
Stability and stabilization of unstable condensates

Doron Cohen
Departments of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

It is possible to condense a macroscopic number of bosons into a single mode. Adding interac-
tions the question arises whether the condensate is stable. For repulsive interaction the answer is
positive with regard to the ground-state, but what about a condensation in an excited mode? We
discuss some results that have been obtained for a 2-mode bosonic Josephson junction, and for a
3-mode minimal-model of a superfluid circuit. Additionally we mention the possibility to stabilize
an unstable condensate by introducing periodic or noisy driving into the system: this is due to the
Kapitza and the Zeno effects.
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I. INTRODUCTION

This presentation concerns a system of N spinless
bososns in an M site system, that are described by the
Bose-Hubbard Hamiltonian (BHH) [1]. The explicit form
the BHH will be provided in later sections. At this stage
of the introduction it is enough to say that the bosons
can hop from site to site with hopping frequency K, and
that additionally there is an on-site interaction U . Ac-
cordingly the dimensionless interaction parameter is

u =
NU

K
(1)

The model systems of interest are illustrated in Fig.1.
We refer to the M = 2 system as the “dimer” or as a
bosonics Josephson junction. We refer to the M = 3
system as the “trimer” [2, 3] or as a minimal model for a
superfluid circuit [4–8]. In the latter case there appear in
the BHH an additional dimensionless parameter Φ that
reflects the rotation frequency of the device.

The term “orbital” is used in order to refer to a single
particle state. The momentum orbitals of the M -site
model systems of Fig.1 are

|ϕ〉 =
1√
M

M∑
j=1

eiϕj |j〉 (2)

These are the eigenstates of a single particle in the sys-
tem. The dimer has a lower mirror-symmetric orbital
ϕ = 0, and an upper anti-symmetric orbital ϕ = π. The
momentum eigenstates of the trimer are ϕ = (2π/3)m,
with m = 0,±1.

Strict condensation means to place all the bosons in
a single orbital. Condensation in a momentum-orbital
of the trimer is known as vortex-state. Condensation
in a single site-orbital is known as self-trapped or as
bright-soliton state. More generally we shall charac-
terize the eigenstates of the BHH by a purity measure
S ∈ [0, 1]. Namely, given an eigenstate we define the re-

duced one-body probability matrix ρij = (1/N)〈a†jai〉,
where a†j are the creation operators. From that we cal-

culate S ≡ trace(ρ2). Accordingly S = 1 implies conden-
sation in a single orbital, also termed “coherent state”,

while 1/S ∼M implies a maximally fragmented state.
The purity measure S reflects the one-body coherence
of the many-body state: small value of S implies loss of
fringe visibility in an interference experiment.

The condensation of all the bosons in a single ϕ orbital
is an eigenstate of the BHH in the absence of interaction.
The other many-body eigenstates are fragmented, mean-
ing that several orbitals are populated. Once we turn-
on the interaction, the possible scenarios are as follows:
(1) The interaction stabilizes the ϕ condensate. (2) As
u is varied a bifurcation is induced, such that the ϕ con-
densate becomes unstable, and instead we get M stable
self-trapped states. (3) The interaction mixes the unper-
turbed ϕ state with other fragmented unperturbed eigen-
states. In the latter case we shall distinguish between:
(3a) a quantum “Mott transition” scenario; and (3b) a
semiclassical “ergodization” scenario. The last possibil-
ity is relevant if the underlying phase-space is chaotic.

In the next sections we shall discuss the stability of the
ϕ condensates. The outline is as follows: In section II we
discuss the simplest examples for quantum quasi-stability
and quantum scarring [9]. In section III we explain that
an unstable state can be semiclassically stabilized by in-
troducing high frequency periodic driving or noise into
the system. In section IV we consider the trimer sys-
tem, and discuss the possibility to witness a metastable
vortex-state. In the latter context we would like to clar-
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FIG. 1: Illustrations of the dimer (left) and of the trimer
(right) model systems. Namely, we consider N bosons that
are described by an M = 2 or by an M = 3 site BHH. The
hopping frequency is K, and the on-site interaction is U . In
the case of a trimer the hopping frequencies acquire phases
whose sum Φ reflects the Coriolis force.
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ify that the essence of “superfluidity” is the possibility to
witness a metastable vortex-state. The term “metasta-
bility” rather than “stability” indicates that the eigen-
state is located in an intermediate energy range. Using a
simple-minded phrasing this implies that there is a possi-
bility to observe a current-carrying stationary-state that
is not decaying. The stability of such stationary state
is due to the interaction. This presentation is based on
[10–15] and further references therein.

II. THE DIMER - A MINIMAL MODEL FOR
SELF TRAPPING AND MOTT TRANSITION

The BHH of an M site system is

H =
U

2

M∑
j=1

a†ja
†
jajaj −

K

2

M∑
j=1

(
a†j+1aj + a†jaj+1

)
(3)

where j = 1 · · ·M is the site index, a†j are the creation

operators, and nj = a†jaj are the occupation operators.
The total number of particles N = n1 + n2 is a constant
of motion hence the dynamics of an M = 2 dimer is
reduced to that of one degree-of-freedom

Jz = n =
1

2
(n2 − n1) (4)

An optional way to write the dimer Hamiltonian is to say
that Jz is like the Z component of a j = N/2 spin entity.
Using this language the hopping term of the BHH merely
generates Rabbi rotations around the X axis. This means
that the population oscillates between the two wells. The
full BHH, including the interaction term, is written as
follows

Hdimer = UĴ2
z − KĴx (5)

Semiclassically the spin orientation is described by the
conjugate coordinates (θ, ϕ). In the following paragraph
we describe how the UJ2

z term affects the Rabbi rotations
that are generated by KJx.

Bifurcation scenario.– For u < 1 the dynamics that
is generated by H is topologically the same as Rabbi
rotations: the phase-space trajectories around X are
merely deformed. This means that there are two sta-
ble fixed-points, both located on the Equator (θ = π/2).
The ground-state fixed-point is ϕ = 0, and the upper-
state fixed-point is ϕ = π. For u > 1 the ground-state
fixed-point remains stable but the upper fixed-point bi-
furcates. Instead phase-space can support condensation
in the North or in the South fixed-point. See Fig.2 for
illustration. This is an example for the 2nd scenario that
has been mentioned in the introduction.

Mott transition.– The dimer constitutes a minimal
model also for the demonstration of the Mott transition,
which is the 3rd scenario that has been mentioned in the
introduction. Namely, if we increase u beyond N2 the the

FIG. 2: The dimer BHH is formally like that of a spin j = N/2
entity. Its spherical phase-space (θ, ϕ) is illustrated in the
upper panel in the case u > 1. It is similar to the cylindri-
cal phase-space (n, ϕ) of a mathematical pendulum (lower
panel). We have 3 types of motion separated by a separa-
trix: Rabi oscillations between the two wells (blue curves);
and self-trapped motion either in the left or in the right well
(green curves). In the lower panel the 3 shaded Hussimi dis-
tributions represent the following preparations: low-energy
ϕ=0 coherent-state; separatrix-energy ϕ=π coherent-state;
and another coherent-state with the same energy.

area of the Rabi region in phase-space becomes smaller
than Planck cell. This means that the ground-state is no
longer a coherent state. Rather it becomes a Fock state
with 50%-50% occupation of the two wells. Semiclassi-
cally it is represented by a strip along the Equator, with
uniform ϕ distribution.

III. QUASI-STABILITY OF AN UNSTABLE
PREPARATION

Having figured out that for u > 1 the ϕ = π fixed-point
is not stable, the question arises what happens if initially
we condense all the bosons in the upper orbital. Semiclas-
sically such preparation is represented by a Gaussian-like
distribution at the ϕ = π fixed-point, see Fig.2b. It is use-
ful here to make a connection with the Josephson Hamil-
tonian. Namely, in the vicinity of the Equator Eq.(5) can
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FIG. 3: The dynamics of the dimer is illustrated in phase-
space, taken from [12]. The upper panels simulate the evolu-
tion in the absence of external driving: The left panel shows
the classical phase-space portrait, and the right panel pro-
vides the Hussimi representation of a time-evolved π prepa-
ration. The 2nd row panels show what happens if one adds
high frequency periodic driving that converts the hyperbolic
fixed-point into a stable elliptic fixed-point. The 3rd row pan-
els show what happens if the driving frequency is comparable
with the natural frequencies of the dynamics: one observes a
chaotic sea within which the quantum state ergodizes.

be approximated by

HJosephson = Un2 − NK

2
cos(ϕ) (6)

where ϕ = ϕ2 − ϕ1 is the conjugate phase. This is for-
mally like the Hamiltonian of a mathematical pendulum.
The ϕ = π preparation is like trying to position the pen-
dulum in the upper unstable point. Our classical intu-
ition tells us that such state should decay exponentially.
Using a phase-space picture, the wavepacket is expected
to squeeze in one direction and stretch in the other (un-
stable) direction, along the separatrix. This is demon-
strated in the upper panel of Fig.3 using a Hussimi rep-
resentation.

However, it turns out that the naive classical intuition
with regard to the stability of the ϕ = π preparation fails
once longer time are considered. In the upper panel of
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FIG. 4: The length |S| of the Bloch vector is a measure for
one-body coherence. We follow the time evolution of a co-
herent state. In the upper panel each curve is for a different
preparation (see text). In the lower panel the evolution of a
ϕ = π preparation is simulated in the presence of noise (thick
black curve) and compared with noiseless evolution (orange
curve). For more details see [13].

Fig.4 we plot the time evolution of the length SB = |S|
of the Bloch vector for various coherent preparations

S =
2

N
(〈Jx〉, 〈Jy〉, 〈Jz〉) (7)

Note that the reduced probability matrix is expressible
in terms of S, hence the purity measure that has been
defined in the introduction is S = (1+S2

B)/2. The initial
length SB=1 of the Bloch vector reflects the coherence
of the initial preparation. If the initial state is located
along the Equator at ϕ = 0, it remains there (stable).
If it starts elsewhere it typically decays. But if it starts
at ϕ = π, the motion is dominated by recurrences: it
becomes quasi-periodic, hence this preparation is quasi-
stable.

In order to explain this quasi-stability we expand the
initial coherent state in the basis of H eigenstates. Then
we determine the participation number (PN) of the prepa-
ration. The PN tells how many eigenstates “participate”
in the superposition. If the superposition involved all
the eigenstates we would get PN∼ N . For a coherent-
state, which is like a minimal wavepacket, the naively
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FIG. 5: An image of PN(ϕ, θ), taken from [11]. The left panel is for the integrable non-driven dimer, while the middle and
right panels are for a kicked dimer that has a mixed or a fully-chaotic phase-space, respectively. In the latter case one observes
scarring (blue regions) in the vicinity of the classical hyperbolic points.

expected result is PN∼ 1 if it is located in the vicinity
of a stable elliptic fixed-point, and PN∼

√
N otherwise.

Fig.5 provided an image of PN for all possible coherent-
preparation. The color of a given point (ϕ, θ) reflects the
PN of a “minimal wavepacket” that is launched at that
point. We see in the left panel that the PN of a ϕ=π
preparation is of order unity (color-coded in blue) con-
trary to the naive expectation. An analytic calculation
using a WKB approximation [10, 11] provides the esti-
mate PN∼ log(N). This explains the quasi-stability of
the unstable fixed-point: the PN is typically small hence
the motion is qusi-periodic. A huge value of N is required
to get the irreversible decay that would be observed in
the classical limit.

The low PN of a “minimal wavepacket” that is
launched at the vicinity of an hyperbolic point can be
regarded as an extreme example for “quantum scarring”.
The latter terms is reserved to the case where an hyper-
bolic point is immersed in a chaotic sea. Fig.5 provides
an example for a PN calculation for a kicked dimer [?
]. The middle panel is for a mixed phase-space system
where the low PN regions simply reflect quasi-integrable
motion. The right panel is for a strongly chaotic system
where the blue regions indicates the presence of a classical
hyperbolic point. Strangely enough in a classical simula-
tion the hyperbolic point cannot be detected because it
has zero measure. But quantum mechanics is generous
enough to acknowledge its existence. We note that in
this “quantum scarring” example PN∼ N for any prepa-
ration: the low PN is due to a prefactor is the quantum
scarring formula, and not due to a different functional
dependence on N .

IV. STABILIZATION - THE KEPITZA AND
THE ZENO EFFECTS

The ϕ = π preparation is qusi-stable rather than sta-
ble. The question arises whether in an actual experiment

it can be stabilized such that S ∼ 1 for a long duration
of time. The answer is positive. It can be stabilized by
introducing hight-frequency or noisy driving. The Hamil-
tonian becomes

Htotal = H + f(t)W (8)

The coupling is via some W . In the present context we
assume that the hopping amplitude K is modulated, ac-
cordingly W = Jx.

By periodic driving we mean

f(t) = A sin(Ωt) (9)

One should be aware that if Ω is comparable with the
natural frequency of the system, we merely get chaotic
dynamics as demonstrated in the lower panels of Fig.3.
This means that stability is completely lost. But if we
have high-frequency driving, its effect is averaged, and we
get quasi-integrable motion with an effective Hamiltonian
H+ V eff, where

V eff = − A2

4Ω2
[W, [W,H]] (10)

See [12] for derivation. It turns out that the additional
term convert the hyperbolic point into a stable elliptic
point as demonstrated in the middle panels of Fig.3. This
is known as the Kapitza effect. We merely generalized
here the standard analysis of the canonical mathematical
pendulum.

By noisy driving we mean that f(t) looks like “white
noise” with zero average and correlation function

f(t)f(t′) = 2Dδ(t− t′) (11)

Using standard elimination technique one concludes that
the dynamics is described by the following Fokker-Planck
equation:

dρ

dt
= −i[H, ρ]−D[W, [W,ρ]] (12)
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FIG. 6: Regime diagram of the triangular BEC trimer, taken from [14]. The model parameters are (Φ, u). Left panel: The thick
red line is the semiclassical stability border of the upper vortex-state, where it bifurcates into 3 self-trapped states. The thick
dashed line is the semiclassical stability border of the intermediate vortex state: the expected stability region is on the right of
this curve. Right panels: The inverse purity 1/S is imaged for the upper most eigenstate (upper panel), and for the maximal
current eigenstate (lower panel). In the former case we observe an agreement with the classical stability analysis, while in the
latter case we observe unexpected quasi-stability outside of the semiclassical stability region.

The analysis [13] shows that the decay is described by
the expression

SB = exp

{
− 1

N
[exp (8Dwt)− 1]

}
(13)

where the radial diffusion coefficient is

Dw =
w2

J

8D
(14)

The stronger the noise, the slower the radial diffusion.
Looking at Fig.4 we see that we have achieved |S| ∼ 1
for a long duration. In the remaining paragraphs of this
section we shall provide a heuristic explanation for this
effect.

There is related stabilization method that comes under
the misleading title “quantum Zeno effect”. The idea is
to “watch” the pendulum. Due to successive “collapses”
of the wavefunction the decay is slowed down. Using
a standard Fermi-golden-rule analysis one deduces the
expression

SB = exp

{
− 1

N
8Dwt

}
(15)

This expression coincides with Eq. (13) for very short
times, and fails for longer times, as demonstrated in the
lower panel of Fig.4, where it is plotted as a thin black
line. What misleading here is the idea that the Zeno ef-
fect is a spooky quantum effect. In fact to “watch” a
pendulum if formally the same as introducing noise. The
effect of the noise is to stabilize the pendulum, and this
would happen also if Nature were classical...

So what is the essence of the Zeno effect? The most
transparent way to explain it is to use a phase-space pic-
ture. Let us regard the wavepacket as an ellipse with area
A = πrarb. The effect of H is to squeeze it is one direc-
tion and stretch it in the other direction. Note that the
area A is not affected (Liouville’s theorem). The effect
of f(t)Jx is to induce random rotation of its orientation.
Thanks to the ransom rotations the stretching process is
slowed down. Schematically we can write the length of
the a randomly rotating major axis as

r(t) = λt ... λ2 λ1 r(0) (16)

where λ is either smaller or larger than unity depending
on the orientation of the ellipse. The net effect is diffusion
of log(r), leading to Eq.(13). Now we can also understand
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what is the reason for the failure of Eq.(15). The first-
order treatment involves the substitution λ = 1 + ε, and
then the product is expanded. Hence r(t) becomes a sum
εt + ...+ ε2 + ε1, rather than a product of random vari-
ables, and one deduces wrongly that r(t) diffuses, leading
to Eq.(15).

V. THE TRIMER - A MINIMAL MODEL FOR A
SUPERFLUID CIRCUIT

The BHH of the trimer is the same as Eq.(3), but for
sake of generality we add in the kinetic term hopping
phases that reflect the Coriolis field:

−K
2

M∑
j=1

(
ei(Φ/M)a†j+1aj + e−i(Φ/M)a†jaj+1

)
(17)

Note that this is formally like having an Aharonov-Bohm
magnetic flux through the ring. The classical energy
landscape of the BHH always has a lowest fixed-point
that might support a vortex-state, and an upper fixed-
point that might support either a vortex-state or (due
to bifurcation) a set of self-trapped states. Note that
the upper-state can be regarded as a ground-state of the
U 7→ −U Hamiltonian. The (Φ, u) regime diagram of this
model is displayed in the left panel of Fig.6. As in the case
of the dimer we have here two familiar scenarios: With
regard to the ground-state, if u becomes larger than N2 it
undergoes a Mott-transition and looses its purity. With
regard to the upper-state, if u crosses the solid red line,
it bifurcates, and replaced by an quasi-degenerate set of
3 self-trapped states.

The inverse purity 1/S of the upper state is imaged as
a function of (Φ, u) in the right upper panel of Fig.6. The
dashed line is the classical stability border of the vortex-
state beyond which we have self-trapping. Clearly the
numerical results agree with the classical prediction.

The question arises whether it feasible to find a
(meta)stable vortex-state, that is immersed in the “con-

tinuum”. The “continuum” is formed of states that are
supported by the chaotic sea. There are two possibili-
ties here: The less exotic possibility is to have a stable
fixed-point in an intermediate energy; The more exotic
possibility is to have quantum quasi-stability in the vicin-
ity of an unstable fixed-point. Looking at the right lower
panel of Fig.6 we find that vortex stable appear beyond
the classical border of stability. Accordingly we regard
it as a new example for quasi-stability. Currently we do
not have a theory for this apparently new type of quasi-
stability.

VI. CONCLUDING REMARKS

The dimer is a minimal model for demonstrating the
classical instability that leads to self-trapping, and the
quantum Mott transition of the ground-state. It also pro-
vides an illuminating example for quasi-stability at the
vicinity of an unstable hyperbolic point. Classical stabi-
lization is feasible by introducing high-frequency periodic
driving (Kapitza effect) or noise (Zeno effect).

From topological point of view a triangular trimer
is the minimal model for a superfluid circuit. Due to
the extra degree of freedom this model is no longer
integrable, unlike the dimer. The major question here
was whether such circuit can support a metastable
vortex-state. This is what we call “superfluidity”.
Contrary to the classical expectation we find out that a
quasi-stable vortex-state can exist even in a non-rotating
device.
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