
ar
X

iv
:1

30
8.

58
60

v2
  [

co
nd

-m
at

.m
es

-h
al

l]
  1

8 
N

ov
 2

01
3

Triangular Bose-Hubbard trimer as a minimal model for a superfluid circuit
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The triangular Bose-Hubbard trimer is topologically the minimal model for a BEC superfluid
circuit. As a dynamical system of two coupled freedoms it has mixed phase-space with chaotic
dynamics. We employ a semiclassical perspective to study triangular trimer physics beyond the
conventional picture of the superfluid-to-insulator transition. From the analysis of the Peierls-
Nabarro energy landscape, we deduce the various regimes in the (Ω, u) parameter-space, where u
is the interaction, and Ω is the superfluid rotation-velocity. We thus characterize the superfluid-
stability and chaoticity of the many-body eigenstates throughout the Hilbert space.

I. INTRODUCTION

The experimental study of Bose-Einstein Condensates
(BECs) allows the realization of ultracold atomic su-
perfluid circuits [1–14] and the incorporation of a laser-
induced weak-link (a bosonic Josephson junction) within
them [15]. By rotating such a barrier it is possible to in-
duce current [16] and to drive phase-slips between quan-
tized superfluid states of a low dimensional toroidal ring
[15]. Such mesoscopic devices open a new arena for de-
tailed study of complex Hamiltonian dynamics.

The hallmark of superfluidity is a stable non-
equilibrium steady-state current. If N bosons in a rotat-
ing ring are condensed into a single plane-wave orbital,
one obtains a “vortex state” with a quantized current
per particle (I/N) [17–20]. For non-interacting bosons
the lowest vortex-state is also the ground state. It is sta-
ble and carries a microscopically small “persistent cur-
rent”. By contrast, all higher vortex states are unsta-
ble. Interactions change the picture dramatically [21]:
the Bogolyubov-spectrum of the one-particle excitations
of a vortex-state is modified (e.g. by the appearance
of phonons), and hence all vortex-states that satisfy the
Landau criterion [22–24] become stable. See Fig.1 for
illustration, and Section VI for extra pedagogical details.

The vortex-state of bosons in a ring constitutes one
particular example of a coherent (non-fragmented) state.
Other coherent-state solutions may correspond, for ex-
ample, to all bosons condensed in a localized orbital
(bright soliton) [17], or in an orbital that has a notch
(dark soliton) [18, 19]. From such non-stationary classical
solutions one can superpose stationary quantum eigen-
states whose angular momentum is not quantized.

The above picture is missing a central ingredient: there
is no reference to the global structure of the underly-
ing phase-space that dictates the dynamics. Vortex-
states and solitons are minima or maxima of the energy
landscape, and the Bogolyubov spectrum merely reflects
the linear-stability analysis in the vicinity of these solu-
tions. We are therefore motivated to consider the sim-
plest paradigm for a superfluid circuit which still allows
the thorough investigation of its phase-space structure.
The natural choice for such a model is bosons in a one-
dimensional ring as in Ref. [20] or its discrete M site ver-

sion, described by the Bose-Hubbard Hamiltonian (BHH)
[25–28] as in Ref. [29].
The phase-space of the ring model was studied within

a two-orbital approximation [30]. However, such an ap-
proximation is not a valid minimal model by itself. From
a topological point of view the minimal model for a su-
perfluid circuit has to involve M=3 sites: a triangular
Bose-Hubbard trimer (this would be equivalent to three
non-localized modes). A close relative is the linear Bose-
Hubbard trimer. The trimer phase-space has been par-
tially studied in several papers [31–43], and has been
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FIG. 1: Representative eigen-energies Eα of a rotating ring
system are classified by the current I they carry in the rotat-
ing frame of reference. The filled and hollow blue circles repre-
sent stable and unstable vortex-states for which I/N is quan-
tized. The blue dots represent their Bogolyubov one-particle
excitations. On the upper right u is vanishingly small, while
on the upper left u is large and positive, resulting in phonon
branches. The green elliptic dots represent fragmented states
(here the particles are divided between two vortex orbitals).
For negative u (lower plane) there are stable bright soliton so-
lutions. Red oval dots represent eigenstates that are formed
by superposition of such solitons. For positive u, and appro-
priate rotation frequency, one may observe additional type of
eigenstates that are formed of dark solitons (not illustrated).
Adding weak disorder, the unstable vortex-states would mix
with their excitations, and the soliton band would decompose
into a set of standing solitons.

http://arxiv.org/abs/1308.5860v2


2

recognized as a building block for studies of transport
[44, 45] and mesoscopic thermalization [46, 47].
In this work we study the triangular Bose-Hubbard

trimer as a topologically minimal model for a BEC su-
perfluid circuit. In particular, we note that the mixed
phase-space aspect of the dynamics has far reaching con-
sequences, producing non-trivial physics that goes be-
yond the conventional picture of the Mott superfluid-to-
insulator transition. Our approach relies on the analysis
of the Peierls-Nabarro energy landscape [44, 45, 48, 49],
from which we deduce various regimes in the (Ω, u)
parameter-space of the triangular BHH trimer, where u
is the interaction parameter, and Ω is the superfluid
rotation-velocity. In each of these regimes we outline
the structure of phase-space and the classification of the
many-body eigenstates. The criteria for the superfluid
stability as opposed to chaoticity are thus determined.

II. A ROTATING DEVICE

In a typical experimental scenario the potential is
translated along the circuit, and can be written as
V (θ − Ωt). For theoretical analysis it is more convenient
to transform the Hamiltonian to a rotating frame wherein
the potential is time-independent. The rotation is thus
formally equivalent to the introduction of a magnetic flux
Φ through the ring. To relate the flux Φ to the rotation
velocity Ω it is sufficient, without loss of generality, to
write the one-particle Hamiltonian as follows:

H =
1

2mR2

(

pθ −
Φ

2π

)2

+ V (θ) (1)

≡ H0 − Ωpθ + const (2)

where R is the radius of the ring, θ is the angular position
coordinate, and pθ is the conjugate angular momentum.
In the second equalityH0 is defined as the Hamiltonian in
the absence of magnetic flux. Consequently one observes
that H is formally the same Hamiltonian as that of a
rotating system with the implied identification

Ω =

[

1

mR2

]

Φ

2π
. (3)

In references [17–19] units are set such that the pre-factor
in the square brackets is unity. Hence, throughout this
paper Φ = 2π corresponds to Ω = 1 in these references.
We consider V (θ) consisting ofM deep wells, for which

a tight-binding model is appropriate. The hopping fre-
quency K = 1/(meffa

2) is conventionally expressed in
terms of the lattice constant a = 2πR/M and an effec-
tive mass meff. The magnetic flux Φ implies the vector
potential A = Φ/(2πR). The phase acquired as particles
hop between wells is A×a = Φ/M . For practical purpose
the relation between Ω and Φ can be re-written as

Ω =
2π

M2

(

meff

m

)

KΦ (4)

Note that both K and Ω have dimensions of frequency.

III. THE TRIMER HAMILTONIAN

Few-mode Bose-Hubbard systems are experimentally
accessible, highly tunable, and theoretically tractable by
a wide range of techniques. Since boson number is con-
served, their Hilbert spaces are of finite dimension, and
yet their classical dynamics is non-integrable. The BHH
in a rotating frame is

H =

M
∑

j=1

[

U

2
a†ja

†
jajaj −

K

2

(

ei(Φ/M)a†j+1aj + h.c.
)

]

(5)

Here jmod(M) labels the sites of the ring, ai and a†i are
canonical destruction and creation operators in second
quantization, K is the hopping frequency, and U is the
on-site interaction.
As described in the previous section, the phase Φ re-

flects the rotation frequency Ω of the ring. Without
loss of generality we assume Φ ∈ [0, π], and K > 0, and
U > 0. Negative K is the same as positive K with
Φ 7→ Φ+ π. Negative U is the same as positive U with
a flipped energy landscape (H 7→ −H). Negative Φ is
related to positive Φ by time reversal.
The Hamiltonian H commutes with the total particle

number N =
∑

i a
†
iai, hence the operator N is a constant

of motion, and without loss of generality can be replaced
by a definite number N .
In a semi-classical context a bosonic site can be re-

garded as an harmonic oscillator, and one substitutes
aj =

√
nje

iϕj . Dropping a constant we get

H =

M
∑

j=1

[

U

2
n

2
j −K

√
nj+1nj cos

(

(ϕj+1−ϕj)−
Φ

M

)]

(6)

Since N is a constant of motion Eq.(6) describes M−1
coupled degrees of freedoms. Accordingly the trimer
(M = 3) is equivalent to two coupled pendula, featuring
mixed-phase space with chaotic dynamics. In practice it
is convenient to define phase-space configuration coordi-
nates r = (r1, r2) and associate variables q = (q1, q2) as
follows:

r1 = − 1

2N
(n3 − n2) r2 = − 1

2N
(n1 − n3) (7)

q1 = ϕ3 − ϕ2 q2 = ϕ1 − ϕ3 (8)

Note that in a semi-classical perspective r and q are
canonically conjugate variables with commutation rela-
tion [r, q] = i~, where ~ = 1/N .
Given the model parameter (Φ,K, U,N) we use stan-

dard re-scaling procedure (of n as described above, and
of time) in order to deduce that the classical equation
of motion are controlled by two dimensionless param-
eters (Φ, u), while upon quantization we have the third
dimensionless parameter ~ = 1/N . The dimensionless in-
teraction strength is

u =
NU

K
. (9)
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FIG. 2: The quantum spectrum of N = 42 bosons in a triangular BEC trimer. Panels (a-e) are for (Φ, u) as follows: (0.2π, 0.2);
(0.2π, 2.5); (0.7π, 2.5); (0.6π, 8.5); (0.6π, 1470). Each point represents an eigenstate color-coded by its purity (blue (1/S) ∼ 1 to
red (1/S) ∼ 3), and positioned according to its energy and its current. For negligible interactions vortex-states become exact
eigenstates, represented as empty blue circles. In panels (b-d), due to bifurcations, stable solitons are found in the expected
semi-classical locations (indicated by empty green squares). In (c) as opposed to (b) the rotation frequency is large enough to
stabilize an intermediate vortex-state. In (e) as opposed to (d) the interaction is strong, and the Mott transition of the ground
state is reflected in its low purity. The remaining low-purity fragmented states dwell in the chaotic sea and do not carry a
quantized current. For large M we expect their dispersion in I to shrink further down compared with the quantized values.
The thick black line in (a) is the microcanonical value of I .

In view of the optional continuum limit it is natural to
define classical and quantum versions of u as follows:

ucl =
2

M
u (10)

uqm =
Mu

N2
(11)

The use of ucl is preferable over u for systems with
M ≫ 1 sites. For the trimer (M = 3) we shall use the
bare u throughout the numerical presentation.

IV. THE CURRENT

The eigenstates |Eα〉 of Eq. (5) are characterized by
the current I = 〈I〉 that they carry. The outcome of the
standard definition I ≡ −(∂H/∂Φ) is gauge dependent.
For the translation-symmetric gauge of Eq. (5) we get
the bond-averaged current. The quantized values of the

current in the case of a vortex-state are

Im =
N

M
K sin

(

1

M
(2πm− Φ)

)

(12)

where m is an integer. For one particle in a ring both
H and I commute with the non-degenerate displacement
operator D, and hence commute with each other. This
is no longer true for N particles where due to the in-
teractions the current is not a constant of motion. By
contrast, the displacement operator still commutes with
H but decomposes it merely into M blocks. Thus, unlike
in a continuous ring system, the current I can not be
identified with the total angular momentum.
In a classical context the average current of a micro-

canonical ergodic state can be calculated using the stan-
dard statistical-mechanics prescription:

IE =
1

A

∫

I(r, q) δ (H(r, q)− E) d~rd~q (13)
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where the normalization A is the area of the energy sur-
face: the same integral but without I in the integrand.
If the system were fully chaotic with microcanonical-

like quantum eigenstates spread throughout the energy
surfaces, I would have been a well-define function of E
with very small fluctuations. In Fig.2 we display the nu-
merically calculated spectrum of the BHH Eq.(5). Each
eigenstate is represented by a point (Eα, Iα), where

Iα = 〈I〉α, α = eigenstate (14)

We observe that there is very large dispersion of Iα val-
ues around the microcanonical IE value. This is due to
having a mixed phase-space, and is further affected by
quantum interference - both issues will be addressed in
the following sections. Few representative examples of
eigenstates are shown in Fig.3. For each eigenstate |Eα〉
we plot the probability density in r space:

|Ψ(r)|2 =
∣

∣

∣
〈r|Eα〉

∣

∣

∣

2

. (15)

The image axes are n1−n2 and n3. The classification of
the eigenstates will be discussed in the following sections.

V. CONDENSATION AND PURITY

The purpose of this section is to define what is a con-

densate; and to clarify that it can be regarded as a
coherent-state which is supported by a fixed-point of the
underlying classical Hamiltonian. In particular we dis-
tinguish between vortex-states and solitons.
A non-fragmented condensate is formed by macro-

scopic occupation of a single one-particle orbital k.

Namely it can be written as (b†k)
N |vacuum〉, where b†k =

∑

j α
k
j aj creates a particle in some superposition of the

site modes, with c-number coefficients αk
j . Such state

can be regarded as a many-body coherent state in the
generalized sense of Perelomov [50]. Optionally it can
be pictures as a minimal wave-packet that is situated at
some point z = (r, q) of phase-space.
In order to characterize quantitatively the fragmenta-

tion of an eigenstate it is natural to define the following
purity measure

S ≡ trace(ρ2) (16)

where ρij = 〈a†jai〉 is the one-body reduced probability

matrix. Roughly speaking 1/S corresponds to the num-
ber of orbitals occupied by the bosons. The value S = 1
indicates a coherent-state, while a low value indicates
that the condensate is fragmented into several orbitals.
We would like to clarify why some eigenstates of the

Hamiltonian resemble coherent states. For this pur-
pose recall that the quantum eigenstates of the Hamilto-
nian are semi-classically supported by the energy surfaces
H(r, q) = E. If the energy surface is fully connected and
chaotic one expects the Eα ∼ E eigenstates to be ergodic,

microcanonical-like. A stable fixed-point of the Hamilto-
nian can be regarded as a zero volume energy surface.
In its vicinity the dynamics looks like that of harmonic
oscillation. Accordingly a Planck-cell volume at that re-
gion can support a coherent-state. In the BHH context
the Planck-cell volume is determined by 1/N .

Our Hamiltonian always has at least two fixed-points:
one that corresponds to the lowest energy, and one
that corresponds to the upper-most energy. Accordingly
both the ground-state and the upper-state are “coher-
ent states” in the large N limit. Note that the upper-
state can be regarded as the ground-state of −H. The
intermediate energy surfaces have a large area, hence
microcanonical-like states that are located there are not
“coherent”. But if we have mixed-phase space we might
find fixed-points at intermediate energies. Such fixed-
points might support meta-stable coherent states.

Vortex-states are eigenstates that resemble a conden-
sate in one of the single-particle momentum-orbitals
of the ring. They are supported by fixed-points that
are aligned along the r = 0 axis of phase-space, with
q = (2π/M)m. Vortex-states as well as their one-particle
excitations have high purity S ∼ 1.

Self-trapped states, also known as bright solitons, are
eigenstates that resemble a condensate in a localized or-
bital. They are supported by fixed-points that are gen-
erated via a bifurcation once a vortex-state looses its
stability. This bifurcation scenario will be analysed in
Section IX.

VI. THE ENERGY SPECTRUM

Representative illustrations of the Eα spectrum are
presented in Fig.2. Eigenstates are classified by their cur-
rent (I), and colour-coded according to their one-particle
purity (S). In Fig.3 we display representative examples
of eigenstates: the ground state vortex; a metastable vor-
tex; a self trapped bright soliton; and a low purity state
in the chaotic sea.

Comparing Fig.2 with Fig.1, we observe that: (a) The
ground state is vortex-state carrying the expected quan-
tized current. It retains its purity up to an extremely
large value of u ∼ N2 where the transition to a Mott insu-
lator takes place (see ‘Mott transition’ section). (b) For
small u, there is a stable vortex-state at the top of the
energy landscape. (c) If u is large enough, the upper
vortex-state bifurcates and is replaced by 3 self-trapped
solitons carrying very little current (see ‘self trapping’
section). (d) It is feasible to have an additional high
purity vortex-state in an intermediate energy range (see
‘metastability’ section). (e) The majority states are
highly fragmented and are not characterized by a well-
defined quantized value of current.

Below we provide a semi-classical interpretation of the
above findings, and deduce a schematic diagram of the
(Φ, u) regimes.
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FIG. 3: Representative eigenstates for the spectrum that is plotted in panel (c) of Fig.2. Each panel is an image of the
probability density in r space, where blue and red correspond to zero and maximum density respectively. (a) The ground state
vortex Eα ≈ −14. (b) A metastable vortex Eα ≈ 9. (c) A self trapped bright soliton Eα ≈ 62. (d) A low purity state in the
chaotic sea Eα ≈ 29. The color code is blue (low density) to red (high density).
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FIG. 4: Images of the energy surfaces Vm(r). (a) and (b) are the lower and the upper energy surface for (Φ, u) = (π/4, 2),
illustrating regime (d) in Fig.6. (c) and (d) are the upper energy surfaces for (0.8π, 0.4) and (0.8π, 1.8), illustrating regimes (a)
and (b) in Fig.6. The color code is blue (low energy) to red (high energy). See Fig.5 for a section along the symmetry line.
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FIG. 5: A section along the symmetry line
n1=n2=n, for u = 2 and Φ = π/4 (solid line), as
well as for Φ = 0.1π (dashed), and 0.5π(dotted),
and 0.8π (dashdot). Each section shows the up-
per surface and also the lower and intermediate
surfaces, which are formed of extremal points.
The thin dotted segments are formed of saddle
points. As Φ becomes larger the intermediate sur-
face V

−
(r) goes down in energy. For Φ < π/2 it is

formed of maxima, and its area shrinks to zero as
Φ is increased. For Φ > π/2 it becomes a surface
of minima, and its area expands back.
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FIG. 6: Regime diagram of the triangular BEC trimer. The
model parameters are (Φ, u). The thick solid lines divide the
diagram into four quarters (a-d). In each quarter the topog-
raphy of the upper energy surface is different, as schematically
illustrated on the right. The thick dashed line indicates the clas-
sical stability threshold of the intermediate energy surface. In
the quantum analysis we observe quasi-stability as Φ = π/2 is
crossed: see the text for details and Fig.8 for demonstration.
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VII. STABILITY ANALYSIS

The BHH formally describes a set of coupled oscil-
lators. Schematically we can write the Hamiltonian as
H(z) with z = (r, q) and ~ = 1/N . This Hamiltonian has
M−1 freedoms. A stable fixed-point z0 can support a
coherent-state provided ~ is small enough.
At r = 0 we always have 3 fixed-points that correspond

quantum-mechanically to condensation in one of the
3 momentum orbitals of the trimer. The questions are:
(i) whether these fixed-points are stable; (ii) whether
they can support a coherent quantum state. In this sec-
tion we discuss the first question. In Section X (Mott
transition) and in Section XI (Metastability) we discuss
the second question, which is related to having a finite ~.
Fixed-point stability is determined by linearization of

the Hamiltonian in its vicinity, resulting in a set of Bo-
goliubov de-Gennes (BdG) equations. This set gives
M−1 frequencies ωk for the Bogoliubov excitations. Fre-
quencies of different signs imply thermodynamic instabil-
ity, as occur in Hamiltonian of the typeH = ω1n1 + ω2n2

with ω1 > 0 and ω2 < 0. Complex frequencies indicate
dynamical instability (hyperbolic fixed-point), as occur
in Hamiltonian H = p2 − x2.
Consider a fixed-point that becomes thermodynami-

cally unstable as a result of varying some parameters in
the Hamiltonian, or due to added disorder. This means
that the island that had surrounded the fixed-point is
now opened. In quantum terms one may say that the
former vortex-state can mix with the a finite density of
zero-energy excitations, leading to a low purity, possibly
ergodic set of eigenstates.
In remaining part of this section we clarify how the

BdG stability analysis is related to the Landau criterion
for the stability of a superfluid motion, and mention the
known result for an M ≫ 1 ring.
The standard presentation of the Landau criterion

takes the liquid as the frame of reference, with the walls
moving at some velocity Ω. It is then argued that energy
cannot be transferred from the walls to the liquid if the

excitation energies satisfy ω
(0)
k > Ωk for any wavenum-

ber k of the excitation. In the case of phonons (ω
(0)
k = ck)

this implies that Ω should be smaller than the speed of
sound c.
It is conceptually illuminating to write the Landau

criterion in the reference frame where the walls are at
rest, and the Hamiltonian becomes time independent.
In this frame the superfluid is rotating with frequency
Ωm = −Ω. The Landau conditions takes the form ωk > 0
for any k, where

ωk = ω
(0)
k +Ωmk, [standing device] (17)

are the excitation energies of the vortex-state. For an
M ≫ 1 ring, taking the continuum limit, the Landau
criterion reasoning implies that the excitation energies of
the mth vortex-state in a rotating device are

ωk =
√

(ǫk + ũ) ǫk − (Ω− Ωm)k (18)

where Ω = Φ/(2π) is the scaled rotation frequency of the
device, and Ωm = m is the quantized rotation frequency
of the superfluid. The integer k is the wavenumber of the
Bogoliubov excitation, while ǫk = (1/2)k2 is the unper-
turbed single-particle energy, and ũ is the appropriately
scaled interaction. Note that the first term has the form
ck for small k, where the sound velocity is c =

√

ũ/2.
The implications of this expression on the stability of
the vortex-states is illustrated in Fig.1.
It should be clear that the Landau criterion is not ap-

plicable in the case of a finite M system, because we

cannot use Galilean transformation to relate ωk to ω
(0)
k .

Therefore we have to utilize the phase-space picture of
the dynamics in order to determine the regime diagram
of the rotating trimer. Whenever a vortex-state looses
its stability, irrespective of the nature of the Bogolyubov
excitations, we understand that superfluidity is lost.
The “standing walls” formulation of the Landau-

criterion makes transparent the connection to the Fermi-
golden-rule picture (FGRP) and to the semi-classical pic-
ture (SCP). In the FGRP the walls, or optionally some
weak disordered potential, induces first-order coupling
of the vortex-state to its Bogolyubov one-particle exci-
tations. Accordingly, in the FGRP language the Lan-
dau condition is phrased as the requirement of not hav-
ing Bogolyubov excitations with the same energy as the
vortex-state. In the SCP one considers, instead of “weak
disorder”, a weak perturbation of the vortex-state. The
linear-stability analysis tells us whether the vortex-state
is stable or not, leading again to the Landau criterion.
If the vortex-state is meta-stable, then quantum tun-

nelling or thermal activation are required in order to get
a “phase slip” to a lower vortex-state. This goes beyond
the “Landau criterion”, but still can be addressed using
the SCP, possibly combined with FGRP and optionally
using WKB-type approximation.

VIII. THE REGIMES DIAGRAM

We regard r as a triangular configuration space. It con-
sists of points (n1,n2,n3), such that n1 +n2 +n3 = N .
The phase differences q are regarded as the conjugate
momenta: they determine the velocity ṙ. The energy
landscape of the Hamiltonian can be visualized using the
Peierls-Nabarro surfaces Vm(r), formed of its extremal
points under phase variation [44, 45, 48, 49]. Lower
Peierls-Nabarro surfaces are thus defined as

V (r) ≡ min
ϕ

[H(r, ϕ)] (19)

whereas upper Peierls-Nabarro surfaces are defined with
max[· · · ] instead of min[· · · ]. Additionally we may have
pieces of surfaces that consists of saddle points.
In our model we have three surfaces: a lower surface

V0(r), an intermediate surface V−(r), and an upper sur-
face V+(r), as shown in Fig.4 (images) and in Fig.5 (sec-
tions). For Φ < π/2 the intermediate surface is an “up-
per” surface that is formed of local maxima, whereas for
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FIG. 7: Images of E = H(r, ϕ) as a function of q1 and q2 for Φ = 0.2π. In the three panels n1=n2=n, hence the fixed-points
of interest are along the symmetry line q1 = q2. The left panel is at n = (1/10)N , and it has a single minimum and a single
maximum. The middle panel is at the symmetry point r0 = 0, where n = (1/3)N , and it has a single minimum and two
maxima. Consequently in the vicinity of r0 we have three energy surfaces. The right panel is at n = (9/20)N , and it has again
a single minimum and a single maximum.

Φ > π/2 it is a “lower” surface. It should be clear that a
stable fixed-point is either a minimum of a “lower” sur-
face or a maximum of an “upper” surface. Note also
that the upper-most fixed-point can be envisioned as the
ground-state of the U 7→ −U Hamiltonian.

The diagram of Fig.6 summarizes the different para-
metric regimes of the model: each regime is characterize
by a different type of Vm(r) topography. The central
point r0 = 0 is a fixed-point of the 3 surfaces, with ener-
gies Em = Vm(r0). The fixed point E0 is always stable.
In contrast, the E± fixed-points may be stable or unsta-
ble, depending on their curvature V ′′

±(r0), where prime
denotes differentiation in the “radial” direction.
The fixed-points are situated on the symmetry lines

in r space. So we can restrict the analysis along, say,
n1 = n2 = n, hence n3 = N−2n, and

H(r, q) =
U

2

(

n
2
1 + n

2
2 + n

2
3

)

(20)

−K
(√

n2n3 cos (q1 −Φ

3
) +

√
n3n1 cos (q2 −Φ

3
)

+
√
n1n2 cos (q1 + q2 +Φ

3
)
)

The lowest surface (m = 0) has a trivial topography. In
particular for Φ = 0 the lower surface is

V0(r) =
U

2

(

n
2
1 + n

2
2 + n

2
3

)

(21)

−K (
√
n2n3 +

√
n3n1 +

√
n1n2)

For general Φ the extremal values (at a given r location)
are still situated along the line q1 = q2. Depending on
n and Φ we have either a single minimum and a single
maximum, or two minima and a maximum, or a mini-
mum and two maxima, see Fig.7. It follows that one has
to find the 3 extremal points qm(n) of the function

H(q;n) =
1

6
N2U + 3U

(

n− N

3

)2

(22)

−K
(

2
√

(N − 2n)n cos (q −Φ

3
) + n cos (2q +Φ

3
)
)

Then one obtains a section of the surface Vm(r) along
the principal “radial” direction n = (n, n,N−2n)

Vm(n) = H(qm(n);n) (23)

The most interesting fixed-points of Vm(r) are situ-
ated at the central point n = (N/3, N/3, N/3), for which
n = N/3. The three r0 fixed-points support the vortex-
states. The energies of the fixed-points are:

Em = Vm(r0) =
1

6
N2U −NK cos

(

2πm− Φ

3

)

(24)

with m = 0,±1. Note that Im = −dEm/dΦ. A lengthy
but straightforward calculation leads to the following re-
sult for the curvature at r0. This is required in order to
determined whether they are stable or not:

V ′′
±(r0) =

d2H(q±(n), n)

dn2

∣

∣

∣

∣

N/3

(25)

= 6
K

N

[

u− 6− 9 cos
(

π±2Φ
3

)

− 3 cos
(

π∓4Φ
3

)

6 cos
(

π∓Φ
3

)

− 2 cos (Φ)

]

We shall use this result in the subsequent discussion of
self-trapping and meta-stability.

IX. SELF TRAPPING

For the M=2 dimer, when u < 1 the energy landscape
stretches between a minimum that corresponds to con-
densation in the lower orbital, and a maximum that cor-
responds to condensation in the upper orbital. For u > 1
the maximum bifurcates and accordingly there are two
elliptic islands of self-trapped motion. Going back to
the trimer, one realize that the dimer type bifurcation
at u = 1 takes place along the edges of the upper energy
surface V+(r). But if u > 1 the two maxima that are lo-
cated on each edge are merely the corners of the central
’hump’ (see Fig.6bd). Hence u = 1 is not the threshold
for self-trapping.
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Self-trapping in the trimer is related to the stability
of the r0 fixed-point in the upper energy surface. If
V ′′
+ (r0) > 0 this upper vortex-state bifurcates into 3 max-

ima that support “self-trapped” states, also known as
bright solitons. The self-trapping transition is reflected
in the current dependence as demonstrated in Fig. 8.
Namely, the current in panel (a) becomes very small once
the classical stability border (sashed curve) is crossed. In
panel (b) we confirm that the loss of stability is reflected
by loss of purity: once the r0 fixed-point looses stability
the vortex-state is replaced by 3 soliton-band-states that
stretch over the 3 fixed-point.
In Fig.8c we repeat the calculation as in Fig.8b, but

with added weak disorder. Namely we add small on-site
energy shifts to the Hamiltonian Eq.(5) in order to break
the translational invariance of the system. These added
random shifts are much smaller than the inter-site hop-
ping K. They do not affect the stability of the vortex
states but they prevent the formation of a soliton band.
Note that for M ≫ 1 the soliton band would be exponen-
tially narrow. Due to the added weak diorder the soliton-
band states disintegrate into self-trapped coherent states
that have high purity. In fact some self-trapping also
happens in the numerics of panel (b) due to the finite
accuracy of the computer.
The above bifurcation scenario appears contradictory

to common wisdom. For an M site ring self-trapping
is anticipated when the self-induced potential is deeper
than the binding energy, leading to the condition ucl > 1.
Contrary to this naive expectation, Eq.(25) for the trimer
implies that the threshold for self-localization is vanish-
ingly small at the limit Φ → 0. The explanation for this
anomaly is as follows: for Φ = 0 the m = ±1 angular-
momentum orbitals are degenerate, hence any small U
results in 3 maxima in V+(r). In the case of an M site
ring any small U results in M maxima. But if M ≫ 1
these maxima represent states that have very weak mod-
ulation in the site occupation rather than self-trapping.

X. MOTT TRANSITION

The BEC ground state corresponds to the minimum
of the lower V (r) surface, which is an elliptic island. If
u is too large this island becomes too small to support
a coherent-state and the ground state number-squeezes
towards a Fock-basis state. For a Bose-Hubbard dimer
(M=2) the ground-state becomes a fragmented Fock-
state of 50%− 50% site occupation if u > N2. See e.g.
[51]. More generally, for an M site ring, the Mott
superfluid-insulator transition is controlled by the quan-

tum dimensionless parameter uqm of Eq.(10). As uqm > 1
the ground state losses its one-body coherence and ap-
proaches a Fock-state of equal site occupation.
It is important to emphasize that in the semi-classical

perspective 1/N plays the role of ~. The “classical”
regimes in Fig. 6 are related to the topology of phase-
space: they can be resolved if ~ is sufficient small, but

do not depend on ~. In contrast, the “quantum” Mott
transition has to do with having a finite ~. Due to having
a finite Planck-cell the lower surface of the Hamiltonian
cannot support a coherent-state. Instead one observes,
see e.g. Fig.2e, a glassy set of low energy fragmented
Fock-states. The glassiness is due to the possibility to
play with the occupation whenever N/M is not an inte-
ger, or due to having some on-site disorder. The Mott
transition becomes “sharp” only in the thermodynamic
limit of having large M , keeping N/M constant.

XI. METASTABILITY

Having examined the minimum of the lowest Peierls-
Nabarro surface V0(r) that undergoes a Mott transition,
and the maximum of upper surface V+(r) in connection
with self-trapping, we turn our attention to the inter-
mediate surface V−(r). We observe in Fig.2 that a dy-
namically (meta)stable vortex-states can be found in the
middle of the energy spectrum. The Φ threshold for sta-
bilization is deduced from the condition V ′′

−(r0) > 0 pro-
vided V−(r) is a “lower” surface. This border is illus-
trated schematically in Fig.6 and analytically in Fig.8
(dashed black line). Unlike self-trapping, here this (clas-
sical) border is barely reflected in the numerical results.
One observes that large current that is supported by high
purity vortex-state appear well beyond the expected sta-
bility region. Thus a coherent-solution can be quantum-
mechanically stabilized in a flat landscape by interfer-
ence. We refer to this as “quasi-stability”.

What we call quasi-stability is the possibility to have
a quantum coherent eigenstate that is supported by an
unstable fixed-point. If we have an hyperbolic fixed-point
that is immersed in a chaotic sea this is known as “quan-
tum scarring”. Another well known example for quasi-
stability is the Anderson strong-localization effect.

Let us point out two examples for quasi-stability in
the BHH context. The simplest example is apparently
the condensation of bosons in the upper orbital of a
dimer[52]: this is formally the same as saying that the
upper position of a pendulum is quasi-stable rather than
unstable. An additional example is encountered in the
case of a kicked dimer [53], which is a manifestation of
quantum scarring [54, 55]. In both examples the quasi-
stability is related to the low participation number (PN).
The PN characterizes a coherent-state that is situated
on the hyperbolic point; it estimates how many eigen-
states appear in its spectral decomposition. In the first
example the deterioration of the purity is small because
PN∼ log(N) rather than PN∼

√
N , while in the second

example PN∼ N with a prefactor that depends on the
Lyapunov exponent.

In the present analysis the traditional paradigms for
quantum quasi-stability do not apply. We dare to say
that a theory for a new paradigm is required.
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FIG. 8: We consider a trimer with N = 42 bososns. In (a) The current of the upper-energy state is imaged as a function of
(Φ, u). It becomes vanishingly small once the self-trapping border (dashed line) is crossed. In (b) we plot the 1/S of the same
state, while in (c) we repeat the calculation after adding some weak disorder (see text). Panles (d) and (e) are the same as
(a) and (b) but for the intermediate state that has the maximal current. This is a metastable vortex-state if S ∼ 1. Note that
the classical stability border (dashed line) fails to provide a valid prediction for loss of purity, which is strongly correlated with
low I values as demonstrated in panel (f).

XII. CONCLUDING REMARKS

We presented a comprehensive overview of a minimal
model for a superfluid circuit. Contrary to the conven-
tional picture we observe that self-trapping can occur for
arbitrarily small interaction, and that unstable vortex-
states can become quasi-stable. These anomalies reflect
the mesoscopic nature of the device: effects that are re-
lated to orbital-degeneracy and quantum-scarring cannot
be neglected.
A two orbital approximation as in [30] does not qual-

ify as a minimal model for a superfluid circuit, but it
captures one essential ingredient: as a parameter is var-
ied a fixed-point can undergo a bifurcation. Specifically a
vortex-state can bifurcate into solitons. In the absence of
symmetry breaking the bifurcations is into M solitons, as
illustrated in Fig.2 in going from regime (a) to regime (c).
These solitons form a band unless the displacement sym-
metry is broken, say by disorder. The 2 orbital approx-
imation assumes such symmetry breaking, and provides
a simplified local description of the bifurcation. A global
description of phase-space topology requires to go beyond
the 2 orbital approximation. Then one encounters eigen-
states that dwell in the chaotic sea. Consequently one
can regard the trimer as a bridge towards the classical
and the thermodynamic limits. All the required ingre-
dients are here: the topology and the underlying mixed

phase-space.

We note that in a former work [56] it has been ar-
gued that for Ω = 0 metastable vortex-states would be
found provided M > 4. The argument explicitly assumes
Ω = 0, and it is based on a semiclassical (mean field) sta-
bility analysis. We find that for Ω 6= 0 the semiclassi-
cal stability analysis allows metastable vortex-states for
M = 3 as well. The results of our semiclassical analysis
are summarized by the (Ω, u) regime diagram of Fig.6.

But when we go to the quantum analysis we find that
the physical picture is further modified quite dramati-
cally due to the manifestation of quantum interference
effect that is not expected on the basis of a mean-field
theory. This unexpected quasi-stability is effective
enough to stabilize metastable vortex-states even if the
device is non-rotating!
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