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Abstract
Wehighlight a dynamical anomaly inwhich the rate of relaxation towards thermal equilibrium in a bi-
partite quantum system violates the standard linear-response (Kubo) formulation, evenwhen the
underlying dynamics is highly chaotic. This anomaly originates from anℏ-dependent sparsity of the
underlying quantumnetwork of transitions. Using aminimal bi-partite Bose–Hubbardmodel as an
example, we find that the relaxation rate acquires an anomalousℏ dependence that reflects percola-
tion-like dynamics in energy space.

The connection between thermalization and chaotic ergodicity is well-established for classical systems [1]. Since
strict dynamical chaos is absent in isolated quantum systems, contemporary research efforts [2–19] are aimed to
find novel quantum signatures such as Anderson localization [20–22] in the thermalization of quantized chaotic
systems. The current paradigm for thermalization of coupled quantum subsystems is linear response theory
(LRT). If the underlying classical dynamics is chaotic, thermalization is attained via diffusive spreadingwhich is
described by a Fokker–Planck–equation (FPE) [14–19], leading to ergodization of the composite systemover all
accessible states within amicrocanonical energy shell.

LRT is related to the Fermi-golden-rule (FGR) picture inwhich the rates of transitions between the
unperturbed eigenstates of the subsystems are given by first-order-perturbationmatrix elements, but over long
timescales that involvemany perturbative orders. The diffusion coefficientD of the FPE is estimated from these
rates by aKubo formula [23, 24]. LRT implies quantum-to-classical correspondence (QCC) in the FPE
description, which is somewhat analogous to the Thomas–Reiche–Kuhn f-sum-rule, and has been termed
‘restrictedQCC’ [25]. The argument that supports restrictedQCCwith regard to the FPE picture is based on the
observation that for short times the variance (unlike the highermoments) features a robustQCC,while for long
times the central limit theoremmakes all highermoments irrelevant. Thus LRTbased description becomes
accurate far beyond the naive expectation. The restrictedQCC assumption prevails in all current work on
thermalization [5–18].

Deviations fromLRThave either a classical or a quantumorigin. Classical deviations result fromdynamical
quasi-integrability in themixed phase space [26, 27]which canmake thermalization a slow and intricate process
[2–4]. By contrast quantum anomalies are directly related to the breakdown ofQCCdue to thefinite value of the
Planck constantℏ. Onewell-known example for such quantum anomaly is the loss of ergodicity due tomany-
bodyAnderson localization [20–22].

In this Letter we highlight a new type of quantum anomalywhich does not originate from the lack of
quantum ergodicity, but from theℏ-dependent sparsity of the quantumnetwork of transitions. The classical-
Kubo-FGRpicture relies critically on the existence of a dense, connected network of transitions between all the
available states, so that all transitions contribute to the diffusive energy spreading process. However, such dense
networks do not always exist. The quantumnetwork of transitions is generally sparse [28], resulting in a
percolation-like process of energy spreading, that is dominated by bottlenecks and preferred pathways. As a
result, the Kubo formula grossly overestimates the thermalization rate andQCC is lost evenwhen the underlying
classical dynamics is highly chaotic.
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To illustrate this point, we consider aminimal Bose–Hubbardmodel of a bi-partiteN-boson system, where
= N1 plays the role of the Planck constant.We show that while the thermalization process is still described by

the FGRpicture, resulting in an FPE, it involves an anomalousℏ-dependent diffusion-coefficientDwhose
estimate requires a resistor-network calculation. Thus, while the approach to equilibrium still relies on diffusive
energyflowwith the same long-time stationary energy distributions, the uniquemechanismof ‘quantum
thermalization via percolation’ can bemuch slower than its classical counterpart. Further (technical) details
regarding the resistor network calculation; the percolation-like aspect; and itsℏ dependence, are provided in the
appendices.

1.Model system

Consider an isolated systemofN bosons in four second quantizedmodes. The operators â j , â j
† and =n a aˆ ˆ ˆj j j

†

annihilate, create and count particles in site j. The dynamics is generated by the Bose–Hubbard–Hamiltonian
(BHH)
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whereU is the on-site interaction, andΩ couples a chain of three sites j=1, 2, 3. The perturbationP generates
transitions to an additional j=0 site, namely
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Thus describes a bi-partite system: a BHH trimer coupled to amonomer (see schematic illustration infigure 1).
Weak coupling between the two subsystems is assumed (ω Ω≪ NU, ), and the interactionwithin the trimer is
quantified by the dimensionless interaction parameter Ω=u NU . In the classical description each site is
described by conjugate action angle variables φn( , )j j . The standard procedure [29] is toworkwith

dimensionless variables. In particular the scaled occupations are nj/N, hence upon quantization the scaled
Planck constant is = N1 . The classical limit is attained by taking the limit → ∞N keepingNU constant. In
this limit quantumfluctuations diminish and the bosonic operators can be replaced by c-numbers. The
semiclassical description becomes valid if ≪ 1.

Figure 1.Quantumnetwork of transitions.The trimer–monomermodel system is schematically illustrated in the lower left inset. In the
absence of trimer–monomer coupling the energy eigenstates can be classified by the trimer population x. The parameters areN=60,
NU=20, andΩ = 3.17. The dark pointsmark eigenstates lying in chaotic phase-space regions. The blue bandmarks the accessible
states within the energywindow τ±E 1m , where ∣ 〉m is the central state at the x=30 band, and τ is obtained from equation (5)with
ω Ω= 0.1 . The diamondmarker denotes the chaotic preparation for the simulation offigure 2, whereas othermarkers denote the
additional preparations used infigure 4. The upper inset zooms over a segment of the energy shell, and illustrates the network of
transitions formed by the perturbation. Thewidth of each connecting line is proportional to the strength of the couplingmatrix
element.
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The above trimer plusmonomermodel is theminimal Bose–Hubbard configurationwhich allows chaos and
thermalization, because the trimer subsystem is classically chaotic [30], while a dimer is not. Furthermore, this
type ofminimal configuration serves as the building-block for progressive thermalization of large arrays [31, 32].

2.Quantumnetwork of transitions

The trimer population ≡ + +x n n nˆ ˆ ˆ ˆ1 2 3 commutes with the unperturbed (ω=0)Hamiltonian0, and
therefore constitutes a good quantumnumber in the absence of coupling. The unperturbed spectrum as defined
by the eigenstate equation ∣ 〉 = ∣ 〉m E mm0 is plotted infigure 1. Each unperturbed eigenstate is associated
with a ‘position’ xm on the trimer occupation grid. Thus,figure 1 should be interpreted as specifying the
unperturbed trimer spectrum for all possible trimer occupations from x=1 to x=N.We identify the region of
chaotic dynamics by a Brody parametermap [33] (see appendix B), verified by classical-Poincare sections (not
shown). Eigenstates supported by chaotic phase-space regions aremarked in black infigure 1.

The perturbation due to couplingwith the additionalmode allows transfer of particles and energy and thus
generates transitions along the occupation axis x. The transition strengths are given as 〈 ∣ ∣ 〉n mP . The upper
inset offigure 1 depicts the coupling networkwithin a narrow [x,E] window.Due to thewide distribution of
transition strengths, the obtained network is glassy. This glassiness is reminiscent of the sparsity that arises in
integrable systems due to selection rules [28].

3.Diffusive spreading

We focus our attention on the evolution of the probability distribution Pt(x), startingwith an initial state∣ 〉m .
This preparation is an eigenstate of the unperturbedHamiltonian, but a far from equilibrium initial state for the
combined system. The system’s parameters are chosen such that the energy of this state (diamond bluemarker
infigure 1) lies within a broad chaotic phase-space window.

A representative example for the evolution of the x probability distribution in the chaotic regime is plotted in
figure 2with the growth of variance xVar( )depicted in the lower panel. Similarly to the results of [15, 16], the
hallmark of chaos is stochastic-like spreading. This diffusive behavior persists until the distribution saturates the
accessible energywindow, thus leading to thermalization.

However, the rate inwhich the equilibriumdistribution is approached is very far from the conventional
Kubo estimate and is therefore highly non-classical. The thin solid gray line in the lower panel offigure 2
corresponds to the traditional FPEdescription of the dynamics, with a diffusion coefficientD x( )cl that

Figure 2.Diffusive quantum thermalization.The distribution Pt(x) is imaged as a function of time (a), and the corresponding growth of
variance is plotted using the same time axis (b). In the latter the variance of the distribution (thick black line) is comparedwith the
stochastic approximations. The FGR simulation (dashed red) and the corresponding FPE simulationwith a resistor-network estimate
D x( )qm for the diffusion coefficient (dotted–dashed blue) agree with the quantum simulation, unlike the traditional FPE simulation
(thin solid gray) with aKubo-type estimateD x( )cl for the diffusion. Parameters are the same as infigure 1.
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corresponds to the classical result. It is evident that the standard classical prediction greatly overestimates the
equilibration rate and that indeed quantum thermalization is slower due to the sparsity of the transition
network. By contrast, the dotted-dashed blue line also depicts an FPE description, butwith a percolation-theory
resistor network estimateD x( )qm for the diffusion coefficient, that, as described below, takes into account theℏ
dependent transition network sparsity.We thus observe a novel anomalous process of quantum thermalization,
which is stochastic and adheres to an FPEdescription, albeit with an underlying percolation-like spreading
process which does not correspond to the classical dynamics.

4. Evolution of the distribution profile

Several snapshots ofPt(x) during the thermalization process are plotted in figure 3, showing good agreement
between the percolation-FPE and the full numerical simulation of the four-mode dynamics. By contrast, the
conventional classical FPE thermalization gives far broader distributions at the same times.

An additional observation concerns the long time equilibriumdistributions, plotted infigure 3(c). The
saturation profile ∞P x( )of the FPE is proportional, as expected, to the density of states g x˜ ( ). By contrast the exact
equilibriumdistribution is somewhat non-ergodic. The lack of ergodicity in the low x region of the saturation
profile, is due to residual integrability within islands of the underlyingmixed phase-space. It therefore
disappears when the simulation is started deeper within the chaotic sea, see figure 4. In addition, there are
deviations from ergodicity in the high x region due toAnderson-type localization. The former semiclassical
effect and the latter quantum anomaly are both distinct from the dynamical anomalywhich constitutes ourmain
theme. For further detail on these deviations see section 8.

5. Stochastic FGR rate equations

The transition rates between two chaotic sub-systems are non-zero provided τ∣ − ∣ <E E 1n m , where the
bandwidth τ1 is determined by thewidth of the power-spectrumof the perturbation [16]. The FGR estimate for
the non-zero rates is accordingly

Γ πτ= n m2 . (3)mn p
2

Figure 3. Snapshots of the spreading profile.The energy probability distribution Pt(x) offigure 2 is plotted at: (a)Ω =t 2.5, (b)
Ω =t 10, (c)Ω =t 1000. Line types are as infigure 2(b)with dashed line corresponding to FGR, dashed–dotted line depicting the
FPE propagationwithDqm(x), and gray solid line depicting the FPEpropagationwithDcl(x). Circles in panel (c)mark the saturation
profile calculated using the convolution equation 11, while squaresmark the ergodicmicro-canonical profile∝g x˜ ( ).
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With these rates, themaster equation for the occupation probabilities is

∑Γ= − −( )p p p
d

dt
. (4)n

m

mn n m

Ourmodel is sub-minimal in the sense that themonomer is not a chaotic sub-system. Still, the dynamics is the
same as for two chaotic sub-systemswith τ1 determined by thewidth of the energy shell. Namely

 
τ

= −m m m m
1

. (5)2 2

Only states within this energy shell,marked by blue lines infigure 1, contribute to the thermalization process.
States outside it do not participate in the dynamics. The red dashed lines infigures 2 and 3 correspond to the
propagation of equation (4) (see appendix). The agreement with the full quantum simulation validates the
stochastic FGRpicture.

6. The FPEdescription

Coarse graining of the kinetic equations (4) results in the FPE, which ismerely a diffusion equation in x space

∂
∂

= ∂
∂

∂
∂

−( )
t

P x
x

g x D x
x

g x P x( ) ˜ ( ) ( ) ˜( ) ( ) . (6)1⎡
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⎤
⎦⎥

Here g x˜ ( ) is the density of states within the allowed energy shell. Unlike the textbook version of the diffusion
equation, which assumes uniform g x˜ ( ) andD(x), the formof the FPE (6) reflects the simple observation that an
ergodic distribution occupies uniformly all accessible eigenstates, so that the FPE ergodic saturation profilemust
satisfy ∝∞P x g x( ) ˜ ( ).

The standard linear response estimate for the diffusion coefficient, i.e. the Kubo formula [23, 24], is based on
a secondmoment calculation:

∑ Γ= −D x x x( )
1

2
( ) , (7)

n

n m nmcl
2

where the brackets correspond to averaging over all the in-band statesm in the vicinity of x. The result of the
D x( )cl calculation is illustrated infigure 5.We have verified that the obtained values ofD x( )cl are robust, i.e. are
not sensitive to the exact value of themicro-canonical width τ1 .

Figure 4. Saturation profiles.Quantum saturation profiles starting from the initial statesmarked infigure 1, compared to themicro-
canonical (∝g x˜ ( )) thermal distribution (squaremarkers). The quasi-integrable region ismarked in gray and an arrow in the chaotic
regionmarks the initial state used in figures 2–5. Non-ergodicity is due to quasi-integrability at the low x region (red lines) and due to
Anderson-type localization at the high x region (magenta lines). Quantum thermalization is obtained for intermediate x preparations,
regardless of the precise initial conditions (blue lines).

5

New J. Phys. 17 (2015) 023071 CKhripkov et al



7. Resistor-network calculation

Asmentioned above, the FPE simulationwith the standard diffusion coefficientD x( )cl fails to reproduce the
true dynamics as illustrated infigure 2. This striking breakdownofQCC is due to the percolation-like nature of
energy spreading. As appropriate for a percolation process,D(x) should be estimated from the conductivity of
the ’resistor network’ that is formed by the quantum transitions [28]. Such evaluation gives the properweight to
low-resistance, well-connected links, as opposed to the over-estimated democratic weighing of equation (7).
Thus, in steady state equation (4) is formally the same as Kirchhoff’s equation

∑ − =( )G V V I , (8)
m

mn n m n

where the conductancesGmn, and the voltagesVn, are analogous toΓnm and pn respectively. In order to calculate
the conductance of a small x segment x x[ , ]1 2 , we set In=0 for all internal nodes, and = ±I In source at the
endpoints. The detailed numerical procedure is provided in appendix C. Solving for the voltagewe deduce that
the conductance of the x segment is = −G x I V V( ) ( )source 2 1 , and hence the conductivity is

= −D x x x G x( ) ( ) ( )qm 2 1 .
As shown infigure 5, the resistor-network calculated diffusion coefficientD x( )qm is substantially smaller

than theKubo resultD x( )cl . As previously stated, the FPE simulation (appendixD)withD x( )qm , presented in
figure 2, agrees well with the quantum simulation. The agreement persists as long as the spreading is within the
chaotic region of the energy shell, confirming our expectations.

8. Saturation profile

For completeness we further discuss the saturation profiles offigure 4. Given an initial state (m), we take its
overlapwith the exact eigenstates (ν),

ν ν=P m m( ) . (9)2

Evolving the initial statem in timewe define the probability distribution

= −P n m n m( ) e . (10)t
ti 2

ThePt(x) distribution is related to this kernel by binning together the probabilities of all the unperturbed

eigenstates with the same trimer occupation, namely = ∑ ∣P x P n m( ) ( )t n
x

t
( ) where the summation is over all

unperturbed states nwith xn= x. Note that while ν ∣P m( ) is thefixed probability distribution between the exact
eigenstates of the composite four-mode system, ∣P n m( )t is the time-dependent probability distribution between
the eigenstates of an uncoupled trimer-monomer subsystem.

The long time saturation profile of the evolving distribution ∣P n m( )t , can be obtained directly from the
overlaps ν ∣P m( ), via the convolution formula

∑ ν ν=
ν

∞P n m P n P m( ) ( ) ( ). (11)

Figure 5.The resistor-network estimatedD x( )qm is calculated over xd segments (see appendixD, note convergence). It is contrasted
withD x( )cl of theKubo calculation: gray dots for eachm in equation (7); and dashed black line for them-averaged result.
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This relation is obtained by expanding the states∣ 〉n and∣ 〉m of equation (10) in the ν∣ 〉basis, assuming that the
spectrum is non-degenerate; hence only diagonal terms survive after the long time averaging [35, 36]. Note that
whenever theWigner surmise applies, degeneracies havemeasure zero due to level repulsion.We have verified
that equation (11) is in very good agreement with the exact simulation, as demonstrated infigure 3(c).

It thus becomes clear that the deviation from ergodicity is related to the localization of some unperturbed-
eigenstate preparations∣ 〉m , as reflected in the overlaps ν ∣P m( ). Several preparations with the same energy but
lying in different phase-space regions aremarked infigure 1, while their associated saturation profiles are shown
infigure 4. Preparations in the chaotic region give themicro-canonical ergodic saturation profile ∝∞P x g x( ) ˜ ( ),
independently of the choice of initial state (blue lines). In the low x region of the saturation profile the
localization is of semi-classical nature, due to the underlyingmixed phase-space which contains remnant quasi-
integrable regions. Preparations supported by such integrable islands have narrow ν ∣P m( )which leads to
localized saturation profiles. At the high x region, the coupling between eigenstates in different xmanifolds, as
quantified by the value of the diffusion coefficientDqm, becomes small (see figure 5). Consequently, the
Anderson localization lengthξ π= ̃gD2 qm is only a few sites, again resulting in localized saturation profiles
(magenta lines). The deviation of the saturation profile in this region from the ergodic result of the stochastic
FGR calculation (see e.g. Figure 3(c)) indicates that this is anAnderson–type interference effect.

9. Experimental realization

Few-mode Bose–Hubbard systems can be realized in confining potentials with toroidal shapes and tunable weak
links [37–40].Of particular relevance for the realization of bi-partite Bose–Hubbardmodels is the experimental
generation of arbitrary and dynamical potentials in a 87RbBose–Einstein condensate bymeans of a rapidly
moving laser beam [38]. Alternatively, the interference of the rotationally-symmetric Gauss–Laguerre laser
modes and optical latticesmay be used to generate toroidal Bose–Hubbard systems [37]where adjustable weak
linksmay be introduced [40] to separate the ring into twoweakly-coupled subsystems. In this context, one
simple configurationmay be attained by tilting the lattice potential with respect to a four-nodeGauss–Laguerre
mode, thus generating two adjacent high barriers and two adjacent low barriers along the four-site ring,
separating it into a trimer and amonomer. Equilibration can be readily detected bymonitoring the populations
of the two subsystems as a function of time and full relative-number distributionsmay be attained bymulti-
realizationmeasurements. As long as the constituent subsystems are weakly-connected, our observations should
be independent of the details of the coupling (e.g. which sites of the two subsystems are linked) due to the generic
nature of chaoticmotion. The interplay between realistic dephasing and particle loss, and the chaotic dynamics
will be the subject of future studies.

10.Discussion

All stochastic descriptions eventually fail to describe quantum coherent processes, because they inevitably lead
to a amicrocanonical distribution at → ∞t , whereas the quantum evolution has an infinitememory of the
initial conditions. However, the equivalence between the diagonal and themicrocanonical ensembles [34–36] in
the eigenstate thermalization hypothesis picture [5, 6, 9] implies that in the quantum evolution of classically
chaotic systems, thememory of initial conditions is effectively lost over an ergodization periodwith all initial
conditions leading to amicrocanonical distribution.On longer timescales, quantum recurrences take place and
thememory of initial conditions is regained. It is thus understood that stochasticmethods should be evaluated
by their ability to describe quantumdynamicswithin the time scale of interest, i.e. until an ergodic-like
distribution for the pertinent observable is attained.

Within this ergodization time, deviations fromLRT include both quantum anomalies and semiclassical
integrability effects. The former are directly related to quantization and are important for a dynamical view of
quantum thermodynamics [41], whereas the latter are related to incomplete chaoticity and residual quasi-
integrability regions in the classicalmixed phase-space.

Ourmain objectivewas to highlight a novel quantumanomaly in the thermalization process of a quantized
chaotic system: a bi-partite Bose–Hubbard complex that can be regarded as the building block for
thermalization of larger arrays.We have demonstrated that thermalizationwithfiniteℏ is quite different from
that of the corresponding ‘ = 0’ classical system.Whereas classical thermalization is capturedwell by LRT,
leading to an FPEwith aKubo estimate for the energy diffusion coefficient, this approximation fails badly upon
quantization. The reason for this dynamical anomaly is the sparsity of the network of couplings between the
energy eigenstates of the constituent subsystemswhich leads to percolation-like dynamics of the energy
distribution. As a result, while an FPE description still holds (within the timescale of interest), quantum
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thermalization, properly described by a resistor-network calculation, can be strikingly slower than the
corresponding classical process.
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AppendixA. Symmetry subspaces in the tetramer

The full dimension of theHilbert space in a tetramerwith populationN is = + + +N N N( 1)( 2)( 3) 6.
TheHamiltonian of the system can be separated into blocks of smaller dimensions by considering the
permutation symmetry between the external trimer sites (sites 2 and 3, in the schematic illustration inset of
figure 1). Denoting the population basis by∣ 〉∣ 〉n n n n, ,0 1 2 3 , the totally symmetric and the totally anti-symmetric
sub-spaces are spanned by the following symmetrized and antisymmetrized superpositions:

±( )n n n n n n n n

n n n n

1

2
, , , ,

, , . (A.1)

0 1 2 3 0 1 3 2

0 1

The former is for ≠n n2 3.We restrict the simulations to the antisymmetric subspacewhich includes less states
and therefore allows us to use a higher number of particles. The antisymmetric subspace excluded the possibility
of having zero trimer population x=0.

Appendix B. Identification of chaos by level statistics

Given the parametersN,Ω,ω,U, we find the eigen-energies of theHamiltonian equation (1) (e.g.,figure 1).
Dividing the spectrum to small energy intervals, we calculate themean level spacing and the distribution P(S) of
level-spacings in each of them.We thenfit it to the Brody distribution [33]

α β= − +( )P S S S( ) exp (B.1)q
q q1

withα β= + q(1 ) , and β Γ= + ++ q q[(2 ) 1 )]q1 . HereΓ denotes the Euler gamma function. ABrody
parameter value of q=0 indicates a Poissonian level-spacing distribution characteristic of the uncorrelated levels
of integrable system. By contrast for q=1we have theWigner level-spacing distribution, that reflects the level
repulsion in the case of a quantized chaotic system. Thus, by plotting q as a function of energy wemap the
domain of chaoticmotion,marked in black infigure 1. The result was then ascertained by inspecting classical
Poincare sections in the various regions of themap.

In order to illustrate the connection between the deviation from ergodicity of the saturation profiles and the
quasi-integrability islands in themixed phase-space, we employ the initial statesmarked infigure 1. Some lie
well within the chaotic sea, while others reside in an integrable island. The saturation profiles for these states are
shown infigure 4, showing a clear connection between integrability and localization.

AppendixC. The resistor-network calculation

In order tofind the diffusion coefficientD for a sparse resistor networkwe rewrite Kirchhoff’s law equation (8)
in amatrix form

⃗ = ⃗GV I , (C.1)

whereG is the discrete Laplacianmatrix of the network, whose diagonal elements are defined as follows:

∑≡ −
′

′G G . (C.2)m m

n

n m, ,

In order tofind the conductance of a segment x x[ , ]1 2 of length = −x x xd 2 1we shortcut the bonds to the left of
the segments, hence defining a left lead. Likewise we define a right lead. Thenwe place a source I1 = 1 and a sink

= −I 12 at twonodes on the left and right leads, and solve Kirchhoff’s equation using a psaudo-inverse routine.
Analytical approximation forD could be obtained if the network hadwell-defined statistical properties. As

an illustrative examplewe point out that for the commonmodel of hopping in a random site network the
following estimate has been derived [42]:
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≈ +
−D

s
DEXP

1
e . (C.3)d

s
2

1
linear⎜ ⎟⎛

⎝
⎞
⎠

The polynomial ν xEXP ( )has degree ν, and equals the truncated Taylor expansion of xexp ( ). Its degree is
determined by the effective dimensionality d of the network. The linear estimateDlinear is whatwe call here Dcl,
and s is the sparsity parameter ( ≪s 1means sparse network). If the network originates from the quantization of
aweakly chaotic systemwe expect s to be proportional to some power of 1 [43]. Accordingly the ratio

≡g D Ds qm cl reflects the sparsity of the network. In the ‘sparse’ limit ( ≪s 1) the expression above resembles
that of variable-range-hopping. For smallℏ the network becomesmore connected (less sparse) and gs goes to
unity. This crossover can be regarded as a smoothed ‘percolation’ transition.

Form the above discussion it should be clear that sparsity and hence the quantumanomaly diminish in the
largeN limit. However, it is important to realize that for thermalization of large arrays, which proceeds via
progressive process that involves ‘chaotic spots’ [31], the relevantℏ is determined by the number of particles per
‘spot’, and not by the total number of particles in the system.

AppendixD. FGRand FPE simulations

Themaster equation (4) can bewritten in amatrix form as ⃗ = ⃗Wt p p(d d ) and has the solution

⃗ = ⃗p t p( ) e (0). (D.1)Wt

In order to perform a simulationwith the FPE equation (6)we have to discritize the continuous x variable. There
are two possible strategies. One possibility is to define formally a variable n, such that =n x g xd d ˜ ( ). In this
variable the FPE becomes an unbiased diffusion equation:

∂
∂

= ∂
∂

∂
∂ ( )

t
P

x
D

x
P , (D.2)n n n

⎡
⎣⎢

⎤
⎦⎥

where

=D g x D x˜( ) ( ). (D.3)n
2

The discrete version of equation (D.2) is amaster equationwith near-neighbor hopping. The ratesDn are the
same in both directions, and the solution is straightforward.

The second strategy to solve the FPE, which looksmore natural in the present context, is to staywith the x
variable. One should realize that in this variable the ergodic state is not uniform. At steady state the current
across each x bond is zero, satisfying

= −− −w P x w P x( ) ( 1), (D.4)x x x x1, , 1

where ′wx x, are transition rates between nodes. Selection rules forbid transitions between non-neighboring
nodes, thus theW matrix contains only two diagonals at ′ = ±x x 1. But unlike themaster equation of
equation (4), hereW is a non-symmetricmatrix. The FPE can thus be viewed as a Paulimaster equation for x
[19]. At steady state the probability distribution is identical to the normalized density of states, hencewe deduce
the relation

=
−

≡−

−

w

w

g x

g x

( )

( 1)
e . (D.5)

x x

x x

S1,

, 1

Accordingly the forward and backward transition rates that we are using in the FPE simulation are

=
− −−w

S

S
D x

1 exp ( )
( ), (D.6)x x1,

⎡
⎣⎢

⎤
⎦⎥

=
−−w

S

S
D x

exp ( ) 1
( ). (D.7)x x, 1

⎡
⎣⎢

⎤
⎦⎥

Using the above rates we can solve the FPE using equation (D.1).
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