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Abstract

We highlight a dynamical anomaly in which the rate of relaxation towards thermal equilibrium in a bi-
partite quantum system violates the standard linear-response (Kubo) formulation, even when the
underlying dynamics is highly chaotic. This anomaly originates from an 7-dependent sparsity of the
underlying quantum network of transitions. Using a minimal bi-partite Bose—Hubbard model as an
example, we find that the relaxation rate acquires an anomalous 7 dependence that reflects percola-
tion-like dynamics in energy space.

The connection between thermalization and chaotic ergodicity is well-established for classical systems [ 1]. Since
strict dynamical chaos is absent in isolated quantum systems, contemporary research efforts [2—19] are aimed to
find novel quantum signatures such as Anderson localization [20-22] in the thermalization of quantized chaotic
systems. The current paradigm for thermalization of coupled quantum subsystems is linear response theory
(LRT). If the underlying classical dynamics is chaotic, thermalization is attained via diffusive spreading which is
described by a Fokker—Planck—equation (FPE) [14—19], leading to ergodization of the composite system over all
accessible states within a microcanonical energy shell.

LRT isrelated to the Fermi-golden-rule (FGR) picture in which the rates of transitions between the
unperturbed eigenstates of the subsystems are given by first-order-perturbation matrix elements, but over long
timescales that involve many perturbative orders. The diffusion coefficient D of the FPE is estimated from these
rates by a Kubo formula [23, 24]. LRT implies quantum-to-classical correspondence (QCC) in the FPE
description, which is somewhat analogous to the Thomas—Reiche—Kuhn f~sum-rule, and has been termed
‘restricted QCC’ [25]. The argument that supports restricted QCC with regard to the FPE picture is based on the
observation that for short times the variance (unlike the higher moments) features a robust QCC, while for long
times the central limit theorem makes all higher moments irrelevant. Thus LRT based description becomes
accurate far beyond the naive expectation. The restricted QCC assumption prevails in all current work on
thermalization [5-18].

Deviations from LRT have either a classical or a quantum origin. Classical deviations result from dynamical
quasi-integrability in the mixed phase space [26, 27] which can make thermalization a slow and intricate process
[2—4]. By contrast quantum anomalies are directly related to the breakdown of QCC due to the finite value of the
Planck constant . One well-known example for such quantum anomaly is the loss of ergodicity due to many-
body Anderson localization [20-22].

In this Letter we highlight a new type of quantum anomaly which does not originate from the lack of
quantum ergodicity, but from the 7i-dependent sparsity of the quantum network of transitions. The classical-
Kubo-FGR picture relies critically on the existence of a dense, connected network of transitions between all the
available states, so that all transitions contribute to the diffusive energy spreading process. However, such dense
networks do not always exist. The quantum network of transitions is generally sparse [28], resulting in a
percolation-like process of energy spreading, that is dominated by bottlenecks and preferred pathways. As a
result, the Kubo formula grossly overestimates the thermalization rate and QCC is lost even when the underlying
classical dynamics is highly chaotic.
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Figure 1. Quantum network of transitions. The trimer-monomer model system is schematically illustrated in the lower left inset. In the
absence of trimer-monomer coupling the energy eigenstates can be classified by the trimer population x. The parameters are N = 60,
NU=20,and 2 = 3.17. The dark points mark eigenstates lying in chaotic phase-space regions. The blue band marks the accessible
states within the energy window E,,, + 1/7, where |m) is the central state at the x = 30 band, and 7 is obtained from equation (5) with

® = 0.12. The diamond marker denotes the chaotic preparation for the simulation of figure 2, whereas other markers denote the
additional preparations used in figure 4. The upper inset zooms over a segment of the energy shell, and illustrates the network of
transitions formed by the perturbation. The width of each connecting line is proportional to the strength of the coupling matrix
element.

To illustrate this point, we consider a minimal Bose-Hubbard model of a bi-partite N-boson system, where
/2 = 1/N plays the role of the Planck constant. We show that while the thermalization process is still described by
the FGR picture, resulting in an FPE, it involves an anomalous 7-dependent diffusion-coefficient D whose
estimate requires a resistor-network calculation. Thus, while the approach to equilibrium still relies on diffusive
energy flow with the same long-time stationary energy distributions, the unique mechanism of ‘quantum
thermalization via percolation’ can be much slower than its classical counterpart. Further (technical) details
regarding the resistor network calculation; the percolation-like aspect; and its 2 dependence, are provided in the
appendices.

1. Model system

Consider an isolated system of N'bosons in four second quantized modes. The operatorsd , a ]T andn; = a ]T aj
annihilate, create and count particles in site j. The dynamics is generated by the Bose-Hubbard—Hamiltonian
(BHH)

3

U, 2(.1s | atas

H = ?Zn] - ?(afa2+afa3+h.c.) + Hp, (1)
j=0

where U'is the on-site interaction, and €2 couples a chain of three sites j = 1, 2, 3. The perturbation Hp generates

transitions to an additional j = 0 site, namely

Hp= -2 (4da; +hc). (2)
24

Thus H describes a bi-partite system: a BHH trimer coupled to a monomer (see schematic illustration in figure 1).
Weak coupling between the two subsystems is assumed (o < 2, NU ), and the interaction within the trimer is
quantified by the dimensionless interaction parameter u = NU/(2. In the classical description each site is
described by conjugate action angle variables (1, ¢;). The standard procedure [29] is to work with
dimensionless variables. In particular the scaled occupations are 1;/N, hence upon quantization the scaled
Planck constantis # = 1/N. The classical limit is attained by taking the limit N — oo keeping NU constant. In
this limit quantum fluctuations diminish and the bosonic operators can be replaced by c-numbers. The
semiclassical description becomes valid if 7 < 1.
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Figure 2. Diffusive quantum thermalization. The distribution P,(x) is imaged as a function of time (a), and the corresponding growth of
variance is plotted using the same time axis (b). In the latter the variance of the distribution (thick black line) is compared with the
stochastic approximations. The FGR simulation (dashed red) and the corresponding FPE simulation with a resistor-network estimate
Dy, (x) for the diffusion coefficient (dotted—dashed blue) agree with the quantum simulation, unlike the traditional FPE simulation
(thin solid gray) with a Kubo-type estimate D (x) for the diffusion. Parameters are the same as in figure 1.

The above trimer plus monomer model is the minimal Bose—Hubbard configuration which allows chaos and
thermalization, because the trimer subsystem is classically chaotic [30], while a dimer is not. Furthermore, this
type of minimal configuration serves as the building-block for progressive thermalization of large arrays [31, 32].

2. Quantum network of transitions

The trimer population X = 71, + 71, + 713 commutes with the unperturbed (@ = 0) Hamiltonian H,, and
therefore constitutes a good quantum number in the absence of coupling. The unperturbed spectrum as defined
by the eigenstate equation Hy |m) = E,, |m) is plotted in figure 1. Each unperturbed eigenstate is associated
with a ‘position’ x,,, on the trimer occupation grid. Thus, figure 1 should be interpreted as specifying the
unperturbed trimer spectrum for all possible trimer occupations from x = 1 to x = N. We identify the region of
chaotic dynamics by a Brody parameter map [33] (see appendix B), verified by classical-Poincare sections (not
shown). Eigenstates supported by chaotic phase-space regions are marked in black in figure 1.

The perturbation due to coupling with the additional mode allows transfer of particles and energy and thus
generates transitions along the occupation axis x. The transition strengths are given as(n| Hp |m). The upper
inset of figure 1 depicts the coupling network within a narrow [x,E] window. Due to the wide distribution of
transition strengths, the obtained network is glassy. This glassiness is reminiscent of the sparsity that arises in
integrable systems due to selection rules [28].

3. Diffusive spreading

We focus our attention on the evolution of the probability distribution P,(x), starting with an initial state|m).
This preparation is an eigenstate of the unperturbed Hamiltonian, but a far from equilibrium initial state for the
combined system. The system’s parameters are chosen such that the energy of this state (diamond blue marker
in figure 1) lies within a broad chaotic phase-space window.

A representative example for the evolution of the x probability distribution in the chaotic regime is plotted in
figure 2 with the growth of variance Var (x) depicted in the lower panel. Similarly to the results of [15, 16], the
hallmark of chaos is stochastic-like spreading. This diffusive behavior persists until the distribution saturates the
accessible energy window, thus leading to thermalization.

However, the rate in which the equilibrium distribution is approached is very far from the conventional
Kubo estimate and is therefore highly non-classical. The thin solid gray line in the lower panel of figure 2
corresponds to the traditional FPE description of the dynamics, with a diffusion coefficient D (x) that

3
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Figure 3. Snapshots of the spreading profile. The energy probability distribution P,(x) of figure 2 is plotted at: (a)2t = 2.5, (b)

Qt = 10,(c)f2t = 1000. Line types are as in figure 2(b) with dashed line corresponding to FGR, dashed—dotted line depicting the
FPE propagation with Dy, (x), and gray solid line depicting the FPE propagation with D (x). Circles in panel (c) mark the saturation
profile calculated using the convolution equation 11, while squares mark the ergodic micro-canonical profile «g (x).

corresponds to the classical result. It is evident that the standard classical prediction greatly overestimates the
equilibration rate and that indeed quantum thermalization is slower due to the sparsity of the transition
network. By contrast, the dotted-dashed blue line also depicts an FPE description, but with a percolation-theory
resistor network estimate Dp,, (x) for the diffusion coefficient, that, as described below, takes into account the 72
dependent transition network sparsity. We thus observe a novel anomalous process of quantum thermalization,
which is stochastic and adheres to an FPE description, albeit with an underlying percolation-like spreading
process which does not correspond to the classical dynamics.

4. Evolution of the distribution profile

Several snapshots of P(x) during the thermalization process are plotted in figure 3, showing good agreement
between the percolation-FPE and the full numerical simulation of the four-mode dynamics. By contrast, the
conventional classical FPE thermalization gives far broader distributions at the same times.

An additional observation concerns the long time equilibrium distributions, plotted in figure 3(c). The
saturation profile B, (x) of the FPE is proportional, as expected, to the density of states & (x). By contrast the exact
equilibrium distribution is somewhat non-ergodic. The lack of ergodicity in the low x region of the saturation
profile, is due to residual integrability within islands of the underlying mixed phase-space. It therefore
disappears when the simulation is started deeper within the chaotic sea, see figure 4. In addition, there are
deviations from ergodicity in the high x region due to Anderson-type localization. The former semiclassical
effect and the latter quantum anomaly are both distinct from the dynamical anomaly which constitutes our main
theme. For further detail on these deviations see section 8.

5. Stochastic FGR rate equations
The transition rates between two chaotic sub-systems are non-zero provided |E,, — E,,| < 1/z, where the
bandwidth1/7 is determined by the width of the power-spectrum of the perturbation [16]. The FGR estimate for

the non-zero rates is accordingly

Lo = 212 [(n] H, Im) " (3)
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Figure 4. Saturation profiles. Quantum saturation profiles starting from the initial states marked in figure 1, compared to the micro-
canonical (g (x)) thermal distribution (square markers). The quasi-integrable region is marked in gray and an arrow in the chaotic
region marks the initial state used in figures 2—5. Non-ergodicity is due to quasi-integrability at the low x region (red lines) and due to
Anderson-type localization at the high x region (magenta lines). Quantum thermalization is obtained for intermediate x preparations,
regardless of the precise initial conditions (blue lines).

With these rates, the master equation for the occupation probabilities is

d
anz—grmn(E_Pm)- (4)
Our model is sub-minimal in the sense that the monomer is not a chaotic sub-system. Still, the dynamics is the
same as for two chaotic sub-systems with1/7 determined by the width of the energy shell. Namely

Lo [ 72 1my = (m] H ). (5)

T

Only states within this energy shell, marked by blue lines in figure 1, contribute to the thermalization process.
States outside it do not participate in the dynamics. The red dashed lines in figures 2 and 3 correspond to the
propagation of equation (4) (see appendix). The agreement with the full quantum simulation validates the
stochastic FGR picture.

6. The FPE description

Coarse graining of the kinetic equations (4) results in the FPE, which is merely a diffusion equation in x space
0 0 0
—P(x) = —|§(x)D(x)—(gx)"'P . 6
“p( = ] gD~ (g ) | ©)

Here g (x) is the density of states within the allowed energy shell. Unlike the textbook version of the diffusion
equation, which assumes uniform ¢ (x) and D(x), the form of the FPE (6) reflects the simple observation that an
ergodic distribution occupies uniformly all accessible eigenstates, so that the FPE ergodic saturation profile must
satisfy By, (x) o g (x).

The standard linear response estimate for the diffusion coefficient, i.e. the Kubo formula [23, 24], is based on
a second moment calculation:

Dax) = { 5 360 = 20 o ). ?)

where the brackets correspond to averaging over all the in-band states m in the vicinity of x. The result of the
D (x) calculation is illustrated in figure 5. We have verified that the obtained values of D (x) are robust, i.e. are
not sensitive to the exact value of the micro-canonical width 1/z.
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20

Figure 5. The resistor-network estimated Dy, (x) is calculated over dx segments (see appendix D, note convergence). It is contrasted
with D (x) of the Kubo calculation: gray dots for each m in equation (7); and dashed black line for the m-averaged result.

7. Resistor-network calculation

As mentioned above, the FPE simulation with the standard diffusion coefficient D (x) fails to reproduce the
true dynamics as illustrated in figure 2. This striking breakdown of QCC is due to the percolation-like nature of
energy spreading. As appropriate for a percolation process, D(x) should be estimated from the conductivity of
the ’resistor network’ that is formed by the quantum transitions [28]. Such evaluation gives the proper weight to
low-resistance, well-connected links, as opposed to the over-estimated democratic weighing of equation (7).
Thus, in steady state equation (4) is formally the same as Kirchhoff’s equation

ZGmn (Vn - Vm) =1, (8)

where the conductances G,,,,,, and the voltages V,,, are analogous to [}, and p,, respectively. In order to calculate
the conductance of a small x segment[x;, x; ], we set I, = 0 for all internal nodes, and I,, = +Iurce at the
endpoints. The detailed numerical procedure is provided in appendix C. Solving for the voltage we deduce that
the conductance of the x segment is G (x) = Lource/ (V2 — V), and hence the conductivity is

Dy (x) = (x5 — x1) G (x).

As shown in figure 5, the resistor-network calculated diffusion coefficient Dy, (x) is substantially smaller
than the Kubo result D (x). As previously stated, the FPE simulation (appendix D) with Dy, (x), presented in
figure 2, agrees well with the quantum simulation. The agreement persists as long as the spreading is within the
chaotic region of the energy shell, confirming our expectations.

8. Saturation profile

For completeness we further discuss the saturation profiles of figure 4. Given an initial state (), we take its
overlap with the exact eigenstates (v),

P(v|m) = [{v|m) P. 9)
Evolving the initial state 7 in time we define the probability distribution

P (n|m) = ‘(nl e iHt |m)‘2 (10)

The P,(x) distribution is related to this kernel by binning together the probabilities of all the unperturbed
eigenstates with the same trimer occupation, namely P, (x) = ng) P, (n|m) where the summation is over all
unperturbed states n with x,, = x. Note that while P (v|m) is the fixed probability distribution between the exact
eigenstates of the composite four-mode system, P, (1n|m) is the time-dependent probability distribution between
the eigenstates of an uncoupled trimer-monomer subsystem.

The long time saturation profile of the evolving distribution P, (r1|m), can be obtained directly from the
overlaps P (v|m), via the convolution formula

Po(n|m) = Y P(v|n)P (v|m). (11)
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This relation is obtained by expanding the states|n) and|m) of equation (10) in the|v) basis, assuming that the
spectrum is non-degenerate; hence only diagonal terms survive after the long time averaging [35, 36]. Note that
whenever the Wigner surmise applies, degeneracies have measure zero due to level repulsion. We have verified
thatequation (11) is in very good agreement with the exact simulation, as demonstrated in figure 3(c).

It thus becomes clear that the deviation from ergodicity is related to the localization of some unperturbed-
eigenstate preparations|m), as reflected in the overlaps P (v |m). Several preparations with the same energy but
lying in different phase-space regions are marked in figure 1, while their associated saturation profiles are shown
in figure 4. Preparations in the chaotic region give the micro-canonical ergodic saturation profile B, (x) o g (x),
independently of the choice of initial state (blue lines). In the low x region of the saturation profile the
localization is of semi-classical nature, due to the underlying mixed phase-space which contains remnant quasi-
integrable regions. Preparations supported by such integrable islands have narrow P (v |m) which leads to
localized saturation profiles. At the high x region, the coupling between eigenstates in different x manifolds, as
quantified by the value of the diffusion coefficient D,,,, becomes small (see figure 5). Consequently, the
Anderson localization length & = 27§Dy, is only a few sites, again resulting in localized saturation profiles
(magentalines). The deviation of the saturation profile in this region from the ergodic result of the stochastic
FGR calculation (see e.g. Figure 3(c)) indicates that this is an Anderson—type interference effect.

9. Experimental realization

Few-mode Bose—Hubbard systems can be realized in confining potentials with toroidal shapes and tunable weak
links [37-40]. Of particular relevance for the realization of bi-partite Bose—Hubbard models is the experimental
generation of arbitrary and dynamical potentials in a *”Rb Bose—Einstein condensate by means of a rapidly
moving laser beam [38]. Alternatively, the interference of the rotationally-symmetric Gauss—Laguerre laser
modes and optical lattices may be used to generate toroidal Bose—Hubbard systems [37] where adjustable weak
links may be introduced [40] to separate the ring into two weakly-coupled subsystems. In this context, one
simple configuration may be attained by tilting the lattice potential with respect to a four-node Gauss—Laguerre
mode, thus generating two adjacent high barriers and two adjacent low barriers along the four-site ring,
separating it into a trimer and a monomer. Equilibration can be readily detected by monitoring the populations
of the two subsystems as a function of time and full relative-number distributions may be attained by multi-
realization measurements. As long as the constituent subsystems are weakly-connected, our observations should
be independent of the details of the coupling (e.g. which sites of the two subsystems are linked) due to the generic
nature of chaotic motion. The interplay between realistic dephasing and particle loss, and the chaotic dynamics
will be the subject of future studies.

10. Discussion

All stochastic descriptions eventually fail to describe quantum coherent processes, because they inevitably lead
toaamicrocanonical distribution att — oo, whereas the quantum evolution has an infinite memory of the
initial conditions. However, the equivalence between the diagonal and the microcanonical ensembles [34-36] in
the eigenstate thermalization hypothesis picture [5, 6, 9] implies that in the quantum evolution of classically
chaotic systems, the memory of initial conditions is effectively lost over an ergodization period with all initial
conditions leading to a microcanonical distribution. On longer timescales, quantum recurrences take place and
the memory of initial conditions is regained. It is thus understood that stochastic methods should be evaluated
by their ability to describe quantum dynamics within the time scale of interest, i.e. until an ergodic-like
distribution for the pertinent observable is attained.

Within this ergodization time, deviations from LRT include both quantum anomalies and semiclassical
integrability effects. The former are directly related to quantization and are important for a dynamical view of
quantum thermodynamics [41], whereas the latter are related to incomplete chaoticity and residual quasi-
integrability regions in the classical mixed phase-space.

Our main objective was to highlight a novel quantum anomaly in the thermalization process of a quantized
chaotic system: a bi-partite Bose—Hubbard complex that can be regarded as the building block for
thermalization of larger arrays. We have demonstrated that thermalization with finite £ is quite different from
that of the corresponding ‘7z = 0’ classical system. Whereas classical thermalization is captured well by LRT,
leading to an FPE with a Kubo estimate for the energy diffusion coefficient, this approximation fails badly upon
quantization. The reason for this dynamical anomaly is the sparsity of the network of couplings between the
energy eigenstates of the constituent subsystems which leads to percolation-like dynamics of the energy
distribution. As a result, while an FPE description still holds (within the timescale of interest), quantum
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thermalization, properly described by a resistor-network calculation, can be strikingly slower than the
corresponding classical process.
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Appendix A. Symmetry subspaces in the tetramer

The full dimension of the Hilbert space in a tetramer with population Nis A" = (N + 1)(N + 2)(N + 3)/6.
The Hamiltonian of the system can be separated into blocks of smaller dimensions by considering the
permutation symmetry between the external trimer sites (sites 2 and 3, in the schematic illustration inset of
figure 1). Denoting the population basis by|ng ) |11, 15, 113 ), the totally symmetric and the totally anti-symmetric
sub-spaces are spanned by the following symmetrized and antisymmetrized superpositions:

1
ﬁ<|no>|n1, ny, n3) + |ng)|m, ns, nz))
|1’10>|1’11, n, Tl) (Al)

The former is forn, # n;. Werestrict the simulations to the antisymmetric subspace which includes less states
and therefore allows us to use a higher number of particles. The antisymmetric subspace excluded the possibility
of having zero trimer population x = 0.

Appendix B. Identification of chaos by level statistics

Given the parameters N, £2, @, U, we find the eigen-energies of the Hamiltonian equation (1) (e.g., figure 1).
Dividing the spectrum to small energy intervals, we calculate the mean level spacing and the distribution P(S) of
level-spacings in each of them. We then fit it to the Brody distribution [33]

P/(S) = as exp(—ﬂSHq) (B.1)

witha = (1 + q),and B = I'"'*1[(2 + q)/1 + q)]. Here I" denotes the Euler gamma function. A Brody
parameter value of g = 0 indicates a Poissonian level-spacing distribution characteristic of the uncorrelated levels
of integrable system. By contrast for g = 1 we have the Wigner level-spacing distribution, that reflects the level
repulsion in the case of a quantized chaotic system. Thus, by plotting g as a function of energy we map the
domain of chaotic motion, marked in black in figure 1. The result was then ascertained by inspecting classical
Poincare sections in the various regions of the map.

In order to illustrate the connection between the deviation from ergodicity of the saturation profiles and the
quasi-integrability islands in the mixed phase-space, we employ the initial states marked in figure 1. Some lie
well within the chaotic sea, while others reside in an integrable island. The saturation profiles for these states are
shown in figure 4, showing a clear connection between integrability and localization.

Appendix C. The resistor-network calculation

In order to find the diffusion coefficient D for a sparse resistor network we rewrite Kirchhoff’s law equation (8)
in a matrix form

GV =1, (C.1)
where G is the discrete Laplacian matrix of the network, whose diagonal elements are defined as follows:

G == Y Gur - (C2)

In order to find the conductance of a segment[x), x,] oflengthdx = x, — x; we shortcut the bonds to the left of
the segments, hence defining a left lead. Likewise we define a right lead. Then we place a source I; = 1 and a sink
I, = —1attwo nodes on the left and right leads, and solve Kirchhoff’s equation using a psaudo-inverse routine.

Analytical approximation for D could be obtained if the network had well-defined statistical properties. As
an illustrative example we point out that for the common model of hopping in a random site network the
following estimate has been derived [42]:
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D~ EXPd+2(l) e—l/s Dlinear- (C3)
N

The polynomial EXP, (x) has degree v, and equals the truncated Taylor expansion of exp (x). Its degree is
determined by the effective dimensionality d of the network. The linear estimate Djjye,, is what we call here D,
and sis the sparsity parameter (s << 1 means sparse network). If the network originates from the quantization of
aweakly chaotic system we expect s to be proportional to some power of 1/7 [43]. Accordingly the ratio

8, = Dym /D reflects the sparsity of the network. In the ‘sparse’ limit (s < 1) the expression above resembles
that of variable-range-hopping. For small /2 the network becomes more connected (less sparse) and g; goes to
unity. This crossover can be regarded as a smoothed ‘percolation’ transition.

Form the above discussion it should be clear that sparsity and hence the quantum anomaly diminish in the
large N'limit. However, it is important to realize that for thermalization of large arrays, which proceeds via
progressive process that involves ‘chaotic spots’ [31], the relevant 7 is determined by the number of particles per
‘spot’, and not by the total number of particles in the system.

Appendix D. FGR and FPE simulations

The master equation (4) can be written in a matrix form as(d/dt)p = Wp and has the solution
p(t) =e"p(0). (D.1)

In order to perform a simulation with the FPE equation (6) we have to discritize the continuous x variable. There
are two possible strategies. One possibility is to define formally a variable #, such thatdn/dx = § (x). In this
variable the FPE becomes an unbiased diffusion equation:

0 0 0
=5 ()] (02
where
D, = §(x)*D(x). (D.3)

The discrete version of equation (D.2) is a master equation with near-neighbor hopping. The rates D,, are the
same in both directions, and the solution is straightforward.

The second strategy to solve the FPE, which looks more natural in the present context, is to stay with the x
variable. One should realize that in this variable the ergodic state is not uniform. At steady state the current
across each x bond is zero, satisfying

Wx—1,x P(x) = Wxx-1 P(x - 1): (D4)

where w, ,- are transition rates between nodes. Selection rules forbid transitions between non-neighboring
nodes, thus the W matrix contains only two diagonals at x’ = x + 1. But unlike the master equation of
equation (4), here W is a non-symmetric matrix. The FPE can thus be viewed as a Pauli master equation for x
[19]. At steady state the probability distribution is identical to the normalized density of states, hence we deduce
the relation

Wa-lx g(x) = oS (D.5)

Wx,x—1 g(x -1

Accordingly the forward and backward transition rates that we are using in the FPE simulation are

S
Wy—1x = [m]D(X), (D.6)
Weer = | ———|D(x) (D.7)
oxl T exp (S) — 1 ’ ‘

Using the above rates we can solve the FPE using equation (D.1).
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