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Dephasing due to the interaction with chaotic degrees of freedom
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We consider the motion of a particle, taking into account its interaction with environmental degrees of
freedom. The dephasing time is determined by the nature of the environment and depends on the particle
velocity. Our interest is in the case where the environment consists of few chaotic degrees of freedom. We
obtain results for the dephasing time and compare them with those of the effective-bath approach. The latter
approach is based on the conjecture that the environment can be modeled as a collection of infinitely many
harmonic oscillators. The work is related to studies of driven systems, quantum irreversibility, and fidelity. The
specific model that we consider requires the solution of the problem of a particle in a box with a moving wall,
whose one-dimensional version is related to the Fermi acceleration problem.
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[. INTRODUCTION of quantum irreversibilitf4] and fidelity [5], and hence to
studies of wave packet dynamif8], decay of the survival
Determining the dephasin@lecoherendetime 7, for a  amplitude, and the parametric theory of the local density of
particle (x,p) that interacts with an environmental degree ofstates[7—9]. We explain this point in Sec. VIl. We would
freedom(Q,P) is a central theme in quantum physics. In thelike to emphasize that all these studies share a common con-
absence of such interaction tkemotion is coherent, and ceptual framework. The common idgE0] is that we have to
interference should be taken into account. This means, frorflistinguish between perturbative and nonperturbative re-
a semiclassical point of view, that at least two trajectoriegimes, and that the semiclassicaliy regime is contained
x(7)=Xa(7) andx(7)=xg(7) have a leading contribution to Within the nonperturbative regime.
the probability to travel, say, fromx(0) to x(t), as in the The study of the box/piston model reduces to the analysis
prototype example of the two-slit experiment. of the problem of a driven particle. Namely, the problem of a
The purpose of this paper is to discuss the case where tiRarticle in a box with a moving wall. This is possibly the
particle interacts with few chaotic degrees of freedom. To b&implest example for illustrating the idea of having different
more specific we consider a box/piston model that is define@lynamical regimes. The velocity of the wall¥& We shall
in Sec. Il below. It is already known that in the classical €xplain that in the one-dimension@dD) box problem(also
descriptions such interaction leads to dissipation, and thknown as the problem of infinite well with moving wall
motion of the particle is described by the standard Langevihi11,12), there are two quantum-mechanidalregimes: An
equation[1]. Our aim is to explore the quantum-mechanicaladiabaticV regime, and a nonperturbative semiclassi¢al
consequences of this interaction and, in particular, to detef€gime. In the general box/piston problem there are three
mine the dephasing time. regimes: The additionaV regime is a perturbative regime,
A related aim of this paper is to test the effective-bathwhere we can apply the Fermi golden rule in order to de-
conjecture, namely, that any type of environment can bécribe the stochastic energy spreading.
modeled as a large collection of harmonic oscillators. This
conjecture is impli_ed by Iegding prder perturbation t_heory Il INTERACTION WITH CHAOS
[2]. We shall explain how this conjecture can be applied, in
practice, in order to rederive our results for the dephasing One can imagine, in principle, a “zoo” of models that
time. describe interaction of a particle with the environment. How-
Some readers may wonder whether dephasing is not justver, following Caldeira and Leggdit3], the guiding phi-
the entanglement of the particle with some other degrees dbsophy is to construct “ohmic models” that give Brownian
freedom. In such a case, even a one-spin environment canotion (described by the standard Langevin equatiarthe
provide dephasin¢decoherende However, we would like to  classical limit. Three families of models are of particular
adopt a more restrictive definition of dephasing, which in-interest: interaction with chaos, interaction with harmonic
volves the notion of irreversibilitysee the Appendix bath, interaction with random matrix bath.
At first sight it seems that for having irreversibility one  The second type of modeling leads to the introduction of
needs “infinity.” This point of view is emphasized in Ref. the diffusion-localization-dissipatiofDLD) model[14]. The
[3]: Irreversibility can be achieved by having an infinity of familiar Zwanzig-Caldeira-LeggetZCL) model[13] can be
the bath(infinitely many oscillatorsor of spacea lead that regarded as a special limit of the DLD model. The physics of
extends up to infinity The present paper is based on thethe ZCL and DLD models is illustrated in Figgal and Xb),
observation that also chaos provides irreversibility. We daespectively. The ZCL model describes a motion under the
not need infinity in order to have irreversibility. This concep- influence of a fluctuation homogeneous field of force. In the
tual point is further clarified in the Appendix. case of the DLD model the fluctuation field is further char-
The present work is strongly related to so-called studiesicterized by a finite correlation distance. We shall come back
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to these models in Sec. X. For completeness we note that
random-matrix modeling of the environment, in the regime
where it has been solvgd 8], leads to the same results as
those obtained for the DLD model.

In this paper we are going to consider the case where the
particlex interacts with few chaotic degrees of freedom. It is
well known thatclassicallysuch an interaction has the same
effect as that of coupling to an ohmic bafth]. Quantum
mechanically much less is knowa9].

We shall analyze the prototype toy model illustrated in
Fig. 1(c). The dynamical variablg represents the position of
a large(“Brownian” ) particle. The motion of this particle is
affected by collisions with a small “gas” particle. Th@is
the position of the gas particle alis the conjugate mo-
mentum. The motion of the gas particle is assumed to be
chaotic and its collisions with the Brownian particle are as-
sumed to be elastic. The typical time between successive
collisions will be denoted byr,=L/vg, wherevg is the
typical velocity of the gas particle. The typical kinetic energy
of the gas particl&= %mvé has the same significance as the
temperatureTl in the ZCL/DLD models.(For sake of exact
comparison we should assume tliahas a canonical distri-
bution, but for the purpose of this presentation we prefer to
assume that it has some well-defined microcanonical yalue

I1l. DYNAMICAL REGIMES

The results of the forthcoming analysis depend on the
typical velocityV=|x| of the Brownian particle. A fixed as-
sumption of this paper is that is slow in a classical sense,
meaningV<<vg . In the quantum-mechanical analysis we are
going to distinguish the following quant® regimes:

\d-1)32
adiabatic regime V<( A ) oL 1)

) i fi
nonperturbative regime V> L (2

whered is the dimensionality of the box amilis the effec-
tive area of the d— 1) dimensional surface of the Brownian

AN particle. The de Broglie wavelengity: of the gas patrticle is
v defined as in Eq.12). Ford>1 the above twd/ regimes are
A well separated, and we have a third “perturbative” regime
. whereV is small[ <#A/(mL)] but nonadiabatic.
'x(t) The naive semiclassical expectation, regarding the system

© of Fig. 1(c) is to have a loss of coherence upon collision. In
other words, we expect to have

To=To. 3)

¢

FIG. 1. (a) The Brownian particle in the ZCL model experiences . . . .
a fluctuating homogeneous field of fora@) In case of the DLD VW& want to go beyond this naive expectation; to obtain spe-

model the fluctuating field is further characterized by a finite corre-Cific results for the dephasing time; and to compare them
lation distance.(c) The Brownian motion is induced due to the With the prediction that is based on the effective-bath con-
interaction with chaotic degrees of freedor(t) is the (classical ~ Jecture.

position of the Brownian particle. Ife) and (b), The background Specifically, we are going to claim that the naive semi-
image is a “snapshot” of the fluctuating environment. Namely, theclassical result is valid only in the nonperturbative regime.
gray levels correspond to the “height” of an instantaneous potentiaOtherwise, in the perturbative regime, we get that the
experienced by the Brownian particle. dephasing time is much larger,
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BYARS The dephasing factor is defined as the absolute value of the
T“’%(@Z (4)  influence functional.

We have introduced above the alternate notatift) in

Finally, in the adiabatic regime, to the degree that adiaba®'der 10 émphasizes the time dependence of the wave func-
ticity is maintained, there is no dephasing at all. However, infion overlap. In order to make(t) a well-defined quantity,
practice one should take mainly Landau-Zener transition®n€ should predefine the statistical properties of the interfer-
into accoun15] (see also Sec. 20 ¢16]). This leads to a N trajectories as a function of See[20] for mathematical

finite dephasing timer, > (1\)1*(52) where the value of details. For the purpose of the present paper one can assume
depends on the Ievel¢spacing statiétics. that typical interfering trajectories are ballistic and character-

ized by their velocityV, and by their(maxima) separation
A~Vt. This motion scheme provides “maximal dephasing.”
For other schemes of motion the maximal separation scales
The Hamiltonian of the system and environment can bglifferently. For example, for two-slit geometryis the sepa-

IV. DEFINITION OF THE DEPHASING FACTOR

written as ration between the slits. For diffusive trajectori@sct.
Note, however, that a full statistical specification is needed in
Hiotal X, P, Q, P) =Ho(X,p) + H(Q,P;X). (5 each cas¢20].

Using this Hamiltonian we should be able to calculate, in
principle, any transport property. To test whether “interfer- V. REMARK: INTERPRETATION OF THE DEPHASING
ence” is present we should be able to control this interfer- FACTOR

ence. For e_x_ample, in a two-slit geo_me_try we control the From the definition of the influence functional it is clear
relative position of the detector, while in the Aharonov- . it refiects the probability to “leave a trace” in the envi-
Bohm rng geomet_r;(see the Appendixwe control the mag- ronment. In case of the DLD modétee Sec. Xthis trace
netic flux via the nng. = . . an be further interpreted as leaving an excitation along the

. A. more restricted definition of dephasing can be pbtalne ay. For a critical discussion of this point see Appendix C of
within the_frar_nework of the Feynman-Vernon formalisj. 20]. In the more general case the notion of leaving a trace is
After. elimination of the bath degrees of freedom., one end omewhat ambiguous. All we can say is that decoherence
up with adoublepath integral for the transport. This expres- means that the environment is left in differgiorthogonal

sion Is not very |!Ium|nat|ng unless the motion can be states depending on the trajectory that is taken by the par-
treated semiclassicallj17]. In such a case it becomes a ticle

double sum over “classical’ trajectories, and we can Inter- 1 |aw of action and reaction holds also in the world of
pret the "off diagonal terms as r(_espon5|ble for the interfer- ecoherence studies. Feynman and Vernon have realized that
ence effect. Due to the el|m|nat_|on of .th_e bath degrees o he dephasing factor can be reinterpreted as representing the
freedom, each interference term is multiplied by a factor tha'éffect of ac-number noise source. From this point of view

of the inuence functional s definet 25 he -dephasing fagL e Jecoherence is due to the scrambling” o the relaive
tor” Phasr? by t,r’us noise. Hencfe tf:(ej reeLson for using the term
The influence functional is traditionally calculated for lin- de_lph : Zgganiggaesomﬁggte?r D oiﬁfgf \e/ire?vr\;?sthat it can give
ear coupling to ha}rmonics oscillators, assuming that they alfirther insight regarding the physics of our results. Namely,
initially .prepared ina canonical thermal staye. quever, WEyve shall see in Sec. XI that Eg) and (4) have effective
would like to consider the case of interaction with chaoticy H_ - 4al and ZCL-model interpretations, respectively.

degrees of freedom, and we would like to assume that th%rom the particle’s dynamics point of view this corresponds

“environment" is initially prepargd in_a pure ste}tbo. Thus to “scattering mechanism” and to “spreading mechanism”
the “bath” is characterized by its microcanonical enef§y < jiscussed if20]

rather by its temperatur&. (Obviously one can obtain the
thermal case by canonical averaging ofzer

In order to calculate the influence functional, one consid-  VI. DETERMINATION OF THE DEPHASING TIME
ers the evolution that is generated by the time-dependent

L Within the semiclassical framework, the problem of
Hamiltonian

dephasing reduces to the more restricted problem of studying

H=H(Q,P:x(7)) (6) the dynamics of a time-dependent Hamiltonj&m. (6)].
By definition, in order to have coherende(t)|~1), the

for the particular(interfering trajectoriesx(7)=x,(7) and ~ wave function¥(t) should contain a component that is in-
x(7)=xg(7) that connecx(0) andx(t). The initial prepa- dependent of the particular way in whiglir) evolves from
ration of the environment is represented by a wave functiorthe initial x(0) to the finalx(t). Loss of coherence means
¥,, while the final state is eithel(t)=¥, or ¥(t) |c(t)|<1, which can be written as<r,. This constitutes a
=Wg. The overlap of the two possibilities is known as the practical definition of the dephasing time .

influence functional It should be clear that the toy system of Figc)lis com-
pletely equivalent to the toy system that is illustrated in Fig.
c(t)=F[Xa,Xg]=(Vg|T,). (7) 2. Namely, what we have to analyze is the evolution that is
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1D Box

2D Box

FIG. 2. A “gas” particle in a box is driven by moving the wall.
This is essentially the same as Figc)] but now the moving wall is
not regarded as a dynamical entitg) illustrates the case of one-
dimensional box, whildb) is for chaoticbox. (Hence, in the latter
case, the box should be at least two dimensignal.

generated byH(Q,P;x(7)), wherex controls the deforma-
tion of the boundary. In particular, we should determine
whether¥ (t) possesses a trajectory-independent compone
that is determined only by the endpoinf)) andx(t).

The rest of this paper is organized as follows. In Sec. VIII
we illuminate the key ingredients in the analysis by consid
ering a one-dimensional example. In Sec. IX we outline th
derivation of Eqs(3) and(4) using the core-tail picture that
has been developed ii6], and that is supported by our
recent numerical studi¢8,9,21]. In Sec. XI, we compare the
results to those of the effective-bath approach.

VII. DIGRESSION: RELATION TO FIDELITY
AND LDOS STUDIES

The definition ofc(t) can be rewritten formally as
c(t)=(Wo|U[xg(n) ] U[xa(1)]|¥0), (8

where U[x(7)] is the evolution operator due to a driving
“pulse” x(7). Thusc(t) can be reinterpreted as the probabil-

n
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that if A is small(in the sense of standard first-order pertur-
bation theory, then the decay of(t) has a Gaussian time
dependence due to a statistical effect. For layere get
exponential time dependence as in Wigner theory. On the
other hand in semiclassical circumstanp@the decay may
becomeperturbation independeni{This idea was general-
ized in Ref.[5]). In such a case the rate of the decay is
determined by the stability of the classical motion, and is
characterized by the Lyapunov exponent. A unified picture of
the crossover from the perturbati®eegime to the semiclas-
sical A regime has been presented[ i, and has been gen-
eralized in[29]. See alsd28].

Does the study of “rectangular pulses” constitute a good
bridge for developing a general theory for fidelity? The an-
swer is definitely not. An essential ingredient in the theory of
driven systems is the ra¥in which the parametexis being
cthanged in time. Thus, rather than talking abAutgimes,
we should talk abou¥ regimes, as in the present paper. The
general theory becomes more complicaié®,19,14, but
the physical picture is similar in spirit. The box/piston model

that we are going to analyze in the following sections is

epossibly the simplest demonstration for the applicability of

the ideas that were presented[t0,19,14. More generally

we should talk about\(,A) regimes, as in the theory of
periodically driven mesoscopic systefi22]. The latter issue
is beyond the scope of the present paper.

VIIl. ANALYSIS OF THE 1D BOX PROBLEM

Consider the one-dimensional system of Figa)2The
classical analysis of the dynamics is trivial. Each time the
gas particle collides with the moving wall it loses
energy: Upon collision its velocity undergoes a change
v——v+2V and therefore the change in energy is
dEC0|: - 2va

ity amplitude to come back to the initial state at the end of a NOW we want to analyze the dynamics quantum mechani-

“driving cycle.” This quantity, which quantifies the “fidel-
ity” of the driving cycle, has been suggested by Héfl to
be a measure for quantum irreversibility.

cally. This turns out to be less trivial. Past studies of this
model[11,12, which are related to the interest in the Fermi
accelerator problerf23], were focused on the issue of find-

To be more precise, the original definition of the fidelity INg stationary solutions. To the best of our knowledge, the
in Ref.[4] assumes rectangular “pulses.” This means, with-time-dependent picture has not been explored.

out loss of generality, thata(7)=0 and xg(0<7<t)=A

Let [n(x)) denote the eigenstates of the box Hamiltonian

= const. Thus the time variation oft) depends on the am- H(Q.P:x). The expansion of the wave function in this
plitude A of the “perturbation.” Further simplification is ob- X-dependent basis ¥ (t)=Xa,(t)|n(x(t))). The expan-
tained if ¥, is assumed to be an eigenstate of the unpersion coefficientsa,(t) are the probability amplitudes to find

turbed HamiltoniarHy="H(Q,P;0). In such a case(t) is
known as the survival amplitude and we get

ouf ] e

where H=H(Q,P;A) is the perturbed Hamiltonian. The
study of the survival probability is also known as “wave

i 2
—%Ht

|C(t)|2:‘<‘1’0 9

the particle in the energy level after timet. One easily
obtains the equation

2nm

& n°—m

i
h

da,
dt

\Y
E.a,— E . am - (10

Let us assume that the initial preparatio@jg0)= 6,,,- The
mean level spacing for the 1D box &=mwhvg/L. If

packet dynamics.” Note that the survival probability is the dE.<A one finds out, by inspection of E10), that the

Fourier transform of the local density of statdsDOS).

dynamics is adiabatic, meaning thaj(t)~d,n. On the

Hence the study of wave packet dynamics can be reduced mher hand, ifdE.,>A, one expects to find a semiclassical

LDOS study. For an introduction to this subject $6¢
The fidelity in general and the survival amplitude in par-
ticular, have similar physicg28]. In Ref.[4] it is explained

transitionE—~E+dE.,.

How can we explain th&— E+ dE. transition from the

guantum-mechanical point of view? For this purpose we can
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adopt the core-tail picture of Ref16]. The core-tail picture wherety=2x#4/A is the Heisenberg time for recurrences.
is a generalization of the Fermi-golden-rule picture: TheFrom this definition it is clear that quantum recurrences start
“core” consists of the levels that are mixed nonperturba-before the probability goes to other levels. As a results, in
tively; the “tail” is formed by first-order transitions from the leading order description, the probability remains concen-
core. trated all the time in the initial level. From now on we as-

The analysis is carried out in two steps. The first step is tsume without saying that we are in the nonadiab¥tice-
analyze thgparametric evolutiorthat is associated with Eq. gime(s).

(10). This means to solve Eq10) without the first term in The nonperturbative semiclassical regifi. (2)] is de-

the right-hand sidgRHS) (This is the so-called sudden fined by the requirement

limit.) Obviously the resultan®,(t) is a function of x

=Vt, while V by itself makes no difference. The solution VoS 8xY. (14)
depends only on the end point§0) andx(t). The second
step is to analyze the actual time evolution. This means t?f
take into account the effect of the first term in the RHS of
Eqg. (10), and to understand how the resultan(t) differs
from @,(t).

By careful inspection of Eq10) one observes that a level
is mixed with the next level whenever the wall is displaced
an additional distancag/2. This effect can be regarded as
“parametric.” Further inspection reveals that this nonpertur-
bative (parametri¢ effect modulates the core-to-tail transi-
tion amplitude(see remark24]). The modulation frequency
is w=2X2m/(\Ng/V). This frequency drives a core-to-tail
resonance transitiol E| =7 w, in agreement with the semi-
classical expectation.

V is nonadiabatic on the one hand, and not large in the
sense of Eq(2) on the other hand, then, using the terminol-
ogy of[16], we are in thgextendedl perturbative regime. In
the 1D casesx?™ and 6x¢' coincide, and therefore the per-
turbative regime is absent. We turn now to explain the
mechanism for energy spreading in tfextended perturba-
tive regime. We shall call it the Fermi-golden-rule picture.
After that we explain how to obtain the semiclassical picture
that arises in the nonperturbative regime.

After displacementsx=Vt of the wall, the number of
levels that become mixed nonperturbativejdl6] is
(8x15x3™2. (In general[8], there may be nonuniversal de-
viations from this quadratic growth, leading straightfor-
wardly to possible generalization of our resylt$hus we
IX. ANALYSIS OF THE GENERAL BOX PROBLEM can define the core widttin energy unitg as

The strength of the core-tail picture is that it can be used
to analyze the more general case, which is illustrated in Fig. F(5X)=(
2(b). We assume that the motion of the particle inside the
box is chaotic in the classical limit. The quantum-mechanical

analysis follows the same steps as in the 1D problem, angnereA is the mean level spacing. As explained in Rél,

requires the use of results that we have obtained in previoug,iq nonperturbative mixing proceeds as Iong&xs<5x°'
publications(mainly [9]). In order to keep the presentation and provided <7i/t. ¢

illuminating, and trying to avoid duplications, we shall just In the (extendedl perturbative regime the inequality

sketch the derivation. cl ; ;
X . <#h/t breaks down beforedx~ 6x;. This determines the
On the basis of the analysis of RE9] we recall that there dephasing time of Eq(4). Coherence is maintained far

are two relevant parametric scales, e .
P <7, because most of the probability is still concentrated in
the core, whose evolution is of parametric nature. In other

2
XA, (15

am
5XC

SxdM~ gfl 1/2X)\ (12) words, as long as the core is not resolvéd<#/t), its evo-
¢ A E lution depends only on the end pointé0) andx(t).
What about the evolution of the tails? A general argumen-
o+ tation (see Sec. 16 of Refl16]) implies that as long a$x
X =he=(2mh)/(Mg). (12 <o&xY, the core-to-tail transitions are not affected by the

c
) ) _ _ local nonperturbative mixing of the levelso modulation of
The first parametric scale tells us what is the displacemerthe core-to-tail transition amplitugleBy definition, in the
ox that is required to mix neighboring levels. The secondextended perturbative regime the core is resolved much be-
parametric scale determines what is the “linear” regime offgre we getox~ &(gl_ Consequently, we can use the Fermi-
this deformation process, and marks the parametric crossovgp|den-rule picture in order to describe the crossover to sto-
from the perturbative to thénonuniversal semiclassical re- chastic diffusion in energ§10,9,16.
gime. For more details s¢8]. _ o A different picture arises in the nonperturbative regime.
The existence of two distinct parametric scales impliessrom the definition of this regime it follows that we still
[16] that there are thre¥ regimes in the problem: The most avel <#/t at the time whersx~ 8xZ'. In this case the core
trivial one is the adiabatic reginié&q. (1)], which is defined  gaqyrates to a semiclassically determined praitee details

via the requirement in Sec. 10 of[9]), having the width
Vi< oxd™, (13 [~#lrg. (16)
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The time to resolve this width is,. Consequently the identificationE—T, the high-temperature condition of Eg.
dephasing time is simply,= 7y, which is the naive semi- (19) becomesV<uvg, which is just the classical slowness
classical result. As for the core-to-tail transitions: These are€ondition that we assume in any case.

modulated as in the analysis of the one-dimensional case. Equation(19) becomes nonapplicableV¥fr,</". In such
Consequently the long-time dynamics in the nonperturbative case the dephasing happens befixgets to/” and there-
regime is of semiclassicdtather then of the Fermi-golden- fore the DLD model reduces to the ZCL model. One easily

rule) nature. verifies that the above distinction between ZCL and non-ZCL
regimes formally coincides with E@2): What appears to be
X. THE DLD AND THE ZCL MODELS nonperturbative in case of Fig(c) appears as a non-ZCL

) o feature in the effective-bath description.
Following Feynman and Vernon it is common to model g jt possible to give an effective-bath interpretation to Eq.
the environment as a huge collectiQ={Q,} of harmonic  (4)2 The answer is positive. Using the same procedure to

oscillators. The advantage of such modeling is obviously th%stimater(p for the ZCL model as ifi20], and upon using the
ability to make an exact elimination of the enVironmemalestimate|xA(7-)—xB(7)|~Vt one obtains

degrees of freedom, and to end up with a simple path- )1
integral expression for th@educed propagator of the par- _( fi )
2

v (20)

ticle. 4

In case of the ZCL model the interaction of the partixle
with the environmental degrees of freed@r is expressed Substitution of Eq(17) gives Eq.(4). It is important to re-
asH=x=,c,Q,, Wherec, are coupling constants. Thus, alize that these results are the “worst case estimates.” We
in case of the ZCL model the particle experiences fluctuahave assumed that only the core component is capable of
tions of a homogeneous field of forgEig. 1(a)]. maintaining coherence.

In case of the DLD model the interaction wi, is ex- Using the effective-bath approach it is easier to get a heu-
pressed ag{i==,C,Q.U(x—X,), Whereu(r) is a short- ristic (phase-space basednderstanding of whyr, can be
range interaction and, is the location of thex oscillator. ~ much longer compared with the above estimate. In the ZCL
Thus, in case of the DLD model the particle experiencegegime, the actual value of the dephasing time is quite sen-
fluctuations of a disordered field of for§Eig. 1(b)]. A spe-  sitive to the geometry of the interfering trajectories. See fur-
cific example for the application of the DLD model is the ther discussion of dephasing via the “spreading mechanism”
dephasing of an electron due to its Coulomb interaction witdn [20].
the rest of the Fermi sdd.7,25.

The long-time classical motion of the Brownian particle, ACKNOWLEDGMENTS
for all three models of Fig. 1, is described by the same
Langevin equatiomX= — »x+ F, wherenis called the fric-
tion coefficient, andF can be regarded as arising from a
stochasticlike fluctuating field of force. The fluctuating force
is characterized by an intensity which is related top via a
fluctuation-dissipatioiFD) relation[26]. In case of the DLD
model, the fluctuating fieldFig. 1(b)] is further character-
ized by a correlation distancé, which is determined by the

| thank Shmuel Fishmaftirechnior) and Tsampikos Kot-
tos (MPI Gottingen for useful discussions. The Max Planck
Institute for Physics of Complex Systems is acknowledged
for generous hospitality during the workshop “Coherent
Evolution in Noisy Environments{Dresden, 200} where
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range of the interaction(r). APPENDIX: |IRREVERSIBILITY VERSUS
RECURRENCES
XI. THE EFFECTIVE-BATH CONJECTURE In order to avoid confusion it is better to distinguish be-

If we make the conjecture that the system of Fifg) is tween the notions of “irreversibility” and “recurrence.” In
effectively described by the DLD model, then we shoulgthe first part of this appendix we define and discuss the issue
substitute of irreversibility, while in its second part we define and dis-

cuss the issue of recurrences.
(V) eftective= M0 /L, (17) We say that a process is reversible if it is possible to
. ol “undo” it. For example: consider a gas inside a cylinder with
(7 )ettective™ ¢ = Ne .- (18) a piston. Let us shift the piston inside. Due to the compres-

; e ion the gas is heated up. Can we undo the “heating” simply
For getting Eq.(17) see details in Sec. 7 of R€f16]. For slon the X ) ; - -
getting Eq.(18) see the detailed discussion in Sec. 11gjf by shifting the piston outside, back to its original position? If

The dephasing time in the high-temperature limit of thethe answer is yes, as in the case of a strictly adiabatic pro-
DLD model is given by[14] cess, then we say that the process is reversible.

Consider the prototype example of interference in the
Aharonov-Bohm ring geometry. The particle can go from the
input lead to the output lead by traveling via either arm of
the ring. This leads to interference, which can be tested by
Upon substitution of Eqg17) and(18) into Eq.(19), we get  measuring the dependence of the transmission on the mag-
7,=To, Which is the naive semiclassical result. With the netic flux via the ring. Consider now the situation where

2

¢ /2

V
T for T>h T (19
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there is a spin degree of freedom in one 4&8]. The par- the time scale for recurrences is long enough with respect to
ticle can cause a spin flip if it travels via this arm. In such aother relevant time scales, then we can practically ignore
case interference is lost completely. However, this entanglethese recurrences. Actually it is useful to regard these recur-
ment process is completely reversible. We can undo the enrences as “fluctuations,” and to take the standpoint that our
tanglement simply by letting the particle interact with the interest is only in some “average” behavior.
spin for twice the duration. Therefore, according to our re- If the bath is infinite, then also the time for recurrences of
strictive definition, this is not a real dephasing process.  the particle-bath system becomes infinite. On the other hand,
Consider now the situation where a particle gets entangled the bath is finite, then we have to consider the recurrences
with bath degrees of freedom. If the bath is infinite, then theof the particle-bath system. These recurrences can lead back
entanglement process is irreversible, and therefore it constio an unentangled state.
tutes, according to our definition, a dephasing process. In this In practice the time to get unentangled by recurrences is
paper we have analyzed a more tricky situation where a paextremely large. Assuming a chaotic environment, and ignor-
ticle gets entangled with chaotic degrees of freedom. Théng issues of level statistics, the time scale for recurrences is
environment is finite, but due to its chaotic nature we haveat least the Heisenberg tintmverse of the mean level spac-
irreversibility. Hence we can talk about the dephasing proing) of the combined particle-environment system. It scales
cess. like 72~ (@+d0) whered, is the number of degrees of freedom
Consider an ice cube inside a cup of tea. After some timef the particle.
it melts and disappears. But if we wait long enough we have It goes without saying that the above issue of recurrences
some probability to see the ice cube reemerging due to rebecomes irrelevant if thex motion is treated classically.
currences. The issue of recurrences becomes relevant wheRhere is, however, a twist to this latter statement in the case
ever we consider a closédndriver) system. In other words, where the time variation of is strictly periodic. This is due
whenever we do not try to control its evolution from the to dynamical localization effecf27]. Note, however, that
outside. dynamical localization is a very fragile effect. Even in the
There are recurrences both in classical and quantal physase that it is found, it turns out that it manifests itself only
ics. In the latter case the tendency for recurrences is strongefter a time that scales liké~2*2¢, which is much larger
due to the quasiperiodic nature of the dynamics. However, ithan the Heisenberg time of the environmgzi].
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