional~1D! box problem~also
known as the problem of infinite well with moving wa
@11,12#!, there are two quantum-mechanicalV regimes: An
adiabaticV regime, and a nonperturbative semiclassicalV
regime. In the general box/piston problem there are th
regimes: The additionalV regime is a perturbative regime
where we can apply the Fermi golden rule in order to d
scribe the stochastic energy spreading.

II. INTERACTION WITH CHAOS

One can imagine, in principle, a ‘‘zoo’’ of models tha
describe interaction of a particle with the environment. Ho
ever, following Caldeira and Leggett@13#, the guiding phi-
losophy is to construct ‘‘ohmic models’’ that give Brownia
motion ~described by the standard Langevin equation! in the
classical limit. Three families of models are of particul
interest: interaction with chaos, interaction with harmon
bath, interaction with random matrix bath.

The second type of modeling leads to the introduction
the diffusion-localization-dissipation~DLD! model@14#. The
familiar Zwanzig-Caldeira-Leggett~ZCL! model@13# can be
regarded as a special limit of the DLD model. The physics
the ZCL and DLD models is illustrated in Figs. 1~a! and 1~b!,
respectively. The ZCL model describes a motion under
influence of a fluctuation homogeneous field of force. In t
case of the DLD model the fluctuation field is further cha
acterized by a finite correlation distance. We shall come b
©2002 The American Physical Society18-1



that
e
s

the
is
e

in
f

be
s-

sive

gy
he

to
ue

the
-
,
re

n

e

tem
In

pe-
em
on-

i-
e.

the

es

re
e

he
tia

DORON COHEN PHYSICAL REVIEW E 65 026218
FIG. 1. ~a! The Brownian particle in the ZCL model experienc
a fluctuating homogeneous field of force.~b! In case of the DLD
model the fluctuating field is further characterized by a finite cor
lation distance.~c! The Brownian motion is induced due to th
interaction with chaotic degrees of freedom.x(t) is the ~classical!
position of the Brownian particle. In~a! and ~b!, The background
image is a ‘‘snapshot’’ of the fluctuating environment. Namely, t
gray levels correspond to the ‘‘height’’ of an instantaneous poten
experienced by the Brownian particle.
02621
to these models in Sec. X. For completeness we note
random-matrix modeling of the environment, in the regim
where it has been solved@18#, leads to the same results a
those obtained for the DLD model.

In this paper we are going to consider the case where
particlex interacts with few chaotic degrees of freedom. It
well known thatclassicallysuch an interaction has the sam
effect as that of coupling to an ohmic bath@1#. Quantum
mechanically much less is known@19#.

We shall analyze the prototype toy model illustrated
Fig. 1~c!. The dynamical variablex represents the position o
a large~‘‘Brownian’’ ! particle. The motion of this particle is
affected by collisions with a small ‘‘gas’’ particle. ThusQ is
the position of the gas particle andP is the conjugate mo-
mentum. The motion of the gas particle is assumed to
chaotic and its collisions with the Brownian particle are a
sumed to be elastic. The typical time between succes
collisions will be denoted byt05L/vE , where vE is the
typical velocity of the gas particle. The typical kinetic ener
of the gas particleE5 1

2 mvE
2 has the same significance as t

temperatureT in the ZCL/DLD models.~For sake of exact
comparison we should assume thatE has a canonical distri-
bution, but for the purpose of this presentation we prefer
assume that it has some well-defined microcanonical val!.

III. DYNAMICAL REGIMES

The results of the forthcoming analysis depend on
typical velocityV5uẋu of the Brownian particle. A fixed as
sumption of this paper is thatV is slow in a classical sense
meaningV!vE . In the quantum-mechanical analysis we a
going to distinguish the following quantalV regimes:

adiabatic regime V!S lE
d21

A D 3/2 \

mL
, ~1!

nonperturbative regime V@
\

mL
, ~2!

whered is the dimensionality of the box andA is the effec-
tive area of the (d21) dimensional surface of the Brownia
particle. The de Broglie wavelengthlE of the gas particle is
defined as in Eq.~12!. Ford.1 the above twoV regimes are
well separated, and we have a third ‘‘perturbative’’ regim
whereV is small @!\/(mL)# but nonadiabatic.

The naive semiclassical expectation, regarding the sys
of Fig. 1~c! is to have a loss of coherence upon collision.
other words, we expect to have

tw5t0 . ~3!

We want to go beyond this naive expectation; to obtain s
cific results for the dephasing time; and to compare th
with the prediction that is based on the effective-bath c
jecture.

Specifically, we are going to claim that the naive sem
classical result is valid only in the nonperturbative regim
Otherwise, in the perturbative regime, we get that
dephasing time is much larger,

-

l
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tw'S LlE
2

vEV2D 1/3

. ~4!

Finally, in the adiabatic regime, to the degree that adia
ticity is maintained, there is no dephasing at all. However
practice one should take mainly Landau-Zener transiti
into account@15# ~see also Sec. 20 of@16#!. This leads to a
finite dephasing timetw}(1/V)11(b/2), where the value ofb
depends on the level spacing statistics.

IV. DEFINITION OF THE DEPHASING FACTOR

The Hamiltonian of the system and environment can
written as

Htotal~x,p,Q,P!5H0~x,p!1H~Q,P;x!. ~5!

Using this Hamiltonian we should be able to calculate,
principle, any transport property. To test whether ‘‘interfe
ence’’ is present we should be able to control this interf
ence. For example, in a two-slit geometry we control
relative position of the detector, while in the Aharono
Bohm ring geometry~see the Appendix! we control the mag-
netic flux via the ring.

A more restricted definition of dephasing can be obtain
within the framework of the Feynman-Vernon formalism@2#.
After elimination of the bath degrees of freedom, one en
up with adoublepath integral for the transport. This expre
sion is not very illuminating unless thex motion can be
treated semiclassically@17#. In such a case it becomes
double sum over ‘‘classical’’ trajectories, and we can int
pret the ‘‘off diagonal’’ terms as responsible for the interfe
ence effect. Due to the elimination of the bath degrees
freedom, each interference term is multiplied by a factor t
is known as the ‘‘influence functional.’’ The absolute valu
of the influence functional is defined as the ‘‘dephasing f
tor.’’

The influence functional is traditionally calculated for lin
ear coupling to harmonics oscillators, assuming that they
initially prepared in a canonical thermal state. However,
would like to consider the case of interaction with chao
degrees of freedom, and we would like to assume that
‘‘environment’’ is initially prepared in a pure stateC0 . Thus
the ‘‘bath’’ is characterized by its microcanonical energyE
rather by its temperatureT. ~Obviously one can obtain th
thermal case by canonical averaging overE.!

In order to calculate the influence functional, one cons
ers the evolution that is generated by the time-depend
Hamiltonian

H5H„Q,P;x~t!… ~6!

for the particular~interfering! trajectoriesx(t)5xA(t) and
x(t)5xB(t) that connectx(0) andx(t). The initial prepa-
ration of the environment is represented by a wave func
C0 , while the final state is eitherC(t)5CA or C(t)
5CB . The overlap of the two possibilities is known as t
influence functional

c~ t !5F@xA ,xB#5^CBuCA&. ~7!
02621
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The dephasing factor is defined as the absolute value of
influence functional.

We have introduced above the alternate notationc(t) in
order to emphasizes the time dependence of the wave f
tion overlap. In order to makec(t) a well-defined quantity,
one should predefine the statistical properties of the inter
ing trajectories as a function oft. See@20# for mathematical
details. For the purpose of the present paper one can ass
that typical interfering trajectories are ballistic and charact
ized by their velocityV, and by their~maximal! separation
A;Vt. This motion scheme provides ‘‘maximal dephasing
For other schemes of motion the maximal separation sc
differently. For example, for two-slit geometryA is the sepa-
ration between the slits. For diffusive trajectoriesA}At.
Note, however, that a full statistical specification is needed
each case@20#.

V. REMARK: INTERPRETATION OF THE DEPHASING
FACTOR

From the definition of the influence functional it is cle
that it reflects the probability to ‘‘leave a trace’’ in the env
ronment. In case of the DLD model~see Sec. X! this trace
can be further interpreted as leaving an excitation along
way. For a critical discussion of this point see Appendix C
@20#. In the more general case the notion of leaving a trac
somewhat ambiguous. All we can say is that decohere
means that the environment is left in different~orthogonal!
states depending on the trajectory that is taken by the
ticle.

The law of action and reaction holds also in the world
decoherence studies. Feynman and Vernon have realized
the dephasing factor can be reinterpreted as representin
effect of ac-number noise source. From this point of vie
the decoherence is due to the ‘‘scrambling’’ of the relati
phase by this noise. Hence the reason for using the t
‘‘dephasing’’ as a synonym for ‘‘decoherence.’’

The advantage of the latter point of view is that it can gi
further insight regarding the physics of our results. Name
we shall see in Sec. XI that Eqs.~3! and ~4! have effective
DLD-model and ZCL-model interpretations, respective
From the particle’s dynamics point of view this correspon
to ‘‘scattering mechanism’’ and to ‘‘spreading mechanism
as discussed in@20#.

VI. DETERMINATION OF THE DEPHASING TIME

Within the semiclassical framework, the problem
dephasing reduces to the more restricted problem of stud
the dynamics of a time-dependent Hamiltonian@Eq. ~6!#.

By definition, in order to have coherence (uc(t)u;1), the
wave functionC(t) should contain a component that is in
dependent of the particular way in whichx(t) evolves from
the initial x(0) to the finalx(t). Loss of coherence mean
uc(t)u!1, which can be written ast,tw . This constitutes a
practical definition of the dephasing timetw .

It should be clear that the toy system of Fig. 1~c! is com-
pletely equivalent to the toy system that is illustrated in F
2. Namely, what we have to analyze is the evolution tha
8-3



ne
e

II
id
th
t
r

g
il-
f

ty
th

-
-
e

e
e
e

d

r-

r-

the

-
is
is
of

-
-

od
n-
of

he

el
is
of

f

he
s
ge
is

ni-
his

i
-

the

an
is

d

al

can

.

-

DORON COHEN PHYSICAL REVIEW E 65 026218
generated byH„Q,P;x(t)…, wherex controls the deforma-
tion of the boundary. In particular, we should determi
whetherC(t) possesses a trajectory-independent compon
that is determined only by the endpointsx(0) andx(t).

The rest of this paper is organized as follows. In Sec. V
we illuminate the key ingredients in the analysis by cons
ering a one-dimensional example. In Sec. IX we outline
derivation of Eqs.~3! and~4! using the core-tail picture tha
has been developed in@16#, and that is supported by ou
recent numerical studies@8,9,21#. In Sec. XI, we compare the
results to those of the effective-bath approach.

VII. DIGRESSION: RELATION TO FIDELITY
AND LDOS STUDIES

The definition ofc(t) can be rewritten formally as

c~ t !5^C0uU@xB~t!#21U@xA~t!#uC0&, ~8!

where U@x(t)# is the evolution operator due to a drivin
‘‘pulse’’ x(t). Thusc(t) can be reinterpreted as the probab
ity amplitude to come back to the initial state at the end o
‘‘driving cycle.’’ This quantity, which quantifies the ‘‘fidel-
ity’’ of the driving cycle, has been suggested by Ref.@4# to
be a measure for quantum irreversibility.

To be more precise, the original definition of the fideli
in Ref. @4# assumes rectangular ‘‘pulses.’’ This means, wi
out loss of generality, thatxA(t)50 and xB(0,t,t)5A
5const. Thus the time variation ofc(t) depends on the am
plitude A of the ‘‘perturbation.’’ Further simplification is ob
tained if C0 is assumed to be an eigenstate of the unp
turbed HamiltonianH05H(Q,P;0). In such a casec(t) is
known as the survival amplitude and we get

uc~ t !u25U K C0UexpS 2
i

\
Ht D UC0L U2

, ~9!

where H5H(Q,P;A) is the perturbed Hamiltonian. Th
study of the survival probability is also known as ‘‘wav
packet dynamics.’’ Note that the survival probability is th
Fourier transform of the local density of states~LDOS!.
Hence the study of wave packet dynamics can be reduce
LDOS study. For an introduction to this subject see@6#.

The fidelity in general and the survival amplitude in pa
ticular, have similar physics@28#. In Ref. @4# it is explained

FIG. 2. A ‘‘gas’’ particle in a box is driven by moving the wall
This is essentially the same as Fig. 1~c!, but now the moving wall is
not regarded as a dynamical entity.~a! illustrates the case of one
dimensional box, while~b! is for chaoticbox. ~Hence, in the latter
case, the box should be at least two dimensional.!
02621
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that if A is small ~in the sense of standard first-order pertu
bation theory!, then the decay ofc(t) has a Gaussian time
dependence due to a statistical effect. For largerA we get
exponential time dependence as in Wigner theory. On
other hand in semiclassical circumstances@6# the decay may
becomeperturbation independent. ~This idea was general
ized in Ref. @5#!. In such a case the rate of the decay
determined by the stability of the classical motion, and
characterized by the Lyapunov exponent. A unified picture
the crossover from the perturbativeA regime to the semiclas
sical A regime has been presented in@7#, and has been gen
eralized in@29#. See also@28#.

Does the study of ‘‘rectangular pulses’’ constitute a go
bridge for developing a general theory for fidelity? The a
swer is definitely not. An essential ingredient in the theory
driven systems is the rateV in which the parameterx is being
changed in time. Thus, rather than talking aboutA regimes,
we should talk aboutV regimes, as in the present paper. T
general theory becomes more complicated@10,19,16#, but
the physical picture is similar in spirit. The box/piston mod
that we are going to analyze in the following sections
possibly the simplest demonstration for the applicability
the ideas that were presented in@10,19,16#. More generally
we should talk about (V,A) regimes, as in the theory o
periodically driven mesoscopic systems@22#. The latter issue
is beyond the scope of the present paper.

VIII. ANALYSIS OF THE 1D BOX PROBLEM

Consider the one-dimensional system of Fig. 2~a!. The
classical analysis of the dynamics is trivial. Each time t
gas particle collides with the moving wall it lose
energy: Upon collision its velocity undergoes a chan
v°2v12V and therefore the change in energy
dEcol522mvV.

Now we want to analyze the dynamics quantum mecha
cally. This turns out to be less trivial. Past studies of t
model @11,12#, which are related to the interest in the Ferm
accelerator problem@23#, were focused on the issue of find
ing stationary solutions. To the best of our knowledge,
time-dependent picture has not been explored.

Let un(x)& denote the eigenstates of the box Hamiltoni
H(Q,P;x). The expansion of the wave function in th
x-dependent basis isC(t)5(nan(t)un„x(t)…&. The expan-
sion coefficientsan(t) are the probability amplitudes to fin
the particle in the energy leveln after time t. One easily
obtains the equation

dan

dt
52

i

\
Enan2

V

L (
m~Þn!

2nm

n22m2 am . ~10!

Let us assume that the initial preparation isan(0)5dnm . The
mean level spacing for the 1D box isD5p\vE /L. If
dEcol!D one finds out, by inspection of Eq.~10!, that the
dynamics is adiabatic, meaning thatan(t);dnm . On the
other hand, ifdEcol@D, one expects to find a semiclassic
transitionE°E1dEcol .

How can we explain theE°E1dEcol transition from the
quantum-mechanical point of view? For this purpose we
8-4
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adopt the core-tail picture of Ref.@16#. The core-tail picture
is a generalization of the Fermi-golden-rule picture: T
‘‘core’’ consists of the levels that are mixed nonperturb
tively; the ‘‘tail’’ is formed by first-order transitions from the
core.

The analysis is carried out in two steps. The first step is
analyze theparametric evolutionthat is associated with Eq
~10!. This means to solve Eq.~10! without the first term in
the right-hand side~RHS! ~This is the so-called sudde
limit.! Obviously the resultantãn(t) is a function of dx
5Vt, while V by itself makes no difference. The solutio
depends only on the end pointsx(0) andx(t). The second
step is to analyze the actual time evolution. This means
take into account the effect of the first term in the RHS
Eq. ~10!, and to understand how the resultantan(t) differs
from ãn(t).

By careful inspection of Eq.~10! one observes that a leve
is mixed with the next level whenever the wall is displac
an additional distancelE/2. This effect can be regarded a
‘‘parametric.’’ Further inspection reveals that this nonpert
bative ~parametric! effect modulates the core-to-tail trans
tion amplitude~see remark@24#!. The modulation frequency
is v5232p/(lE /V). This frequency drives a core-to-ta
resonance transitionudEu5\v, in agreement with the semi
classical expectation.

IX. ANALYSIS OF THE GENERAL BOX PROBLEM

The strength of the core-tail picture is that it can be us
to analyze the more general case, which is illustrated in
2~b!. We assume that the motion of the particle inside
box is chaotic in the classical limit. The quantum-mechani
analysis follows the same steps as in the 1D problem,
requires the use of results that we have obtained in prev
publications~mainly @9#!. In order to keep the presentatio
illuminating, and trying to avoid duplications, we shall ju
sketch the derivation.

On the basis of the analysis of Ref.@9# we recall that there
are two relevant parametric scales,

dxc
qm'S lE

d21

A D 1/2

3lE , ~11!

dxc
cl5lE5~2p\!/~mvE!. ~12!

The first parametric scale tells us what is the displacem
dx that is required to mix neighboring levels. The seco
parametric scale determines what is the ‘‘linear’’ regime
this deformation process, and marks the parametric cross
from the perturbative to the~nonuniversal! semiclassical re-
gime. For more details see@9#.

The existence of two distinct parametric scales impl
@16# that there are threeV regimes in the problem: The mos
trivial one is the adiabatic regime@Eq. ~1!#, which is defined
via the requirement

VtH!dxc
qm, ~13!
02621
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where tH52p\/D is the Heisenberg time for recurrence
From this definition it is clear that quantum recurrences s
before the probability goes to other levels. As a results,
leading order description, the probability remains conc
trated all the time in the initial level. From now on we a
sume without saying that we are in the nonadiabaticV re-
gime~s!.

The nonperturbative semiclassical regime@Eq. ~2!# is de-
fined by the requirement

Vt0@dxc
cl . ~14!

If V is nonadiabatic on the one hand, and not large in
sense of Eq.~2! on the other hand, then, using the termino
ogy of @16#, we are in the~extended! perturbative regime. In
the 1D casedxc

qm and dxc
cl coincide, and therefore the pe

turbative regime is absent. We turn now to explain t
mechanism for energy spreading in the~extended! perturba-
tive regime. We shall call it the Fermi-golden-rule pictur
After that we explain how to obtain the semiclassical pictu
that arises in the nonperturbative regime.

After displacementdx5Vt of the wall, the number of
levels that become mixed nonperturbatively@16# is
(dx/dxc

qm)2. ~In general@8#, there may be nonuniversal de
viations from this quadratic growth, leading straightfo
wardly to possible generalization of our results.! Thus we
can define the core width~in energy units! as

G~dx!5S dx

dxc
qmD 2

3D, ~15!

whereD is the mean level spacing. As explained in Ref.@9#,
this nonperturbative mixing proceeds as long asdx,dxc

cl

and providedG!\/t.
In the ~extended! perturbative regime the inequalityG

!\/t breaks down beforedx;dxc
cl . This determines the

dephasing time of Eq.~4!. Coherence is maintained fort
,tw because most of the probability is still concentrated
the core, whose evolution is of parametric nature. In ot
words, as long as the core is not resolved (G!\/t), its evo-
lution depends only on the end pointsx(0) andx(t).

What about the evolution of the tails? A general argum
tation ~see Sec. 16 of Ref.@16#! implies that as long asdx
,dxc

cl , the core-to-tail transitions are not affected by t
local nonperturbative mixing of the levels~no modulation of
the core-to-tail transition amplitude!. By definition, in the
extended perturbative regime the core is resolved much
fore we getdx;dxc

cl . Consequently, we can use the Ferm
golden-rule picture in order to describe the crossover to
chastic diffusion in energy@10,9,16#.

A different picture arises in the nonperturbative regim
From the definition of this regime it follows that we sti
haveG!\/t at the time whendx;dxc

cl . In this case the core
saturates to a semiclassically determined profile~see details
in Sec. 10 of@9#!, having the width

G;\/t0 . ~16!
8-5
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DORON COHEN PHYSICAL REVIEW E 65 026218
The time to resolve this width ist0 . Consequently the
dephasing time is simplytw5t0 , which is the naive semi-
classical result. As for the core-to-tail transitions: These
modulated as in the analysis of the one-dimensional c
Consequently the long-time dynamics in the nonperturba
regime is of semiclassical~rather then of the Fermi-golden
rule! nature.

X. THE DLD AND THE ZCL MODELS

Following Feynman and Vernon it is common to mod
the environment as a huge collectionQ5$Qa% of harmonic
oscillators. The advantage of such modeling is obviously
ability to make an exact elimination of the environmen
degrees of freedom, and to end up with a simple pa
integral expression for the~reduced! propagator of the par
ticle.

In case of the ZCL model the interaction of the particlex
with the environmental degrees of freedomQa is expressed
asHint5x(acaQa , whereca are coupling constants. Thu
in case of the ZCL model the particle experiences fluct
tions of a homogeneous field of force@Fig. 1~a!#.

In case of the DLD model the interaction withQa is ex-
pressed asHint5(acaQau(x2xa), whereu(r ) is a short-
range interaction andxa is the location of thea oscillator.
Thus, in case of the DLD model the particle experienc
fluctuations of a disordered field of force@Fig. 1~b!#. A spe-
cific example for the application of the DLD model is th
dephasing of an electron due to its Coulomb interaction w
the rest of the Fermi sea@17,25#.

The long-time classical motion of the Brownian partic
for all three models of Fig. 1, is described by the sa
Langevin equationmẍ52h ẋ1F, whereh is called the fric-
tion coefficient, andF can be regarded as arising from
stochasticlike fluctuating field of force. The fluctuating for
is characterized by an intensityn, which is related toh via a
fluctuation-dissipation~FD! relation@26#. In case of the DLD
model, the fluctuating field@Fig. 1~b!# is further character-
ized by a correlation distancel , which is determined by the
range of the interactionu(r ).

XI. THE EFFECTIVE-BATH CONJECTURE

If we make the conjecture that the system of Fig. 1~c! is
effectively described by the DLD model, then we shou
substitute

~n!effective5m2vE
3/L, ~17!

~ l !effective5dxc
cl5lE . ~18!

For getting Eq.~17! see details in Sec. 7 of Ref.@16#. For
getting Eq.~18! see the detailed discussion in Sec. 11 of@9#.

The dephasing time in the high-temperature limit of t
DLD model is given by@14#

tw5
\2

nl 2 for T@\
V

L
. ~19!

Upon substitution of Eqs.~17! and~18! into Eq.~19!, we get
tw5t0 , which is the naive semiclassical result. With t
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identificationE↔T, the high-temperature condition of Eq
~19! becomesV!vE , which is just the classical slownes
condition that we assume in any case.

Equation~19! becomes nonapplicable ifVtw,l . In such
a case the dephasing happens beforedx gets tol and there-
fore the DLD model reduces to the ZCL model. One eas
verifies that the above distinction between ZCL and non-Z
regimes formally coincides with Eq.~2!: What appears to be
nonperturbative in case of Fig. 1~c! appears as a non-ZCL
feature in the effective-bath description.

Is it possible to give an effective-bath interpretation to E
~4!? The answer is positive. Using the same procedure
estimatetw for the ZCL model as in@20#, and upon using the
estimateuxA(t)2xB(t)u;Vt, one obtains

tw5S \2

nV2D 1/3

. ~20!

Substitution of Eq.~17! gives Eq.~4!. It is important to re-
alize that these results are the ‘‘worst case estimates.’’
have assumed that only the core component is capabl
maintaining coherence.

Using the effective-bath approach it is easier to get a h
ristic ~phase-space based! understanding of whytw can be
much longer compared with the above estimate. In the Z
regime, the actual value of the dephasing time is quite s
sitive to the geometry of the interfering trajectories. See f
ther discussion of dephasing via the ‘‘spreading mechanis
in @20#.
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APPENDIX: IRREVERSIBILITY VERSUS
RECURRENCES

In order to avoid confusion it is better to distinguish b
tween the notions of ‘‘irreversibility’’ and ‘‘recurrence.’’ In
the first part of this appendix we define and discuss the is
of irreversibility, while in its second part we define and di
cuss the issue of recurrences.

We say that a process is reversible if it is possible
‘‘undo’’ it. For example: consider a gas inside a cylinder wi
a piston. Let us shift the piston inside. Due to the compr
sion the gas is heated up. Can we undo the ‘‘heating’’ sim
by shifting the piston outside, back to its original position?
the answer is yes, as in the case of a strictly adiabatic p
cess, then we say that the process is reversible.

Consider the prototype example of interference in
Aharonov-Bohm ring geometry. The particle can go from t
input lead to the output lead by traveling via either arm
the ring. This leads to interference, which can be tested
measuring the dependence of the transmission on the m
netic flux via the ring. Consider now the situation whe
8-6
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there is a spin degree of freedom in one arm@25#. The par-
ticle can cause a spin flip if it travels via this arm. In such
case interference is lost completely. However, this entan
ment process is completely reversible. We can undo the
tanglement simply by letting the particle interact with t
spin for twice the duration. Therefore, according to our
strictive definition, this is not a real dephasing process.

Consider now the situation where a particle gets entang
with bath degrees of freedom. If the bath is infinite, then
entanglement process is irreversible, and therefore it con
tutes, according to our definition, a dephasing process. In
paper we have analyzed a more tricky situation where a
ticle gets entangled with chaotic degrees of freedom. T
environment is finite, but due to its chaotic nature we ha
irreversibility. Hence we can talk about the dephasing p
cess.

Consider an ice cube inside a cup of tea. After some t
it melts and disappears. But if we wait long enough we ha
some probability to see the ice cube reemerging due to
currences. The issue of recurrences becomes relevant w
ever we consider a closed~undriven! system. In other words
whenever we do not try to control its evolution from th
outside.

There are recurrences both in classical and quantal p
ics. In the latter case the tendency for recurrences is stro
due to the quasiperiodic nature of the dynamics. Howeve
02621
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the time scale for recurrences is long enough with respec
other relevant time scales, then we can practically ign
these recurrences. Actually it is useful to regard these re
rences as ‘‘fluctuations,’’ and to take the standpoint that
interest is only in some ‘‘average’’ behavior.

If the bath is infinite, then also the time for recurrences
the particle-bath system becomes infinite. On the other ha
if the bath is finite, then we have to consider the recurren
of the particle-bath system. These recurrences can lead
to an unentangled state.

In practice the time to get unentangled by recurrence
extremely large. Assuming a chaotic environment, and ign
ing issues of level statistics, the time scale for recurrence
at least the Heisenberg time~inverse of the mean level spac
ing! of the combined particle-environment system. It sca
like \2(d1d0) whered0 is the number of degrees of freedo
of the particle.

It goes without saying that the above issue of recurren
becomes irrelevant if thex motion is treated classically
There is, however, a twist to this latter statement in the c
where the time variation ofx is strictly periodic. This is due
to dynamical localization effect@27#. Note, however, that
dynamical localization is a very fragile effect. Even in th
case that it is found, it turns out that it manifests itself on
after a time that scales like\2112d, which is much larger
than the Heisenberg time of the environment@22#.
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