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Abstract

The analysis of the response to driving in the case of weakly chaotic or weakly interacting
systems should go beyond linear response theory. Due to the ‘sparsity’ of the perturbation
matrix, a resistor-network picture of transitions between energy levels is essential. The Kubo
formula is modified, replacing the ‘algebraic’ average over the squared matrix elements by a
‘resistor-network’ average. Consequently, the response becomes semi-linear rather than linear.
Some novel results have been obtained in the context of two prototype problems: the heating
rate of particles in billiards with vibrating walls; and the Ohmic Joule conductance of
mesoscopic rings driven by electromotive force. The results obtained are contrasted with the

‘Wall formula’ and the ‘Drude formula’.

PACS numbers: 03.65.—w, 05.45.Mt, 73.23.—b

(Some figures may appear in color only in the online journal)

1. Introduction

This paper is about driven systems, like those illustrated in
figure 1, whose dynamics is generated by a Hamiltonian that
is represented by a matrix that has the generic structure

Hlom] :dlag{En}_f(t){Vnm} (1)

Here E, are the ordered energy levels of the unperturbed
system. Their density o(states/energy) is assumed to be
roughly uniform. The system is driven by a low-frequency
stationary driving source f(#). The elements of the
perturbation matrix are V,,. The induced transitions have
rates that are proportional to |V,,,,|*. We define

X = {|Vau|*). 2)

Our interest is in Hamiltonians that have a ‘sparse’
perturbation matrix. This means that the majority of elements
in X are small. To be more precise, we assume that these
elements have a log-wide distribution with a median that is
much smaller compared with the average. An example of such
a matrix is given in figure 2, and a typical histogram of the
elements is presented in figure 3.

The question we ask is simple: given X, what is the
calculation that should be performed in order to obtain the
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energy absorption rate (EAR). It makes sense that the result
should be proportional to some weighted average (X)) over
the matrix elements. Indeed, within the framework of linear
response theory (LRT) the Kubo formula is doing just that—
a weighted algebraic average.

One should realize that the use of the Kubo formula
for EAR calculation can be justified only in the very weak
driving limit, provided that there is a background ‘bath’ that
maintains quasi-equilibrium at any moment. However, if the
driving is not very weak, compared with the relaxation, then
one should be worried: in order for the system to heat up, it
is essential to have connected sequences of transitions; else
the system is ‘stuck’. There is an obvious analogy here with
a resistor-network calculation: due to the sparsity the energy
absorption somewhat resembles a percolation process.

The bottom line of the above considerations is that the
algebraic average of Kubo (X)), should be replaced by a
resistor-network average (X)), whose value is much smaller
if the matrix is ‘sparse’. This should be regarded as an
anomaly in the theory of response: it is an effect that arises
upon quantization. Namely, one can characterize the sparsity
of X by a parameter 0 < s < 1 that is absent in the classical
context, but has a dramatic effect in the quantum analysis.

A few words are in order regarding the literature. We go
here beyond the conventional random matrix theory (RMT)
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Figure 1. Model systems: a billiard with a moving wall (upper
panel) and a ring with a time-dependent magnetic flux (lower
panel). The deviation of the billiard from integrability is quantified
by a parameter u. It is due to a deformation of the boundary (as in
the figure) or due to a deformation of the potential floor (not
shown). In the lower panel the ring is regarded as a rectangular-like
billiard with periodic boundary conditions in one of its coordinates.
In the numerics the ring has been modeled as a tight binding array
of dimensions L x M. In the latter case the non-integrability was
due to on-site disorder W.
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Figure 2. The upper panel is an image of the matrix X for a billiard
very similar in shape to that of figure 1. This matrix is ‘sparse’. This
can be deduced either by inspection or by looking in the lower panel
where the average value (x) of the elements (upper curves) is
calculated as a function of the distance w from the diagonal, and
contrasted with the much smaller median values (lower curves). For
further details see [39, 40].

Figure 3. Histogram of the in-band elements x of the matrix X for
a rectangular billiard that has deformed potential floor. Different
symbols refer to different values of the deformation parameter u.
The vertical line is the average value of the elements, while the
median is roughly at the locations of the peaks. The former, unlike
the latter, is not sensitive to the degree of deformation. For details
see [38].

perspective of [1, 2], because we are dealing with ‘sparse’
matrices [3-6], possibly banded [7-12]. Our view of LRT
follows that of [13-20]. In the context of billiards, LRT
implies the ‘Wall formula’ [21-26], while in the context of
mesoscopic conductance LRT implies the ‘Drude formula’'.
In both cases one should take into account corrections that
are related to correlations and level statistics. The quest for
anomalies that cannot be explained by introducing corrections
within the framework of LRT, but go beyond LRT, has
some history [18, 19, 28-32]. The line of study regarding
the anomaly that arises due to ‘sparsity’ is documented
in [33-40], see the acknowledgment. The resistor-network
analysis introduced below is inspired by [41-46], but
generalizes its scope in a somewhat revolutionary way.

The paper is organized as follows. First we introduce
in detail the model systems of figure 1. Then we outline
the formalism of the EAR calculation, which is based on a
simple Fermi golden rule (FGR) picture. Finally, we present
the results we obtained on the dependence of the absorption
coefficient or conductance on the sparsity, where the latter
is controlled by the degree of deformation (figure 1) or by
the disorder in the system. Two appendices give extra details
of the resistor-network calculation and what we call the
‘resistor-network average’.

2. The model systems

Assume that we have N non-interacting particles in a
‘box’. For presentation purpose, assume a rectangular-like
two-dimensional (2D) billiard-shaped box as in figure 1(a),
or optionally, imposing periodic boundary conditions in one
direction, a ring-shaped box as in figure 1(b). The box is
slightly deformed: either its walls are slightly curved or
optionally the potential floor is not flat, e.g. due to some
scatterer or disorder. The system is driven by a low-frequency
stationary source. In figure 1(a), the driving is induced by
moving a ‘piston’, while in figure 1(b) it is induced by varying
a magnetic flux through the ring. The Hamiltonian matrix in

I For a review and further references, see the paper by Kamenev and
Gefen [27].
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the unperturbed energy basis takes the form of equation (1).
In the case of the driven ring, we have the identifications

f() = ®@), 3

where ®(¢) is the magnetic flux, and v,, are the matrix
elements of the velocity operator. Note that by the Faraday
law —® is the electromotive force (EMF).

The driving induces transitions between energy levels.
We assume a stationary driving source, and define its power
spectrum as

S(w) =FT(f (1) £(0)). S

Note that as far as EAR is concerned, it is a non-zero f
that makes the Hamiltonian time dependent, corresponding to
the EMF in the case of the ring. We assume low-frequency
driving. Accordingly, we write

S(w) = 27| FI? 8c(w), 6)

where the prefactor is the rms value that characterizes the
driving intensity, and é.(w) is a broadened delta function
whose line shape reflects the spectral content of the driving.

3. The energy absorption rate

The driving induces transitions between energy levels, which
implies diffusion in the energy space. This diffusion is
characterized by a coefficient D (energy? per time) for which
we would like to have a formula. Assuming that D is known,
the EAR is given by the following expression:

EAR = density x D. @)

This is a straightforward generalization of the Einstein-type
relations discussed in [18] and in greater detail in [24].
We can call it a diffusion—dissipation relation. What we
label in equation (7) as ‘density’ stands for the number of
particles (N) per energy, meaning N/T in the case of a
Boltzmann occupation at temperature 7 or o in the case of
a low-temperature Fermi occupation. In the latter case the
role of temperature is overtaken by the Fermi energy, namely

What we would like to have is a theory that allows the
calculation of D. The formulae that we would like to advertise
is

D =m0 (|Van?) f2. ®)

Depending on the interpretation of ((|V,,,|>), this is the
Kubo formula of LRT or its resistor-network variation. In
the latter case we refer to the results as the outcome of
semi-linear response theory (SLRT). The latter term indicates
that (| V,m|*)s unlike {|V,um|*)a is a semi-linear rather than
linear operation. The derivations of both the LRT and the
SLRT variations of equation (8) are outlined in the next
sections.

In the case of an EMF-driven ring, it is convenient to
rewrite the EAR formulae equation (7) as

EAR =G f2, ©)

where the so-called mesoscopic conductance is given by the
expression
2 (€)? 2
G=n" (7) Qoml): (10)
One can regard G as a mesoscopic version of the absorption

coefficient, while equation (9) can be regarded as the
mesoscopic version of the Joule law.

4. The Fermi golden rule picture and the
Kubo formula

The Hamiltonian in the standard basis is equation (1). We can
transform it into the adiabatic basis:
7l = diag(E,) — f(0) | 2 (11)
— dia njf — .
g En - Em

The FGR transition rate from E,,
low-frequency noisy driving is

to E, due to the

2
Vnm

— | S(E,—E,).
E L. ( )

12)

wnmz‘

The FGR transitions lead to diffusion in energy space.
Assuming that there is a background relaxation process that
maintains at any moment quasi-equilibrium with occupation
probabilities p,, that are the same as those in the absence of
driving, we obtain for the driving-induced diffusion

D = an |:% X:(Em_En)2 wmn] ’ (13)

m

leading to the Kubo formula

® . - dw
D =/ C(w)S(w)— (14)
0 2
with the spectral function
C(w) =FT(V(1)V(0)) (15)

= an Z |V > 2708 (0 — (Epy—E)).

Note that this spectral function reflects the band profile of X,
as defined in equation (2), and illustrated in figure 2.

It is important to realize that the Kubo formula
equation (14) is a linear functional of S(w). The dependence
on the matrix elements of X is linear too:

D= [n > Pl Vol 6C(Em—En>} 2. ae)

This can be formally written as equation (8) with an implied
definition of the weighted algebraic average |V, 1% a.
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Figure 4. The driving induces transitions between levels E, of a
closed system, leading to diffusion in energy space and hence an
associated heating. The diffusion coefficient D can be calculated
using a resistor-network analogy. Connected sequences of
transitions are essential in order to have a non-vanishing result,
as in the theory of percolation.

For completeness we note that in the context of
conductance calculation the popular textbook version of the
Kubo formula is

G=m (%)2 Z |vmn|2 8T(En_EF) 80(E111_En)- (17)

n,m

This expression is implied by equation (16), with averaging
over the levels in the vicinity of the Fermi energy. Namely,
pn =0 '87(E, — Eg), where the width of §7() is determined
by the temperature.

5. The calculation of the diffusion coefficient

We would like to consider circumstances in which the
driving-induced transitions are faster compared with the
background relaxation. In such circumstances the occupation
probabilities p, are no longer as in equilibrium. For the
purpose of analysis we simply neglect the bath, and describe
the dynamics by a rate equation

dpa
dr

anm(pn —Pm), (18)

where the rates w,, are determined by equation (12). The
matrix w = {w,,,} can be regarded as a quasi-1D network;
see figure 4. Optionally, one may interpret the rate equation as
a probabilistic description of a random walk process, where
Wy, 1s the probability to hop from m to n per unit time. The
local spreading is described by

Var(n) =Y _[wy a1 (n — o) (19)

=2D,.t. (20)

It follows that the course-grained spreading should be
described by a diffusion equation
opy, . 9?
= D— ns
o1 on2?

ey

where n is regarded as a continuous variable. The diffusion
equation is formally a continuity equation
opn ad

=——1,, 22
ot on (22)

where the current is given by Fick’s law:

a

I,=—D—p,. (23)
on
If we have a sample of length N, then
D
I =——x[pn = pol- (24)

N

This shows that D /N is formally like the inverse
resistance of the chain: it is the ratio between the current
and the ‘potential difference’. We therefore can use standard
recipes of electrical engineering in order to calculate its value.
For example, if we have only near-neighbor transitions, then
‘adding connectors in series’ implies

b [& 1 ]
ﬁ - |:Z wn,n1:| .

n=1

(25)

In general, we use the notation D= [[w]], where double
brackets stand for the inverse resistivity calculation, as
discussed in appendix A.

In the above analysis, we have assumed unit distance
between sites. If the mean level spacing is 0!, the expression
for the diffusion coefficient should be re-scaled as follows:

D = o *[[w]]. (26)

Recall that the w,,,, are given by equation (12); it follows that

D= Q,Z Vnm
En - Em

leading to equation (10), with an implied definition of
the resistor-network average {|V,..|*)s. The definition and
calculation of the latter are further discussed in appendix B.

2

ZnM'_Pac(En—Emﬂ . QD)

6. The wall formula and beyond

The roughest estimate for the diffusion that is induced by a
vibrating wall is known as the ‘Wall formula’ [21-26]. Its
original derivation is based on a simple kinetic picture: it is
based on the assumption that collisions with the vibrating wall
are not correlated. This leads in the 2D case [24, 40] to the
result

2.3 _
imvE.

— 2
3w L, I= 8)

Dy
where m is the mass of the particles, and L, is the linear
dimension of the box as illustrated in figure 1. The result
assumes a microcanonical preparation at energy FE, and
we have defined vg = [2E/m]"/?. If we have a Boltzmann
occupation, the expression should be averaged accordingly.
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Figure 5. The scaled absorption coefficient g. (LRT) and g = g,g.
(SLRT) versus the dimensionless 1/% (upper panel) and versus the
dimensionless deformation parameter u (lower panel). The input for
this analysis is the matrix X of figure 2. The calculation of each
point has been carried out on a 100 x 100 sub-matrix of X centered
around the 7 implied energy E. The ‘untextured’ data points are
calculated for artificial random matrices with the same band profile
and sparsity. The complementary lower panel is oriented to show
the small # dependence within an energy window that corresponds
to 1/A ~ 9. For further details see [39, 40].

If we have low-temperature Fermi occupation, what counts in
equation (7) is the value at £ = Ep.

Within the framework of LRT the same result is obtained
from the Kubo formula equation (14), provided that C (w) is
flat, i.e. provided there are no correlations between collisions.
In practice, there are correlations leading to D = g. Dy with g,
that can be either smaller or larger than unity depending on the
geometry. In the quantum calculation g. is slightly affected by
the level spacing statistics.

Within the framework of SLRT one has to calculate the
resistor-network average of the X matrix. If this matrix is
sparse, the result becomes very suppressed, leading to D =
gs8. Do, where

Vnm 2 N
o = (Wl 29

{1 Vam?Da”
We emphasize that g reflects an anomaly: it depends on the
sparsity s of the matrix, a parameter that has no meaning in
the classical context. For more details, including the RMT
analysis of this dependence, see [37].
Some numerical results for g. (LRT) and g = gsg.
(SLRT) are presented in figure 5. The calculation is performed

~(A/T)

Q

Diffusive
regime

once | Ballistic

s Anderson—Mott
regime

regime

disorder strength (1/1)

Figure 6. Schematic illustration that sketches the dependence of
the de mesoscopic conductance on the strength of the disorder. It
should be regarded as a caricature of figure 7. The level width

I' = hw, affects the so-called weak localization correction in the
diffusive regime. In the other two regimes of either weak or strong
disorder, the perturbation matrix becomes ‘sparse’ and consequently
G is suppressed compared with Drude.

with the C (w) of figure 2. The % dependence of the LRT
‘classical’ result is due to the lower cutoff of the dw integral
in the Kubo formula equation (14), which is sensitive to the
mean level spacing. If C(w) were “flat’ the result would not be
very sensitive to i. As expected, the SLRT calculation gives
a much smaller result. The effect becomes more conspicuous
for smaller deformations, for which the sparsity is ‘stronger’.

7. The Drude formula and beyond

The EAR by particles driven by an oscillating electric field,
due to an induced EMEF, is a very similar problem as that of
particles driven by an oscillating wall. Here the simple result
that is based on kinetic considerations is known as the ‘Drude
formula’. As in the case of the ‘Wall formula’, it is assumed
that scattering events are uncorrelated, leading to the estimate

e\? -5
Dy=(7) vt &, (30)

L
where e is the charge of the electron, L is the length of the
ring and ¢ is the mean free path between collisions. Note that
D = vl is the spatial diffusion coefficient, while (e®/L) is
the energy that is gained per circulation. The implied result
for the conductance can be written as

&2 V4

Go=— M=,
= MI

(€29)
where M =muvgL,/m is the number of open modes. This
way of writing the Drude formula is very illuminating because
it reflects the Ohm law, and the units are the same as in the
Landauer formula. For clarity we have restored the % in this
formula.

Within the framework of LRT, the same result is obtained
from the Kubo formula equation (14), provided that C (w) of
equation (15) is a Lorentzian that reflects an exponential decay
of the velocity—velocity correlation function. In practice, there
are extra correlations leading to D = g. Dy with g, that can be
either smaller or larger than unity depending on the geometry.
In the quantum calculation g, is slightly affected by the level
spacing statistics, and the correction is of order (ow.)~!. This
is sometimes regarded as a variation of weak localization
corrections [27].
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Figure 7. Various measures of sparsity (top panel) and the
mesoscopic conductance (middle and bottom panels) as a function
of the disorder W in the ring. The vertical lines separate the clean,
ballistic, diffusive and localization regimes. Note that the scaled
conductance in arbitrary units is equal to {|v,,,|*). The Drude, LRT
and SLRT results are displayed in both the normal and the log scale.
We see that in the ballistic regime the SLRT conductance gets worse
as the disorder becomes weaker, in opposition to the Drude
expectation. For further details see [36, 37].

Within the framework of SLRT one has to calculate the
resistor-network average of the matrix {|v,,|*}. Here one
should distinguish between different regimes, depending on
the strength W of the disorder. In the Born approximation
the mean free path is £ W2, while the localization length
is £, ~ MUL. The diffusive regime, where there is no issue of
sparsity, requires an intermediate strength of disorder, such
that ¢ <« L < £. For either stronger or weaker disorder,
the matrix {|v,,|>} becomes ‘sparse’. This is because the

eigenstates become non-ergodic: either they are localized in
real space (for strong disorder) or in mode space (for weak
disorder). Note also that for very weak disorder (‘clean’
ring) each eigenstate occupies a single mode (up to small
correction). For a detailed analysis that supports the above
picture see [37].

The expectation with regard to the dependence of G/ Gy
on the strength of the disorder is sketched in figure 6. Some
numerical results on both the LRT and the SLRT conductance
are presented in figure 7. The calculation is performed for
a tight-binding model. The SLRT result in the Anderson
localization regime is completely analogous to the reasoning
of variable range hopping [41-45], as explained in [46]. It
should be appreciated that in our approach all regimes are
treated on an equal footing.

In the ballistic regime, contrary to the Drude expectation,
the conductance becomes worse as the disorder is reduced.
This looks strange, but can easily be rationalized if we
think about the extreme case of no disorder: in the absence
of scattering the particle stays all the time in the same
mode; hence an irreversible diffusive spreading in energy is
impossible.

8. Conclusions

The random matrix approach of Wigner (~1955) is based on
the observation that in generic circumstances the perturbation
can be represented by a random matrix whose elements are
taken from a Gaussian distribution. In this paper our interest
is in a restricted class of ‘sparse’ systems for which this
observation does not hold. In such weak quantum chaos
circumstances, the elements are characterized by a log-wide
distribution. Consequently, the response, and in particular the
energy absorption, are similar to a percolation process, and
their analysis requires a novel resistor-network approach.
Besides the quantitative issue, the experimental
fingerprint of the resistor-network calculation is the implied
semi-linearity of the response. In the SLRT regime, i.e. if the
driving is the predominant mechanism for transitions between
levels, one expects the combined effect of two independent
sources to be super-linear, namely
D[Sa(@) + Sp(@)] > D[Sa(w)]+ D[S (w)] (32)
but still semi-linear D[AS(w)] =X D[S(w)]. We have
provided in this paper two prototype examples where an SLRT
anomaly can arise: heating of particles that are trapped in
billiards with vibrating walls; and Joule heating of charged
carriers that are driven by an induced EMF.

Acknowledgments

This paper is based and reflects a line of study that has
been carried out (in chronological order) in collaboration
with the following [33-39]: Tsampikos Kottos, Holger
Schanz, Swarnali Bandopadhyay, Yoav Etzioni, Michael
Wilkinson, Bernhard Mehlig, Alex Stotland, Rangga Budoyo,
Tal Peer, Nir Davidson, and Louis Pecora. This work has
been supported by the Israel Science Foundation (grant
no. 29/11).



Phys. Scr. T151 (2012) 014035

D Cohen

Appendix A. The resistor-network calculation

In this appendix, we explain how the inverse resistivity G =
[[G]] of a 1D resistor network G = {G,,,} is calculated. We
use the language of electrical engineering for this purpose. In
general, this relation is semi-liner rather than linear, namely
[[AG1] = A[[G]], but [[A + B]] # [[A]l + [[B]].

There are a few cases when an analytical expression is
available. If only near-neighbor nodes are connected, allowing
G,.n+1 = &n to be different from each other, then ‘addition in
series’ implies that the inverse resistivity calculated for a chain

of length N is
N ~1
1 1

ey 8n

(A.1)

If G,.;u = gu—m 1s a function of the distance between the nodes
n and m, then it is a nice exercise to prove that ‘addition in
parallel” implies

(A2)

o
G= Zrzg,..

r=1

In general, an analytical formula for G is not available,
and we have to apply a numerical procedure. For this purpose
we imagine that each node n is connected to a current source
I,. The Kirchhoff equations for the voltages are

Z Gmn (Vn - Vm) = I, (AS)
This set of equation can be written in a matrix form,
GV =1, (A.4)

where the so-called discrete Laplacian matrix of the network
is defined as

(A.5)

Gnm = |:Z Gn’n:| 8n,m - Gnm-
W

This matrix has an eigenvalue zero which is associated
with a uniform voltage eigenvector. Therefore, it has a
pseudo-inverse rather than an inverse, and the Kirchhoff
equation has a solution if and only if ), I, = 0. In order to
find the resistance between nodes n;, =0 and n,, = N, we
set [y =1 and Iy = —1 and I, = 0 otherwise, and solve for
Vo and V. The inverse resistivity is G = [(Vy — Vy) /N1

Appendix B. The resistor-network average

We use the notation (X)) in order to indicate the weighted
average value of its elements. First we would like to define
the standard algebraic average. It is essential to introduce
a weight function that defines the band of interest. In the
physical context this function reflects the spectral content of
the driving source. Namely, we define F (r) as the normalized
version of S(w), such that > F(r)=1, where r =n—m
is the energy difference w = E,, — E,, in integer units. The

bandwidth in these dimensionless units (b, = pw,) is assumed
to be quantum mechanically large (b, >> 1). The algebraic
average is defined in the standard way:

(X = 2 Fo—m) X,

n,m

(B.1)

where N is the size of the matrix, which is assumed to be very
large. The algebraic average is a linear operation, meaning
that

(A X)) = A (X)), (B.2)

(X+Y) = (X)+(Y). (B.3)

There are different types of ‘averages’ in the literature,
such as the harmonic average and the geometric average
and we can include the median in the same list. All
these ‘averages’ are semi-linear operations because only the
(A X)) = A{X)) property is satisfied for them. Irrespective of
the semi-linearity issue any type of average should satisfy the
following requirement: if all the elements are equal to the
same number, then also the average should equal the same
number.

In this paper, we highlight a new type of average that we
call a resistor-network average:

[[ m_mNn—mﬂﬂ‘

Writing the above expression as [[w;,,]], one should realize
that the w,,, can be regarded as FGR transition rates. Using
equation (A.2) it is not difficult to show that if all the elements
X,m are the same number, then also their resistor-network
average is the same number. In general,

(XDs

B.4)

(XDs < (X)a. (B.5)

Typically, the resistor-network average is bounded from below
by the median. In order to get a realistic estimate in the case
of a ‘sparse’ matrix, one can use a generalized variable range
hopping scheme that we have developed in [37].
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