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Abstract. The hallmark of superfluidity is the appearance of metastable flow-states that carry a persistent circulating
current. Considering Bose-Hubbard superfluid rings, we clarify the role of “quantum chaos” in this context. We show
that the standard Landau and Bogoliubov superfluidity criteria fail for such low-dimensional circuits. We also discuss
the feasibility for a coherent operation of a SQUID-like setup. Finally, we address the manifestation of the strong
many-body dynamical localization effect.

Introduction

Circuits with condensed bosons can support superflow. Such circuits, if realized [1, 2, 3], will be used as
QUBITs for quantum computation [4, 5, 6, 7], or as SQUIDs [8] for sensing of acceleration or gravitation.
We are studying the feasibility and the design considerations for such devices. The key is to develop a theory
for the superfluidity in a discrete ring [5, 9, 10, 11, 12]. Such theory goes beyond the traditional framework
of Landau and followers, since it involves ”Quantum chaos” considerations [13, 14, 12]. An additional aspect
concerns quantum dynamical localization, which can stabilize flows-states and suppress thermalization.

In the present paper we review several results that concern Bose-Hubbard superfluid circuits [15, 12,
7, 16]. We start by introducing the model and the traditional theory for the stability of the superflow. The
first configuration we consider is the smallest possible ring, with M = 3 sites [17, 18, 19, 20, 21, 22, 23, 24]
Fig.1(a). We observe the existence of a novel type of superflow state, which is supported by a chaotic pond
in phase-space. We then turn to discuss M > 3 rings Fig.1(b), which feature high dimensional chaos and
non-linear resonances. In addition we study the effect of introducing a weak link Fig.1(c). Finally we discuss
the dynamics of the thermalization process, referring to Fig.1(d) as a minimal model.

(a) (b) (c) (d)

FIGURE 1. Models of interest. The dots and lines represent the Bosonic sites and the couplings. (a) The M = 3
trimer, which is the minimal model for a superfluid circuit. (b) A general M > 3 ring, which exhibits high dimensional
chaos and non-linear resonances. (c) A SQUID-like circuit with a weak link. (d) A complex composed of two weakly
coupled subsystems, a trimer and a monomer, serve as a minimal model for thermalization.
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The model Hamiltonian

The Bose-Hubbard Hamiltonian (BHH) is a prototype model of cold atoms in optical lattices [25, 26]. For
an M -site ring,

H =

M∑
j=1

[
U

2
nj(nj − 1)− Kj

2

(
ei(Φ/M)a†j+1aj + h.c.

)]
. (1)

where U is the on-site interaction and j mod(M) labels the sites of the ring. In the absence of a weak-link,
we assume all the hopping frequencies are equal Ki = K. A weak-link means one hopping frequency is

modified, say KM = K ′ < K. The aj and a†j are the Bosonic annihilation and creation operators, and the

nj ≡ a†jaj are the occupation operators. The total number of particles N =
∑

nj commutes with the
Hamiltonian, and is therefore conserved. The so-called Sagnac phase Φ appears if the ring is rotated with
constant velocity [27, 28]. It can be regarded as the Aharonov-Bohm flux that is associated with the Coriolis
field in the rotating frame.

For the purpose of semiclassical analysis it is convenient to write the BHH using action-angle variables
aj =

√
nje

iϕj . For a ring with no weak link, and dropping a constant we get:

H =

M∑
j=1

[
U

2
n2

j −K
√
nj+1nj cos

(
(ϕj+1−ϕj)−

Φ

M

)]
(2)

The variables ϕj and nj are canonical conjugates. Since N is a constant of motion, Eq.(2) describes d = M−1
coupled degrees of freedoms (DOFs). The dimensionless parameters that characterize the interaction are

u ≡ NU

K
, γ ≡ Mu

N2
(3)

The interaction u and the flux Φ are the only dimensionless parameters which appear in the classical
equations of motion. Upon quantization, the effective plank constant is ~ = 1/N , and the Lieb-Liniger
parameter γ is like ~2.

The BHH in the momentum basis representation is

H =
∑
k

εkb
†
kbk +

U

2M

∑
〈k1..k4〉

b†k4
b†k3

bk2
bk1

(4)

where the b†k creates a particle in the k’th momentum orbital, with the energy εk = −K cos(k − (Φ/M)),
and the 〈k1..k4〉 summation is over all the k values that satisfy k1 + k2 = k3 + k4 mod(M).

The hallmark of Superfluidity is the possibility to witness a metastable persistent current. This notion
of Superfluidity does not assume a thermodynamic limit. A coherent flow-state is created by condensing
N particles into a single momentum orbital

|m〉 ≡ 1√
N !

(
b†km

)N
|0〉 (5)

where b†km
create a particle in a momentum orbital with winding number m and wave number k = (2π/M)m.

The flow states carry a macroscipically large current

Im =

〈
m

∣∣∣∣−∂H∂Φ

∣∣∣∣m〉 = N
K

M
sin

(
1

M
(2πm− Φ)

)
(6)

The question arises whether this current survives due to “metastability”, or decays due to “ergodization”.
The possibility of having stable flow states (say “clockwise” and “anticlockwise”) is the cornerstone for the
design of a QUBIT.
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The traditional criteria for the stability of flow-states

The stability of a superflow is a widely studied theme. The traditional approach is based on the Landau
criterion [29, 30], or more generally [31, 32, 33, 34, 35, 36] on the Bogoliubov linear stability analysis. The
flow states corresponds to fixed points in phase-space: the m’th flow is situated at n1 = · · · = nM = N/M ,
meaning that the particles are distributed equally, and the phase differences are ϕi − ϕi−1 = (2π/M)m.
At the vicinity of the fixed points one can linearize the classical equations of motion. Using the optional

quantum language, adopting the Bogoliubov procedure, the b†km
and bkm

are replaced by
√
N , and the

quadratic part is diagonalized into the form

H0 =
∑
q

ωqc
†
qcq (7)

where c†q and cq are the Bogoliubov quasi-particles operators, given by b†q = uqc
†
q + vqc−q, with

q =
2π

M
`, ` = integer 6= 0, −M

2
< ` ≤ M

2
(8)

The so-called Bogoliubov frequencies are:

ωq = K sin(q) sin

(
φ

M

)
+

√(
Kq + 2

NU

M

)
Kq , Kq ≡ 2K sin2

(q
2

)
cos

(
φ

M

)
(9)

These frequencies are expressed as a function of the unfolded phase φ = (Φ− 2πm).
The traditional stability criteria are based on the inspection of the Bogoliubov frequencies ωq. Hence

one can determine the stability regimes of the flow state, to the extent that linear stability analysis can be
trusted (which is in fact not the case in general). If all ωq have the same sign, the flow state are energetically
stable (aka Landau stable), meaning that they reside in a local minima or a local maxima of the energy
landscape. If one or more of the ωq acquire an imaginary part, the flow state become dynamically unstable,
and one would expect a chaotic motion. The intermediate possibility is that all the Bogoliubov frequencies
are real, but have different signs. In such a case the dynamics is stable as far as the linear approximation is
involved, but in fact this stability is endangered by higher order non-linear terms that have been neglected
so far.

Let us test the predictions of the linear stability analysis. In Fig.2(a) and Fig.3(a) we plot the super-
fluidity regime diagrams for M = 3 ring and for M = 4 ring. The energetic stability border is indicated by
a solid line, while the dynamical stability border is indicted by a dashed line. One observes that the linear
stability borders fail to describe the color-coded numerical results: for the M = 3 ring, dynamical instability
does not necessarily imply that superfluidity is diminished; while for the M = 4 ring, dynamical stability
does not necessarily imply that superfluidity is not diminished. These fundamental differences between rings
with M = 3 sites and M > 3 sites will be explained in the next section.

From KAM stability to high dimensional chaos

The underlying classical dynamics of Eq.(2) is chaotic. The M=3 ring is a d=2 system with a mixed-chaotic
phase space: it features chaotic regions that are separated by Kolmogorov-Arnold-Moser (KAM) tori. This
is best illustrated using a Poincare section, see Fig.2(c). In contrast to that, the larger (M > 3) rings have
d > 2 phase-space with high dimensional chaos, that features a web of non-linear resonances. In the latter
case the KAM tori are not capable of dividing the energy shell into disjoint territories.

Looking at the superfluidity regime diagram of the M = 3 ring Fig.2(a) we see that the system has
eigenstates with large current in the dynamically stable regions. But surprisingly we have such eigenstates
also in the dynamically unstable regime. An example for that is given in panel (b), where the spectrum
of the many-body Hamiltonian is displayed. Each point represents a single eigenstate of the system: it is
positioned according to its energy and average current, and color-coded by its fragmentation. We observe the
existence of eigenstates with large current. This is puzzling because the underlying classical motion in the
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FIGURE 2. Taken from[15]. (a) Superfluidity regime diagram for M = 3 ring with N = 37 particles. The I of the
state that carries maximal current is imaged as a function of the model parameters (Φ, u). The solid line indicates
the energetic-stability border. The dashed lines indicate the dynamical stability borders. The dotted line indicates
the swap transition (see text). The black dot marks the (Φ, u) values used in the two other panels. (b) Representative
quantum spectrum for the M = 3 ring with N = 42 particles. Each point represents an eigenstate color-coded by
its fragmentation (black M ∼ 1 to purple M ∼ 3), and positioned according to its energy and its scaled current
I/(NK/M). The blue circles indicate the current that would be expected by Eq.(6). (c) Poincare section of n3−n2 = 0
at the energy of the m = 1 flow state. The flow state fixed point is located in (n1 − n3 = 0 ; ϕ1 − ϕ3 = 2π/3). The
solid black line marks the borders of the allowed phase-space region. The color code represents the average current
for each classical trajectory.
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FIGURE 3. (a) Superfluidity regime diagram for M = 4 ring with N = 32 particles. The long time averaged
occupation 〈n̄1〉 of the momentum orbital, where the particles were initially condensed, is imaged as a function of
the model parameters (Φ, u). The solid line indicates the energetic-stability border. The dashed lines indicate the
dynamical stability borders. The resonance in Eq.(11) plotted by a dashed-dot line. The black dot marks the (Φ, u)
values of the right panel. (b) The decay of an initially prepared m = 1 flow state in a M = 4 ring. Here we consider
a ring with N = 120 particles. The average occupation of the momentum orbitals are plotted as a function of time
(unit are chosen such that K = 1). Initially all the particles are prepared in the n1 orbital. The flux Φ = 0.25π and
the interaction u ∼ 2.83 satisfy the exact resonance condition of Eq.(11).

dynamically unstable region is chaotic. To explain this we inspect the phase space dynamics in panel (c),
where we plot the Poincare section at the energy of the m = 1 flow state. The classical trajectories are
color-coded by their average current, where red (blue) indicates large positive (negative) values. The section
reflects the mixed phase space, featuring both chaotic and integrable regions. We can see that the flow state
fixed-point is indeed unstable, and a trajectory starting at its vicinity is chaotic. But this trajectory has
large current (red). It does not “ergodize” over the entire section, but rather confined to a small chaotic
“pond”. This is due to the remnants of integrable structures, the KAM tori, which divide phase space into
distinct regions, such that different chaotic regions are not connected. As a result, the trajectories in the
pond are chaotic, but uni-directional. Upon quantization, the chaotic pond can support several eigenstates
that have high current. This explains why superfluidity persists in the dynamically unstable region, contrary
to the common expectation. The only region where stability is diminished in the M=3 diagram Fig.2(a) is
along the dotted line. This line indicates a “swap” bifurcation of separatrices [15].

For systems with M > 3, meaning more then two DOF, it is not possible to construct a Poincare
section. This is not merely a technical complication, but a profound difference. For a M = 3 ring, the
d = 2 dimensional KAM tori divides the 2d− 1 = 3 dimensional energy shell into separate regions, while
for M > 3 this is not the case. For example, for M = 4 ring the 3 dimensional KAM tori cannot partition
the 5 dimensional energy shell into separated regions. Instead, the system exhibit high-dimensional chaos,
where all the chaotic regions are connected. Even if the chaos is very weak, still the stochastic regions form
a connected web, and transport is available via Arnold diffusion [37, 38, 39, 40]. In Fig.3(a) we plot the
regime diagram for an M = 4 ring. The main region of interest here is between the dashed and the solid
lines, where according to the linear stability analysis the system is dynamically stable (but not energetically
stable). In principle, Arnold diffusion endangers the stability of the flow state in this entire region, but this
is an extremely slow process. In practice, we see a significant decay in the dynamically stable region mainly
in the vicinity of the dashed-dotted line, which indicates a non-linear resonance.
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Non-Linear resonances

Coming back to the Bogoliubov Hamiltonian Eq.(7) we add the non-linear terms that have been so far
ignored:

H =
∑
q

ωqc
†
qcq +

√
NU

M

∑
〈q1,q2〉

[
Aq1,q2 (c−q1−q2cq2cq1 + h.c.) +Bq1,q2

(
c†q1+q2cq2cq1 + h.c.

)]
(10)

The summation 〈q1, q2〉 excludes permutations. Above we have omitted 4th order terms that contain four field

operators, because they are smaller by a factor of
√
N and therefore can be neglected. The coefficients A and

B are functions of (u,Φ,M). The ”B” terms are the so-called Beliaev and Landau damping terms [41, 42, 43],
while the ”B” terms are usually ignored. The former can create resonance between the Bogoliubov frequencies
if the condition ωq1 + ωq2 − ωq1+q2 = 0 is satisfied, while the latter requires ωq1 + ωq2 + ω−q1−q2 = 0. As an
example consider the m = 1 flow state of the M = 4 ring, for which there is a single “1 : 2” resonance
given by the Aq,q term, where q = 2π/4. From the condition 2ωq + ω−2q = 0 we deduce that this resonance
appears for (Φ, u) parameter values that are indicted in Fig.2(b) by the dashed-dot line, whose equation is

u = 4 cot

(
Φ

4

)[
3 cos

(
Φ

4

)
−

√
6 + 2 cos

(
Φ

2

)]
(11)

As implied by the color-coded numerical results, the width of this resonance grows as the interaction strength
u increases, and eventually covers a large fraction of the linear dynamical stability region. In fact the width of
the resonance depends on the number of particles N . We have estimated [12] that this width is proportional
to N−1/2 for fixed u. If the exact resonance condition Eq.(11) is satisfied, the flow state fixed-point becomes
unstable, and therefore an initially prepared flow state will decay, irrespective of N . An example for the
time dependence of this decay is provided by Fig.3(b).

In a larger M system we have more degrees of freedom, and therefore more resonances. In Fig.4(a)
we image the M = 5 regime diagram. The background color indicates the linear stability regimes: yellow
indicates energetic stability, grey indicates dynamical instability, and the middle region indicates linear
dynamical stability. The red lines are the ”A” type resonances that destabilize the flow states, while the
grey lines are the ”B” resonances.

In Fig.4(b) we focus on the parametric range marked by a green rectangle in Fig.4(a), and plot the
“survival” of a prepared coherent flow state. We define the “survival” as the normalized occupation of the
flow state orbital, as deduced from inspecting the long-time dependence. We can see significant decay near
the two ”red” resonances, which completely overlap for a sufficiently large u values. Note that the ”B” type
(gray) resonances barely affect. It can be proven [12] that they are unable to destroy the stability.

Coherent Rabi oscillations

So far we have considered the stability of flow states. In this section we ask whether two quasi-degenerate flow
states can form an effective two-level system (TLS). If such a TLS is formed, we expect to observe coherent
Rabi oscillations between the two macroscopically distinct flow states, and the device could possibly serve
as a qubit. In particular the m = 0 and the m = 1 flow states are quasi-degenerate provided Φ = π, and
an effective TLS is formed at the bottom of the spectrum. The coupling ∆s between the two flow states
typically decreases exponentially with the number of particles, hence the period of the Rabi oscillations
2π/∆s becomes too large for practice applications. One possible way to improve the control over ∆s is by
modifying one of the coupling, such as to have a weak link within the circuit, see text after Eq.(1). The
semiclassical coordinates that describe the weak-link are the phase difference ϕ = (ϕM −ϕ1), and and the
conjugate n as in SQUID circuit.

For M � 1 one can approximate the remaining DOFs as a Caldeira-Leggett bath, and the Hamiltonian
takes the of the Josephson Circuit Hamiltonian (JCH)

HJCH = EC n2 +
1

2
ELϕ

2 − EJ cos(ϕ− Φ) +Hbath (12)
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(a) (b)

FIGURE 4. (a) Taken from [12]. The superfluidity regime diagram for M = 5. Yellow and gray indicate the
Landau-stability and linear-instability regions. Nonlinear resonances of the ”A” and ”B” types are indicted by red
and gray lines, respectively. The additional thin red lines are fourth-order resonances. The green squares mark regions
of interest that will be explored in the right panel. (b) The survival of a prepared m = 1 flow state in a M = 5 ring
with N = 50 particles. Initially all the particles are condensed in the n1 momentum orbital. The survival (see text)
is imaged as a function of (Φ, u).

with EC = U , and EL = [(N/M)/(M − 1)]K, and EJ = (N/M)K ′. The condition for having at least one
pair of metastable flow-states at flux Φ = π, i.e. a double well in the energy landscape, is α > 1 where
α ≡ EJ/EL = (M − 1)K ′/K. The dissipation coefficient that characterized the Caldeira-Leggett bath is

η =
π
√
γ

(13)

where γ has been defined in Eq.(4). A full derivation of the JCH coeficients and the bath Hamiltonian is
given in [7] (see also [44, 45, 5]) The condition for witnessing coherent oscillations is η < π, which requires
γ > 1. This is clearly problematic because it coincides with the border of the Mott regime, where the ring
is likely to be a Mott insulator, depending of the ratio N/M .

We are therefore motivated to consider small rings where the other DOFs are not effective like a “bath”.
What does it mean small? Clearly we want to have a ring for which Eq.(13) is inapplicable. At this stage one
should realize that the JCH approximation assumes that the chaos threshold (in energy) is well above the
height of the dividing barrier; hence the dynamic in leading order is like having a single degree of freedom. In
[7] we have argued that this is not the case for a ring that has less than 6 sites. For M < 6 a full phase-space
analysis is required. In particular we have considered M = 3, 4 rings with a weak link. In order to determine
the range of parameters for which a coherent TLS operation is feasible we have used a fragmentation-based

measure. The fragmentation of the ground state is defined as M = [trace(ρ2)]−1, where ρij = 〈a†iaj〉/N is
the one-body reduced probability matrix. In Fig.5 we image M for Φ = π. If an effective TLS is formed at
the bottom of the spectrum, we expect the ground state to be a macroscopic superposition of two flow states,
hence M∼ 2. If the weak link is too weak, the TLS breaks down, and the ground state is a coherent state
with M∼ 1. We see that the α border is slightly higher then α = 1, which reflects the high-dimensional
nature of the double well in phase-space. For large u we see thatM∼M , indicating a maximally fragmented
Mott state.

Thermalization

In the classical treatment any connected chaotic region ergodizes, hence it is not likely to witness dynamical
metastability for an M > 3 model. Even for weak chaos we have Arnold diffusion. Still this Arnold diffusion
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FIGURE 5. Taken from [7]. The fragmentation (M) of the ground state is imaged as a function of u and K′/K
for M=3 ring with N=30 particles (left) and for M=4 ring with N=20 particles (right). The valueM = 1 indicates
a coherent state (all particles are condensed in a single orbital). The value of M∼ 2 indicates quasi degeneracy of
the ground state (a doublet of flow-states). The value M∼M indicates a fragmented state: here it is due to the
quantum Mott transition. The vertical dashed line corresponds to the α = 1 border, which in the absence of a Mott
transition would become valid for large u.

is very slow and in practice possibly cannot be observed. Furthermore, upon quantization it is likely to be
completely suppressed due to a dynamical localization effect.

It is in fact more interesting to study the dynamical localization effect for the minimal model that is
illustrated in Fig.1(d). Consider a 3-site Bose-Hubbard subsystem (trimer) with x particles, coupled weakly
to an additional site (monomer) with N − x particles. In [46] it has been demonstrated that the probability
distribution ρ(x) obey a Fokker-Planck equation in the classical limit; with an effective diffusion coefficient
that requires a resistor-network perspective. However, in the quantum case, the spreading is suppressed due
to a strong quantum localization effect if x is below or above some threshold values. Using a semiclassical
approach it is possible to determine these mobility edges, and the localization volume in phase space [16].

Conclusions

We have clarified the role of “chaos” for the metastability criteria of flow states, and for the possibility to
witness Rabi oscillations in a SQUID-like setup. Additionally we considered both coherent and stochastic-
like features in the dynamics of the thermalization process. Our main observations are: (1) Instability of
flow states for a three sites ring is due to swap of separatrices; (2) For rings with more than three sites it
has to do with a web of non-linear resonances; (3) It is not likely to observe coherent operation for rings
that have a weak link and more than five sites; (4) Strong many-body dynamical localization may enhance
the stability, and suppress stochastic-like thermalization.
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