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Adiabaticity and Irreversibility

H[r,p;X(t)]

Chaos - motion of particles (r,p) in-

side the box is chaotic.

Quasistatic - the piston position (X) is

varied very slowly. X(t) = piston position

Classical:

• For fully chaotic dynamics the quasistatic limit is adiabatic, hence reversible.

• For mixed phase-space the quasistatic limit is not adiabatic, hence irreversible.

Quantum:

• The quasistatic limit is always adiabatic [but not accessible in practice].

• What happens outside of the QM-adiabatic regime? QCC? or New regime?



Atomtronics

Toroidal or Lattice rings can be “painted”. Currents can be measured.

Stability condition for superflow?

Geve Arwas, DC (SREP 2015, NJP 2016, PRB 2017, PRA 2019).



The Bose Hubbard Hamiltonian

The system consists of N bosons in L sites.

Optionally we can add a gauge-field Φ.
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The two dimensionless parameters have a well defined value also in the GP/continuum limit.
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Bosonic Junction



The Bose Hubbard Ring Circuit

In the rotating reference frame we have a Coriolis force,

which is like magnetic field B = 2mΩ.

which implies an effective flux Φ = area× B
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The Hamiltonian - semiclassical perspective

We set bk =
√
nke

iϕk , where n0 + n1 + n2 = N . [Initially n = 0]

n = (n1+n2) = the depletion coordinate

M = (n1−n2) = the population imbalance
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Quasistatic protocol for an atomtronic superfluid circuit

(1) All the particles are condensed into the lowest momentum orbital that has a zero winding number.

(2) The rotation frequency Φ is gradually changed from 0 to 2.5π, aka sweep process.

(3) Reversed sweep back to Φ = 0.

(4) The final state of the system is probed; the momentum distribution is measured.

What is the fate of the evolving many-body state?

n = (n1+n2) = depletion coordinate

M = (n1−n2) = occupation imbalance
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(u=2.3, N=4, dim=15 levels).



What is the fate of the evolving many-body state?

Possible answers:

(1) Without interaction: No depletion.

(2) Quantum adiabaticity: Depletion at Φmts.

(3) Landau Criterion: Depletion at Φstb.

(4) Bogolyubov stability analysis: Depletion starts at Φdyn.

(5) Bogolyubov (integrable) approximation: Shuttling at Φswp.

(6) Beyond Bogolyubov: Chaos-assisted depeletion.

(7) Quantum chaos... leakage through the barrier

The naive two orbital approximation implies no interaction.

Therefore the manybody Landau-Zener paradigm does not apply.

Landau criterion requires energetic metastability

(local minimum of the energy landscape),

while dynamical stability can persist beyond.

Bogolyubov approximation keeps only pair-creation events

and therefore M = (n1−n2) is constant of motion.

Consequently chaos is ignored...

Irreversibility?



Explicit expressions for the thresholds

The central SP is the global minimum

of the energy landscape up to

Φmts = π

The SP is still a local minimum up to
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Simulations

Slow:

Very Slow:

• Thresholds:

(Φmts,Φstb,Φdyn, Φswp)

• Branching

• Depletion time

• UQF

• Irreversibility?

• QCC?



Time of Depletion vs Sweep Rate

Depletion versus time: Φ at the time of depletion:

• Slow sweep: [blue] depletion at Φdyn, indicating Relay-Shuttling.

• Very Slow sweep: [red] depletion at Φstb, indicating Chaos-Assisted mechanism.

• Note agreement of Relay-Shuttling with the Bogolyubov approximation [black].



Irreversibility vs Sweep Rate

Spreading after the forward sweep: Spreading after the reversed sweep:

• Optimal sweep rate in the semiclassical simulations [black line].

• Universal Quantum Fluctuations (UQF) in the chaos-assisted-depletion regime.

• Breakdown of Quantum to Classical Correspondence (QCC) [blue vs black].



Phase space structure

Thresholds: (Φmts,Φstb,Φdyn,Φswp)



Chaos-assisted depletion
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Optimal sweep: The cloud is shuttled by a fixed-point (PO) that has bifurcated from the center.

Slow sweep: The cloud spreads through the corridor, and after that shuttled by an outer torus.



Dynamics in Phase space

Problem of interest:

Depletion of an orbital.

Competing mechanisms:

Relay shuttling;

Chaos-assisted depletion.

Observations:

Irreversibility;

Breakdown of QCC.

• Adiabatic shuttling (if no bifurcations are involved)

• Diabatic ejection (saddle-node bifurcation) - The nonlinear Landau-Zener transition

• Relay shuttling (pitchfork bifurcation)

• Chaos-assisted depletion (if we have a surrounding chaotic region)



Main messages I

• A quasi-static protocol is in general not adiabatic,

and hence not reversible, due to mixed-chaotic dynamics.

• It is implied that slowness is bad for adiabaticity.

• We have considered a protocol whose aim is to transfer condensed particles

from a source orbital to a target orbital.

• Two competing mechanisms: adiabatic shuttling versus chaos-assisted depletion.

• The irreversible chaos-assisted depletion mechanism dominates in the quasi-static limit.

• An implied optimal sweep rate for the performance of the transfer protocol.



Main messages II

• Semiclassical fingerprints in the Quantum dynamics.

• Universal Quantum Fluctuations (UQF) in chaos-assisted-depletion regime.

• Breakdown of Quantum to Classical Correspondence (QCC).

• Limitations of the two-orbital approximation.

• Limitations of the Bogolyubov approximation.

• Limitations of the Semiclassical approximation.
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Bosonic Junction

STIRAP through chaos
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