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[1] Thermodynamical perspective

[1.1] The universe
The universe consists of a system, heat baths, and work agents.
The system exchange Heat (Q) and Work (W) with the baths and the agents.
What is the proper definition of ) and W...7
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DC and Joe Imry [PRE 2012]

Quantum perspective of Work-NFT', the “Work Agent” paradigm

(a) Hg(X)
9-0:-0 1"
Q
xA
——

Xy

€ —0

Lo T
_C| { Rest of the system }
i) C c \'.._. _‘,a‘
g L A -
1 I_(

Voo X@©)=v(®)

Cheolhee Han, DC, Eran Sela [arXiv 2024]

Experimental perspective of Work-NF T realization and testing of the “Work Agent” paradigm



[1.2] Thermodynamics

H= Hsys(T;Xava) + ZHagent(Xa?Pa) + ZHbath(Xba Pb) (11)

We have a system, heat baths, and work agents.
In stochastic picture work agent is like a bath that has infinite temperature.

|
A (3)
||
Work agent
@y M)
|
Hot bath
C ®ec
old bath
‘ 2 / 2 /
| |

[1.3] The first law

E(final) — E(initial) = Y Wa+ > @ (1.2)
a b

Remark.— the following is not definition of work:

W = E(final) — E(initial) (1.3)

Remark.— Thermodynamics is not the same as spectroscopy

w = FE(final) — E(initial) (1.4)

Issues.—

- Measurement of the initial energy creates a clash between Thermodynamics and Quantum Mechanics.
- Energy is not an observable!

- Continuous monitoring of a quantum system destroys coherence and affects the dynamics.



[1.4] The second law

Microscopic version of the second law:
Suniverse[B} _ Suniverse[A} > 0

Decomposing the universe:

> 0

|:Ssys[B] _ Ssys[A}:| B /B aQ

A Tbaths

Quasi-Static version, with dS%® = (@Q +dWirvrs)/Tsys

B B
d irvr 1 1
/ Wrvre + / ( - )d‘Q > 0
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Single bath version, with @ = (E(B) — E(A)) — W, and F = E — TS

W > [F(B)—F(A)] = minimal work required to carry out the process

[1.5] The NFTs

Thermodynamic version of the second law for a cycle [Clausius]:

12,

S = Entropy production = —]{Z T
b
b

Mechanical version of the second law for driven system.
Assume that Tj is the initial temperature.
Assume cyclic driving with X (t;) = X (¢;).

w
S = Entropy production = o
0

The Thermodynamic inequality

(8) >0

The NFT implies

(%) = 1

General versions of the NFT concern P(S) for non-cyclic protocols. In particular the Jarzynski equality

(o) - 725
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(1.13)



[1.6] Experimental demonstration

Trivial example: piston
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[1.7] Experimental demonstration - Results
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[1.8] The Math of the NFTs

It is customary to say that at equilibrium the expectation value of an observable reflects the typical value of this
observable, while the fluctuations are relatively small. If the central limit theorem applies the RMS/mean should scale
as 1/ V/N. However, it turns out that the full statistics might reveal interesting information about the underlying
dynamics. In the following we shall discuss processes where the distribution function of work or entropy production
does not satisfy the symmetry relation P(—s) = P(s). Rather it satisfies a detailed-balance look-alike relation:

P(—s) = e 7 P(s), [beta-symmetric distribution] (1.14)

It follows that P(s) can be written as a product of a symmetric function and an exponential factor ePs/2. Another
consequence of the S-symmetry is

(e Py = 1, [convex average] (1.15)

The latter equality can be re-phrased as follows: In analogy with the definition of harmonic average and geometric
average that are defined as the inverse of ((1/s)) and as the exp of (log(s)) respectively, here we can define a convex
average that is defined as the log of the above expression. The convex average is zero for a S-symmetric distribution,
while the standard algebraic average is positive

(s) > 0, [convex inequality] (1.16)

While for a symmetric distribution the average value (s) has to be zero, this is no longer true for a S-symmetric
distribution. Rather the average should be related to the variance. To be specific let us assume that s has Gaussian
distribution. It can be easily verified that such distribution has S-symmetry with 8 = 2u/0?, where p = (s) is the
average value and 02 = Var(s) is the variance. This relation between the first and second moment can be regarded
as a fluctuation dissipation relation:

1
(s) = 5,8 Var(s), [”fluctuation dissipation” relation] (1.17)

We can formalize this relation for non-Gaussian distribution in terms of comulant generating function g(A) which is
defined through

(e = W (1.18)

Note that due to normalization g(0) = 0, while ¢’(0) = —p and ¢”(0) = o2. In particular for a Gaussian

g(\) = —pX + (1/2)02\2. For a symmetric distribution g(—\) = g(\). But for S-symmetry we must have
g(B—=X) = g(A), [characterization of beta-symmetric distribution] (1.19)

Again we see that for a Gaussian S-symmetry implies a relation between the mean and the variance.

In the following we shall consider two versions of the non-equilibrium fluctuation theorem. In one version we consider
the statistics P(W) of the work W that is done by an agent during a cycle that involves a thermally isolates system. In
the second version we consider the statistics P(S) of the entropy production S during a cycle that involves exchange
of energy with several heat baths.



[2] Rate equation version of the NFT

[2.1] Rate equations

A rate equation is merely a discrete version of the diffusion or Fokker-Planck equation. It can be regarded as describing
a generalized "random walk” problem, where the transition rates wy,, are not necessarily equal in the n +— m and
m — n directions. The state of the system is described by a column vector p whose entries are the occupation
probabilities p,,, such that > p, = 1. The dynamics is determined by the rate equation

d
d—i) = Wp, W = diagonal{—~,,} + offdiagonal{w,,, } (2.1)

The off-diagonal elements are the rates of transitions, namely, w,.,, is the rate of transition from m to n. The
diagonal elements —v; of the W matrix are determined such that each column sums to zero. Accordingly > p, =1
is conserved.

Detailed balance.— In the context of the ”system-bath” paradigm it is common to model the system as a set of
levels {E,,} with transition rates that reflect detailed balance considerations, such that p2° « exp[—FE,/Tp]. Namely,

wmn

(2.2)

E, - Em]

eXp [gnwm} = eXp|: T

Wnm

where &, is called stochastic field. From a mathematical point of view detailed-balance means that any circulation
of the stochastic filed is zero, i.e. £ is a conservative field that can be derived from a potential U,,. To get equilibrium
the stochastic potential has to be U,, = E,,/T.

A driving noise source or a work agent (see below) can be regarded as a bath that has infinite temperature. More
generally one can regard the average value (Wpm + Wmn)/2 as the noise which is introduced into the system by the
bath, while the difference (wym — Wiy ) is the friction. However this point of view is strictly correct only for constant
density of states. If the level density grows with energy there will be a heating effect even if Tg=cc.



[2.2] Three level/site system

The three-level system is the simplest setup for illustration of non-equilibrium thermodynamics. For example, it
can be regarded as a model for a 3-level laser heat engine (see figure) or a mathematically equivalent rolling marble
machine (see figure). The transitions are induced by a hot bath (Tf) and by a cold bath (T¢). In the first example
photons can be either emitted or absorbed by a work agent (T4 = oc). The second example is further discussed below.
Either way the dynamics is generated by the matrix

-7 Wo wa
W = [wl — wy (23)
waA W —73

where v, = wg +wa, and v2 = wes + w};, and v3 = wy + wa. The affinity of the cycle is defined as

w13w32w21} _ we  WH (2 4)

Te Tg

d = &0+ Eu3+E01 = In {
W12W23W31

In order to have a working engine cycle we require ® > 0, which implies (we/wg) > (Te/TH). The efficiency of the
engine is

n = —— < 1——/— (2.5)

The limiting efficiency is the so-called Carnot efficiency. We can solve Wp = 0 to find the probabilities (p1, p2,ps3) at
steady state. Then we can find the probability current I(®) = (p3 — p1)wa at steady state, and the power output of
the engine (wy — we)I(P).

Work agent.— The mechanical rolling marble machine possibly clarifies better the concept of work agent. Here the
task of the engine is to pulls up a weight. The hot bath induce with some probability a transition of the marble
form position 72" to position ”3”. From there, with some probability, it gets into a car of the roller coaster wheel.
Then is rolls (trapped in the car) to position ”1”. The wheel pulls up the weight. In order to maximize efficiency it
is designed such that the potential energy of the whole system (including the weight) is the same at ”73” and at 71”.
Consequenltly there is an equal probability to make the ride from ”1” to ”3”. However, considering the full cycle,
the condition ® > 0 ensures that the net work is positive.
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[2.3] The non-equilibrium fluctuation theorem

The non-equilibrium fluctuation theorem (Bochkov, Kuzovlev, Evans, Cohen, Morris, Searles, Gallavotti) regards the
probability distribution of the entropy production during a general non-equilibrium process. The clearest formulation
of this idea assumes that the dynamics is described by a rate equation. The transition rates between state n and
state m satisfies

Em = Bn E”] (2.6)

= exp [— T

Where T, is the temperature that controls the nm transition. We can regard the rate equation as describing
a random walk process. Counsider a trajectory r(¢). If the particle makes a transition from m to n the entropy
production is (E,, — Ey,)/Tnm. Hence we get for example

w(1]2)w(2|3)w(3]4) Ey—FEy FEy—FE3 FE3—FE, —S[1r 2~ 3~04]
_ i _ _ - 2.
w@RBRuEn ~ P R T T T ¢ &7
In general we write
Plr(-t)]
_ _ 2.
oy — Pl st (28)

From this ”microscopic” relation we deuce that the probability distribution of the energy production satisfies
P(=8)/P(S) =¢e™°, hence (¢7°) =1 and (S) > 0.

[2.4] Fluctuations of current in a ring

A simple example for the practicality of this relation concerns the fluctuations of the current I that emerge due to the
motion of a particle in a ring. Given a trajectory ¢ = It is the winding number and § = ¢® is the entropy production.
The non-equilibrium fluctuation theorem implies that P(—q)/P(q) = exp(—q®). Note that in the case of an electric
current ® = eV/T, where V is the electro-motive force.

[2.5] Thermodynamic Uncertainty Relations

The prototype thermodynamic uncertainty relations concerns a stochastic cyclic process (e.g. the motion of a molecular
motor) that is described by a rate equation. The rate of a forward step is w™, and the the rate of a backward step is
w™. The ratio is w™ /w™ = exp(Qo/T), where Qg is the energy of the chemical reaction. Thus the count g of cycles
(the net number of "steps” of the molecular rotor) executes a biased random walk process, with (¢) = (w™ —w™)t
and Var(q) = (wt + w™)t. The associated entropy production is S = (q) x (Qo/T). It follows that the signal to noise
ratio (SNR) is

S (2.9)

\/\T \/Stanh ZT) < >

This relation expresses the observation that the the SNR of a stochastic process is bounded by the entropy production.

SNR =
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[2.6] Analysis of heat conduction

A prototype application of the non-equilibrium fluctuation theorem concerns the analysis of heat flow form hot bath Ty
to cold bath T. The temperature difference is ¢ = Ty — Tc. We assume that the conductor that connects the two
baths can be modeled using a master equation. The transition between states of the conductor are induced by the
bath and are like a random walk. With any trajectory we can associate quantities Qg and Q¢ that represent that
heat flow from the baths into the conductor. From the fluctuation theorem it follows that

P(-Qn,~Qc) _ | {Qc QH]

P(Qs, Qo) T T Ty

2.1

Next we define the absorbed energy Q = Qu + Q¢ and the heat flow Q = (Qu — Qc¢)/2. We realize that in the long
time limit @ ~ t while the fluctuations of () are bounded. Accordingly we get

9 - (b h)e

If we use a Gaussian approximation, we get a ”fluctuation-dissipation” relation

@ = % (Tlc - Ti;) Var(Q) (2.12)

The relation can be linearized with respect to e = Ty — To. The thermal conductance is defined through (Q) = Ke X t,

and the intensity of fluctuations through Var(Q) = v x ¢. Thus we deduce that

(@ = K x(Ty —To), with K = Q—;QV (2.13)
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[3] Mechanical version of the NFT

[3.1] The distribution function of the work

The Crooks relation and Jarzynski equality concern the probability distribution of the work that is done during a
non-equilibrium process. For presentation purpose let us consider a gas in cylinder with a movable piston. Initially
the piston is in position A, and the gas in equilibrium with temperature Ty. The canonical probabilities are

P = Le’(l/TO)Eﬁm, where Z(A) = exp {F;A)} (3.1)
0

Now we displace the piston to position B doing work W. After that we can optionally allow the system to relax to
the bath temperature Ty, but this no longer affects WW. The distribution of work is defines as

Paep(W) = 300t 6(W - (B - ) (3:2)

It is implicit here that we assume a conservative deterministic classical system with a well-defined invariant measure
that allows division of phase space into ”cells”. The phase-space states |r(B)> are associated with |r(A)> through the
dynamics in a one-to-one manner. In other words, the index 7 in the above definition labels a trajectory that starts

at r. If the dynamics is non-adiabatic the order of the cells in energy space is likely to be scrambled: if the EﬁA) are

B)

indexed in order of of increasing energy; it is likely that E,( will become disordered.

If the dynamics is not deterministic the above definition can be modified in an obvious way. To be specific let
us consider the quantum case, where the probability to make a transition form an eigenstate |n(A)> of the initial
Hamiltonian, to an eigenstate |m(A)> of the final Hamiltonian, is given by

2
Pavp(mn) = ‘(m(B)lUAMBln(A)>‘ (3.3)

Then we define the spectral kernel:

Paop(w Z P P p(mln) (w — (BB — E,(;‘U)) (3.4)
Accordingly,
Ppoa(—w) Za g
—_— - = —— e P¥ 3.5
PA”\»B (w> ZB ( )

Since we consider here a closed system, we can identify the work as the energy difference W = w. For further discussion
of how work can be defined in the quantum context see arXiv:1202.4529


http://arxiv.org/abs/1202.4529
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[3.2] The Crooks relation

We have defined the probability distribution Pa-.p(W) for a process that starts at equilibrium with the piston at
position A. The probability distribution Pg., (W) is defined in the same way for a reversed process: initially the
piston is in position B, and the gas in equilibrium with temperature Ty, then the piston is displaced to position A.
The Crooks relation states that

Ppoa(=W)
Pap(W)

W— (F(B) - F(4))
To

= exp {— (3.6)

The derivation of this relation using the ”quantum” language is trivial and follows exactly the same steps as in the

derivation of the detailed balance relation for any spectral function S (w). The only difference is that here we have an

extra factor exp[F(B) — F(A)], on top of the Boltzmann factor, that arises because the Y in the forward process

involves a normalization factor 1/Z(A), while the pg,? ) is the reversed process involves a normalization factor 1 /Z(B).
[3.3] The Jarzynski equality

Multiplying both sides of the Crooks relation by Pg~., (W), integrating over W, and taking into account the normal-
ization of P(—W), one obtains the Jarzynski equality

() - -2

It follows from the Jarzynski equality that (W) > [F(B) — F(A)], which is equivalent to the maximum work principle.
It reduces to W = (F(B) — F(A)) in the the case of a quasi-static adiabatic process.

An optional one line derivation of the Jarzynski equality in the context of deterministic classical dynamics is as follows:

The Crooks relation could have been derived in a similar way, but we had preferred to get it using the ”quantum”
language, and to regard the Jarzynski equality as its implication.

[3.4] The fluctuation dissipation relation

Let us see what is the implication on the Crooks relation with regard to a simple closed cycle for which F(B) = F(A).
In such case P(W) is a S-symmetric distribution. It follows that there is a ”fluctuation dissipation relation”

wy = %Var(W) (3.9)

Considering a multi-cycle process Var(W) = 2Dgt and (W) = Wi, leading to the dissipation-diffusion relation that
we have derived in past lecture W = (1/T)Dg, from which follows the dissipation-fluctuation relation n = v/(2T).



[4] Quantum dot experiment

[4.1] Hamiltonian

Toy model:

Hs(X) = eo, —|—X%(az -1)
AN\ 2
m-g )+ (3)]

Dot model:

S Qo
Hs(Q) —; kMg + CGenQD

i [0+ _@]
2Co 200
X = eQ/Cq = gate volatage
Ce = (Cy+Cr)Co/Cy
w=1/VLoCo
0% = we?Cy/CE,

(a) Hs(X)

w Q Aeeds S R
®:-6:0
w Q

X(t) = X,coswt

(b) P bz
- '-"l‘~’~ —t—

Xy

Ly ’.--"""-“-“-'_""*-s\
_CI { Rest of the system }
i} C G ‘\__' ‘-,f‘
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[4.2] NFT accuracy measure

The Work distribution for classical driving:

Zpa ®lUja) 26w — (B — ED))

= Z 2;6(W + j Xo)

The NFT:

A
< B ldeal /dWP -W/T _ 7f = e—AF/T

The Work distribution, driving by agent:

PA(W ZP(f S(W + (Ban— ED))

Broadening and Shifting:

1 _w+xp-9?2
(W + Xo) NN a
Pa(W) .
— £/w =10
002 — f/w=35
f/w=1
001 { T/Xo=0.25
€/w=25:
/\,._
0 —

0.02 | T/Xy = 1.1

0.01
Pz
—2X, —-X, 0
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(4.7)

(4.8)

(4.9)



NFT accuracy measure:

LI ncertainty Backreaction

Conditions for high accuracy:

{A(0), 6(0)) < T

A(l) = w%

5(6) ~ —

w

For T ~ X

1< /l/w < v/ Xo/(2w)

Optional view of the uncertainty condition:
Energy uncertainty: A(f) = wXy /¢
Condition: A(¢) <« Xj.

Application to the quantum dot model:
w < (Cy/Cg)?[e?/Co)

16

(4.10)

(4.11)
(4.12)

(4.13)

(4.14)



[4.3] Born Oppenheimer picture

Born Oppenheimer surfaces:

Vempy(X) = Vie(X) = §<

A\ 2
Voccupied(X) = V()(X) = % <%> + [50 +X:|

Turning point X found from:
Ve(X) = Vo(=Xo)

For the estimate we take typical value for emission, say e ~ 0.

Back-reaction condition:

£2
6t) = |X - Xo| & — < Xo

Remark: This is a classical condition...

17

(4.15)

(4.16)

(4.17)

(4.18)
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[6] Quantum master equations

[5.1] General perspective

The description of the reduced dynamics of a system that is coupled to a bath using a Master equation is commonly
based on the following working hypothesis: (i) The bath is fully characterized by a single spectral function. (ii) There
is a way to justify the neglect of memory effects. The latter is known as the Markovian approximation. In particular it
follows that the initial preparation, whether it is factorized or not, is not an issue. If the master equation is regarded
as exact description of the reduced dynamics it should be of the Lindblad form. Otherwise is should be regarded
merely as an approximation.

There are two common approximation schemes: (A) In the Microscopic regime of atomic physics (e.g. two level atom)
it is assumed that the bath induced rates are much smaller than the level spacing, and a ”secular approximation” is
employed. (B) In the Mesoscopic regime of condense matter physics (e.g. Brownian motion) it is assumed that the
bath is Ohmic, and accordingly its effect can be treated as a generalization of ”white noise”.

[5.2] The general Lindblad form

A master equation for the time evolution of the system probability matrix is of Lindblad form if it can be written as

dp

1
_ P 1 _ i
o= —ilH. )+ §T viLipLl — 5 [Tp+ pl], T = Z- v, LiL, (5.1)

where L, are called Lindblad generators, and v, are positive coefficients. An optional style of writing the above
master equation is

dp

1
- Tzt
o = i[H,p|] + ET Uy {LTer 2{L7¢Lr,p}}7 (5.2)

Lindblad equation is the most general form of a Markovian master equation for the probability matrix.

[5.3] The Ohmic Master Equation

We shall discuss later the general procedure to derived this master equation from an Hamiltonian, where the interaction
with the bath is via the system operator W = x. The same procedure can be uses for any W, leading to

dp . v .n vV,

— = —i[H, p] = S [W. W, p]] =i WAV, p}] = IV, [V, o] (5.3)
dt 2 2 2

where v has been replaced by V = i[H, W], and where v, =0. This Ohmic master equation does not have the

Lindblad form (see below), and hence in general complete positivity is not guaranteed. For example: if we consider

the relaxation of a wavepacket in damped harmonic oscillator, then at low temperatures we end up with a sub-minimal
wavepacket that violates the uncertainty relation.

In order for this equation to be Lindblad, the minimal modification would be to set a non-zero v, = n?/(4v). With
this substitution, after diagonalization, one ends up with a single Lindbald term with the generator

-
L=W+iV 5.4
tig (5.4)

Note that the pre-factors of the three terms in the modified Ohmic version are v/2 and v/(2T) and v/(32T?) respec-
tively. These terms can be regarded as arsing from an expansion in powers of (/T), where Q is the frequency of the
motion. Accordingly in the high temperature regime the deviation of the standard Fokker-Planck equation from the
Lindblad form is negligible.



19

[5.4] The secular approximation

We come back one step, and consider again general bath, not necessarily Ohmic. Instead of assuming small correlation
time, we shall assume weak interaction. Specifically, in atomic physics applications the induced rate of transitions w
becomes much smaller compared with the Rabi-Bloch frequency € of the coherent oscillations. Accordingly it is
appropriate to write that master equation in the interaction picture:

dp S . s
= = WEAW () + W)W @) = WEHW @5 - pW ()W) (5.5)
Substitution of the H-induced spectral decomposition of the W-s one observes terms that oscillate with frequencies
Q4 €. We keep only the terms that oscillate with ~ 0 frequency, and hence do not average to zero. For example, in
W pW we keep only the G(Q)WqpW_q terms. Consequently we obtain the so called secular approximation

d . A x
L= =i+ Y [CQ) WaplW = GQ) WiWap — GQ)" pWiWa (5.6)
Q

The imaginary part of G(2), aka Lamb shift, can be absorbed into the Hamiltonian #, so we end up with a simple
sum over Lindblad terms that are weighted by the spectral intensities C(€2), namely,

d . A 1
B = il + X CO) [Wop - (Ve p) 7
Q

In particular one should distinguish the €2 # 0 terms that induce inter-level transitions from the £ =0 term that
commutes with the Hamiltonian.

[5.5] The Pauli master equation

For a system that has no degeneracies (for example a few-level atom) it is natural to write the secular equation in the
‘H basis. One realizes that the dynamics of the diagonal elements decouples from that of the off-diagonal elements.
Namely, the first term in the secular approximation induces FGR transitions with rates

Wnm = é(_(En_Em» |an|2 (5.8)

The corresponding decay constants are I',, = Z:w Wym- The ratio Wpm/Wmy is not unity unless we consider white
noise source (infinite temperature). For finite temperatures the FGR rates favor downwards transitions. Consequently
we get the so-called Pauli rate equation for the probabilities p,

—I'y we ..

d 1 Wi2

dflt) = W D, W = wWa1 —FQ (59)
For the off-diagonal terms we get

dppm .

7 = - Z(En - Em) = Ynm | Pnm; [fOI‘ n 7é m] (510)
with dephasing rates

v 9 1 o
Yrm = §|W,m — Wim|* + 5(1“” +Tn) = e+ (5.11)

where the first term originates from the 2 = 0 generator, while the second term originates from the {2 # 0 transitions.
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