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We consider a quantized version of the Sinai-Derrida model for “random walk in random environment.” The
model is defined in terms of a Lindblad master equation. For a ring geometry (a chain with periodic boundary
condition) it features a delocalization-transition as the bias in increased beyond a critical value, indicating that
the relaxation becomes underdamped. Counterintuitively, the effective disorder is enhanced due to coherent
hopping. We analyze in detail this enhancement and its dependence on the model parameters. The nonmonotonic
dependence of the Lindbladian spectrum on the rate of the coherent transitions is highlighted.
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I. INTRODUCTION

Sinai has coined the term “random walk in random en-
vironment” for a model that describes the stochastic motion
of a particle in a 1D lattice [1]. The forward and backward
rates w of the transitions between sites (indexed by x) are
independent random variables. For a biased chain the average
ratio w; /wy favors (say) the forward direction. It turns out
that for an unbiased infinite chain with arbitrarily small ran-
domness the spreading of the particle becomes subdiffusive.
Later Derrida and followers [2—4] have found that nonzero
drift velocity is induced if the bias exceeds a critical value or
sliding transition. Related to that is the delocalization transi-
tion that has been. discussed by Hatano, Nelson, and followers
[5-10]. The latter term refers, in the Sinai-Derrida context,
to the transition from overdamped to underdamped relaxation
for a finite sample with periodic boundary conditions [11-14].

We consider a quantum version of the Sinai-Derrida model.
This means that in addition to the stochastic transitions that
are described by an appropriate master equation, the particle
can also perform coherent hopping between the sites. The
hopping frequency c is a free model parameter. Our interest is
focused in the regime ¢ < v, where v is the average rate of the
stochastic transitions. Note that in the other extreme (v = 0)
the model features ballistic motion that can be suppressed by
an Anderson localization effect (due to quenched disorder) or
by Bloch oscillations (if bias is applied).

In Ref. [15] we have introduced a full Ohmic Lindbla-
dian that generates the quantized version of the Sinai-Derrida
model. A counterintuitive enhancement of the effective dis-
order due to coherent hopping has been pointed out but has
not been explored. In particular, the most interesting aspect,
namely the delocalization transition, has not been discussed.
In the present paper we consider a minimal version of the full
quantized version, omitting some terms that are not essential
for the demonstration of the main effects and performing some
further simplifications that will be discussed in subsequent
sections. Thus, in the absence of coherent hopping (¢ = 0)
our minimal model reduces to the Pauli master equation and
hence becomes identical to the standard Sinai-Derrida model.

The minimal model that we introduce below is defined by a
Lindbladian. It includes a random potential that has dispersion
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og and a random stochastic field that has dispersion oy. The
parameters that define the model are (v, ¢, o¢, o) and the bias
f. We argue that such Lindbladian reflects an environment that
has a characteristic temperature

Toan = (o7/0)™". (1
An associated dimensionless parameter is
v 1(o
n = - —(—f) v @)
2Toan 2\ o0g

Accordingly, there are two “classical” dimensionless parame-
ters and two “quantum” dimensionless parameters that define
the model:

Dimensionless Parameters = (f, oy, n, ¢/v). 3)

We introduce the stochastic and the quantized models in
Secs. II and III, with extra technical details in the Appendix.
We further discuss the significance of the model parameters
in Sec. IV and provide a regime diagram in Fig. 1. Then we
look on the spectrum of the Lindbladian for nondisordered
and for disordered ring in Secs. V and VI, respectively. We
discuss how the localization of its eigenmodes is affected by
c in Sec. VII and highlight some counterintuitive effects. The
delocalization threshold is further explained in Sec. VIII. The
summary in Sec. VII provides extra background to place the
present work in the context of past studies.

II. THE STOCHASTIC MODEL

The standard Sinai-Derrida model is defined in terms of
a rate equation for the probabilities p, to find the particle
in site x=1,2,..., N, and we assume periodic boundary
conditions. The rate equation is written as follows:

d
— 4
dtp = Wp, @)

where p = {p,} is a vector and VW is an N x N matrix. The
explicit expression for this matrix is

W= w+w_ )0+ [wiD+w;Dil. (5
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FIG. 1. Regime diagram. The (o, n) regime diagram for the

unbiased model. The classical high-temperature condition (o < 1)

implies weak stochastic field. The quantum high-temperature condi-

tion (n < 1) allows us to ignore memory effects. In the Sinai regime,

above the dashed line (n > o), the coherent effects are regarded as
a perturbation with respect to the dominant stochastic dynamics.

where O, = |x){(x| and Dy = |x 4+ 1)(x|. The translation op-
erator is D = ZXDX = ¢4, where q is the generator of
translations. In the absence of disorder the above expression
takes the form

W= —(wt 4+ w )1 —cos(g)] —i(w" —w )sin(g). (6)

The rates wT in the disordered Sinai model are determined
by a random stochastic field f; such that

ot = ¢ F,

Wt @)
We assume, following Sinai, weak stochastic disordered
(fx < 1). Consequently, one writes in leading order

wE = vt~ (1 + %)vx. (8)
Accordingly, v, characterizes the strength of the stochastic
transitions at a given bond, while f, reflects their asymmetry.

For the later analysis we write an explicit expression for
the W matrix that holds in leading order with respect to the
disorder strength:

W = —diagonal{(vx+vx_1) + %(fx_fx—l) + %fz}

+ off-diagonal { v,e™//2}. )

In the above formula the off-diagonal terms are written with-
out any approximation, because it is more convenient for later
discussion. But a clarification is required for the approxi-
mations that are involved in the diagonal terms. The term
v(fy — fr—1)is implied by the replacement of v, by its average
value v. The error that is associated with this replacement is
of higher order in the disorder strength. The same reasoning
applies for the v f? term, where the replacement of f, by its
average value f has been performed.

The random independent variables f, are characterized by
an average fui,s = f and by a dispersion o. The spectrum of
W is illustrated in Fig. 2. As f is increased more eigenvalues
become complex (see lower panel). The critical value f, is the
value above which complex eigenvalues emerge at the vicinity
of A ~ 0. This is identified as a delocalization transition in the

Im (\)

FIG. 2. Delocalization of the eigenmodes. The chain consist of
N = 32 sites with periodic boundary conditions. The dynamics is
described by a rate equation with matrix VV. The average transition
rate between neighboring sites is v = 1 and o, = 0.05. Upper panel:
The spectra of W for f = 0.005. The color code indicates the value
of o. It goes from blue (o = 0) to red (o = 0.02). Lower panel:
Characterization of the spectrum in a wider range. The axes are oy
and f. The color code indicates the normalized number Nempix /N of
complex eigenvalues. The solid line indicates the numerically deter-
mined critical value f. above which the eigenvalues at the vicinity of
A = 0 become complex. For different realizations of the disorder this
line is shifted within some range.

sense of Hatano and Nelson and has a subtle relation [11] to
the sliding transition that has been discussed by Derrida and
followers. An estimate for f,. can be obtained by the formula

f = ivar( fi) = prefactor aj%, (10)

where the numerical prefactor depends on the numerical
definition of o that may vary depending on the shape (Gaus-
sian/Box) of the distribution. This expression works well for a
long chain, while fluctuations in its value are pronounced for
short samples.

III. THE QUANTIZED MODEL

The full Ohmic version of the Lindblad equation for an N
site chain with periodic boundary conditions can be found in
the Appendix. Here we summarize the details of a simplified
minimal version that still contains all the essential physics
of the problem under study. The master equation for the
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evolution of the probability matrix is

fi—p =[LT 4 L 4 LB + £Op. (11)
t

The Lindblad generators in this equation refer to the coher-
ent Hamiltonian dynamics, to the coherent bias term, to the
stochastic environmentally induced transitions between sites
(along “Bonds”), and to optional decoherence due to local
baths (at “Sites”). The explicit expressions are as follows:

L%p = —iH, p], (12)
1 _
£®p= —3 ;(w; +w_DIQ,p + p0Q,]
+ [wDipD, +w D,pDl,  (13)
L% = —yp+Y_ v0.00.. (14)

The stochastic transition rates are wf as in Eq. (8), and the
extra on-site decoherence rate is y. The Hamiltonian incorpo-
rates a hopping term and a disordered potential:

H = g(D +DH +U@), (15)

where c is the hopping frequency for coherent transitions. The
disordered field is

& = —[Ux+1) —Ux)]. (16)

If we did not impose periodic boundary conditions, then
the bias could have been added using the prescrip-
tion U(x)+— U(x) — Ex, with diagonal matrix elements
i(x, — X )Evias- In order to respect the periodic boundary con-
dition we modify the bias term as follows:

) N 2
E(blaS) (I’l/, m’|n, m) = i(sn’ n‘Sm/ m gbias sin (xn - xm) .
o 2w N

7)

This modified version is locally the same as the proper version
for an open chain, while for large (x,, — x;,) it can be justified
self-consistently for a long closed chain. This modification
has no significant numerical implication, because the far off-
diagonal terms of the probability matrix for low modes are
vanishingly small.
The definition of the local temperature 7, is implied by the
Boltzmann ratio Eq. (7), using the substitution
&
S = T (18)
Recall that we assume, following Sinai, weak stochastic dis-
ordered (f, < 1), which is equivalent to &, < T;. This goes
well with the observation that the Ohmic approximation is
consistent with Boltzmann to leading order in 1/7 (higher-
order terms in the Ohmic master equation vanish only in the
classical limit). In the Appendix we explain how Eq. (18)
is obtained rigorously from the Ohmic master equation. The
free parameters of the Ohmic master equation are v, and 7,
that correspond to the “noise” intensity and the “friction”
coefficient in the common Langevin description. They obey
the Einstein relation, namely T, = v, /(27,). However, in the

present model the coupling of the bonds to the baths implies
that n should be regraded as a “mobility”” and not as “friction”
coefficient [15].

IV. MODEL PARAMETERS

Physically disorder may arise from the potential, or from
the environmental parameters. So we may have randomness
in v, and/or in 7, and/or in &, and/or in y;. The Sinai-Derrida
physics that we discuss is rather robust and allows flexibility
in the choice of the “free” parameters. In the numerical study,
the following approach has been adopted with no loss of gen-
erality. Given og we generate a realizations of the disordered
potential such that

U(x) € [0, o¢]. (19)

Then we can generate a random 7, € [0, 0y] and from it
calculate the random stochastic field f;. In practice we have
realized that the numerical results are robust and not affected
if we generate the stochastic field independently, namely

or or
fxe[f—z,f-i-z] (20)
with
C
Var(f,) = 0o, Var(&,). 21
)

The latter relation follows from Eq. (24) of Ref. [13], where
C = 8 for Gaussian disorder. From this relation it follows
that the ratio o/o¢ is determined by the temperature of the
bath. This inspires the practical definition of the characteristic
temperature Eq. (1).

A. Resistor network disorder

The essential type of disorder for the discussion of Sinai-
Derrida physics is related to the randomness of the stochastic
field f;. As opposed to that, randomness in v, is similar
to “resistor network disorder.” It has significant implications
only in extreme circumstances, such that percolation becomes
an issue [11]. We assume weak disorder, and therefore the
probability for disconnected bonds is zero. For the numerical
exploration we take

c o4 (22)
X - 4 9 ‘) ~ b
v V 2 2

where v is the average value of v,, and o, < v is assumed.

B. Numerical procedure

Given o, we generate random set of v, values for the bonds
in accordance with Eq. (22). We set the units of time such
that the average value is v = 1. Given o and f, we generate
random realizations of the stochastic field f, in accordance
with Eq. (20), such that Y f, = Nf for each realization. Note
that the average value f, per realization, is regarded as a
control parameter, namely fpas = f. The transition rates w
are calculated using Eq. (8). Given Ty, we determine o¢ from
Eq. (1) and generate a realization of the disordered potential
in accordance with Eq. (19). Respectively in Eq. (17) we
substitute Epias = Tharh foias-
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C. Regime diagram

The (o, ) regime diagram of the unbiased model is dis-
played in Fig. 1. The assumed hierarchy of energy scales is

¢, 0g L v L Ty (23)

The horizontal axis of the diagram is the strength oy of the
Sinai disorder that is determined by the ratio between og
and Ty via Eq. (1). As already pointed out we assume
weak stochastic field (oy < 1) reflecting that we deal with
an Ohmic master equation that corresponds to the tradi-
tional Sinai-Derrida model. With similar reasoning we assume
¢ K T for the coherent hopping. The vertical axis of the
diagram is the quantum parameter n that reflects the ratio
between v and Tp,p. It is the same dimensionless “fric-
tion” parameter that appears is the analysis of the spin-boson
Hamiltonian. The validity of the Ohmic master equation re-
quires 17 < 1. In the regime n > 1 the model is not valid
because non-Markovian memory effects cannot be neglected.

The first inequality in Eq. (23) means that we regard the
coherent effects as a perturbation with respect to the dominant
stochastic dynamics. This stands in opposition to the common
quantum-dissipation studies, where the bath is regraded as a
disturbance that slightly spoils or modifies coherent evolution.
In the regime diagram the border between the two regimes is
represented by the diagonal line n = oy.

In our mathematical analysis Ty, merely determines the
ratio og /oy and should be kept larger than v =1 in ac-
cordance with Eq. (23). To avoid misunderstanding, we
emphasize that from an experimental perspective the physical
temperature affects the parameters v and oy. Therefore, set-
ting n = oo in the sense of Eq. (2), while fixing the transition
rates, does not really corresponds to zero temperature and
furthermore contradicts our assumption Eq. (23).

V. THE NONDISORDERED RING

For nondisordered ring with ¢ =0 the Lindblad equa-
tion becomes identical with the Pauli master equation, namely
the diagonal elements p, of the probability matrix p, ,» satisfy
the rate equation Eq. (4), while each diagonal term satisfies the
equation

d
o = oy =@+ w) +iErp, 24)

with r = (x'—x") = £1, £2, - - -. We conclude that the eigen-
values {—A,,,} of £ are

Agr=0 = (wT+w7)[1—cos(g)] — i(w"—w)sin(g), (25)
Agrz0 =y + W +w™) —i€r, (26)

where the wave number is ¢ = (2w /N) x integer. Accord-
ingly, we distinguish between relaxation-modes that have
eigenvalues A, o and decoherence-modes that have eigenval-
ues A, 0. This distinction is blurred for ¢ # 0 due to mixing
of the r branches, but nevertheless it can be maintained for
small ¢ (see below), even in the presence of disorder (see next
section).

We can extract the drift velocity v and the diffusion coeffi-
cient D from the expansion

Ao & ivg+Dq* + O(q). (27)

For nondisordered ¢ = 0 ring, Eq. (26) implies, as expected,
the trivial results v = (w™ —w™)and D = (w* + w™)/2.

Next we explore how the spectrum is modified for ¢ # 0.
An example for the outcome of numerical diagonalization is
provided in Fig. 3. The dependence on c is illustrated. Below
we explain the observed dependence analytically.

The hopping couples the diagonal and the off diagonal
terms of p, . It is convenient to define a position coordinate
x = (X'+x”)/2 and a transverse coordinate » = (x'—x"). Then
we can define an operator r = ) |r)r(r|, a displacement op-
erator D, is the transverse r coordinate, and a displacement
operator e~ in the x coordinate. The total Lindbladian can
be regarded as a non-Hermitian Hamiltonian that generates
dynamics on an (x, r) lattice, see Fig. 4. It can be expressed
as follows:

L=y +Ho—W)®[0)(0]
—ifr — csin(g/2)[Dy — D1, (28)

where yp=y +w" +w~. More generally, we define
Ye =y + whe ' + we". In the absence of disorder the lat-
tice has Bloch translation symmetry in x, and therefore ¢ is a
good quantum number. The g block of the Lindbladian is

LD = —y5 + 1,4|0)(0] — ifr — csin(q/2)[D, — D}1. (29)

For clarity, and for further analysis, we write a truncated ma-

trix version of £@, where we keep only r = —1, 0, 1. Namely
—Yo + i€ csin(g/2) 0
L9 = | —csin(q/2) —w+y, csin(g/2)|.  (30)

0 —csin(g/2) —y — i€

In section 4 of the supplementary material of Ref. [15] (see
also Ref. [16]), the following result has been derived:

hao = yo—y2 —4ctsin® (q/2). (31)

This result allows finite fii,s but neglects Eyas.

The eigenvalues of £ are labeled A, ,, with band in-
dex s =0, =1, £2, - - - that distinguishes the s = 0 relaxation
modes from the s ## 0 decoherence modes. The former cor-
respond to the eigenvalues of V. The distinction between
relaxation modes and decoherence modes remains meaningful
for small ¢, as long as the bands remain separated. In Fig. 3
only the eigenvalues of the relaxation modes are displayed.
As ¢ becomes larger, the Im(A) of the relaxation modes in-
creases monotonically. The numerical diagonalization agrees
with Eq. (31) and approximately with diagonalization of the
truncated version Eq. (30).

VI. THE EFFECT OF DISORDER

The matrix W is real. Therefore its characteristic poly-
nomial is real, and accordingly its eigenvalues A, are either
real or complex-conjugate pairs. Note that in the absence of
disorder g can be interpreted as quasimomentum, while in
the presence of disorder ¢ becomes a dummy index. The
delocalization of eigenmodes, as fi;,s in increased, is indicated
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FIG. 3. The Lindblad spectrum. Spectra of the Lindbladian for
the same ring as in Fig. 2, with o, = 0, while the dispersion of the
stochastic field is oy = 0 (upper panel), oy = 0.005 (middle panel),
and oy = 0.02 (lower panel). The color code indicates the value of
c. It goes from blue (¢ = 0) to red (¢ = 2). The bias is f = 0.003.
The temperature is Ty, = 200, and the on-site decoherence rate is
y = 5. The black circles indicate the spectrum of V. In the upper
panel the black dots are from Eq. (31), while the gray dots are from
the perturbative approximation based on Eq. (30). The eigenvalues
that correspond to the decoherence modes Eq. (26) are outside of the
axis borders.

by the formation of complex-conjugate pairs. The eigenvalues
at the vicinity of A ~ 0 are the first to get delocalized, indicat-
ing a crossover from overdamped to underdamped relaxation
[11,12]. For very large fy;.s most of the eigenvalues, also those

TN

FIG. 4. Diagrammatic representation of the lattice. The axes are
x and r. Only the r = —1, 0, 1 elements are displayed. Bath-induced
w* transitions are colored in blue: They connect only r = 0 ele-
ments. Coherent +i(c/2) transverse transitions are indicated by solid
and dashed red lines.

with large Re(A), become complex. Figure 2 illustrates this
delocalization scenario, showing how the number of complex
eigenvalues depends on f for a range of o values.

A similar scenario is expected for the Lindbladian
L. The hermiticiy of p implies that the supermatrix
Ly i e 1s complex conjugated if we perform the reflection
R : (n,m) — (m,n). So we have the relation RLR = L*.
This implies that the characteristic polynomial of L is real,
as in the case of W.

A. The relaxation spectrum

The relaxation spectrum of a disordered ring for c#£0 is
illustrated in Fig. 3. Note that we use the same ring as in
Fig. 2, with the same disorder realization. Different values
of oy are achieved by uniform “stretching” of the field val-
ues, without affecting the relative magnitudes. The major
counterintuitive observation is as follows: The introduction of
coherent hopping is qualitatively similar to stronger disorder.
This is reflected by the migration of eigenvalues towards the
real axis. The effect is pronounced for eigenvalues with larger
Re(1), namely eigenvalues with larger Re(A) are more sensi-
tive to c.

B. Identification of the relaxation spectrum

It is very easy to identify the perturbed A, o branch of the
spectrum if y is large, because large y shifts all the A, o
eigenvalues to Re(L) ~ 2v + y. But if, say, y =0, we can
still try to identify this branch by calculating the diagonal
norm Q of each eigenmode. A given eigenmode p of the su-
permatrix £ can be regarded as a supervector, with the ad hoc
normalization ), |ox.x|> = 1. What we call diagonal norm
is the partial sum Q = trace(p). In Fig. 5 we demonstrate that
in the range of interest this procedure allows to isolate the
Ag,0 branch, even if y = 0. The points are color coded by the
inverse participation ratio, namely IPR = )" |py v |*. Large
IPR for a relaxation-mode indicates localization (only small
number of sites participate).

VII. EFFECTIVE DISORDER

In order to understand analytically the observed depen-
dence of the spectrum on ¢, we write the equation Lp = —Xip
for the elements (x, r = —1, 0, 1) of p, based on the diagram
of Fig. 4. Then we eliminate the r = 1 elements, expressing
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0.5
Cc

FIG. 5. The diagonal norm versus c¢. We consider the same ring as in Fig. 2 with y = 0 (upper panels) and y = 5 (lower panels). For a
given value of ¢ we calculate the diagonal norm Q and the IPR (color coded) for each eigenmode. The measure Q allows to distinguish the
s = 0 branch from the other branches. As c is increased the branches get mixed. The left panels are for zero disorder, while the right panels

are for oy = 0.02.

them in terms of the r = 0 elements. Substitution into the
equation for the r = 0 elements, we conclude that the effective
transition rates are modified as follows:

- A (=)
veffectlve = v+ — x ) 32
: 20—yt e .

This formula allows us to estimate how different eigenvalues
along the A, o branch are affected by the disorder. Let us start
our reasoning with the assumption that the bias is small or
even zero. Accordingly, the relaxation spectrum is real. Equa-
tion (32) implies that that the introduction of c is equivalent to
an effective resistor-network disorder with dispersion o), that
is proportional to og. For the purpose of rough estimate one
can substituted (A—y,) — v. Then it follows that

o o
oy ~ ETbath o (33)

where we used iy K 0¢ < v and the relation Eq. (1).

A. Localization

Due to oy and o, the eigenmodes of the chain are lo-
calized. As the bias is increased gradually from zero, one
expects a delocalization transition. We shall discuss this tran-

sition analytically in the next section. We can also go in the
other direction. Namely, we fix a relatively large bias such
that the relaxation eigenmodes are delocalized, with complex
eignevalues A,. Then we increase the disorder and/or ¢ grad-
ually to see how the spectrum is affected. We discuss this
scenario further below.

In the absence of disorder the introduction of ¢ leads to
monotonic increase of Im(4,), as implied by Eq. (31). This
effect is not uniform: The eigenvalues in the vicinity of A ~ 0
are hardly affected.

In the presence of weak disorder the dependence of Im(2,)
on ¢ becomes nonmonotonic, see Fig. 3, reflecting a crossover
from a non-disordered-like dependence that is implied by
Eq. (31) to the disordered-case dependence that is implied by
Eq. (32). Namely, the implication of the effective disorder is to
“push” towards localization, and hence Im(2,) is decreased.

If the effective-disorder is strong enough, the eigenvalues
become real, indicating localization. Also here the effect is not
uniform: The eigenvalues in the vicinity of A ~ 0 are hardly
affected. We explain this observation in the next section.

B. Global localization

The global localization of the relaxation modes as a func-
tion of o for different values of f has been illustrated in lower
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0 0.01 0.02 0.03

FIG. 6. Enhanced effective disorder. We consider the sample of
Fig. 2 with oy = 0.01. Upper panel: The relaxation spectrum is
obtained from the diagonalization of the Lindbladian £, with o, = 0.
The bath temperature is Ty, = 800, and the on-site decoherence rate
is y = 10. The color-code indicates the results for Nempix /N, and the
axes are ¢ and f. Lower panel: The results are based on diagonal-
ization of the associated W, and the axes are o, and f. Comparing
with the upper panel one observes qualitative correspondence. Note
that different samples exhibit different dependence on the strength
of the effective disorder. Monotonic dependence is found only after
statistical averaging.

panel of Fig. 2. In the upper panel of Fig. 6 we demonstration
how this localization is affected by c. We also demonstrate
there (in the lower panel) that the effect of ¢ can be mimicked
by introducing into WV an effective resistor-network-disorder.
However, this should not be overstated. It should be clear that
the details of the crossover from nondisordered ring cannot
be captured by a purely stochastic model, because the former
features a nonmonotonic dependence of the eigenvalues on c.

The delocalization threshold f,. is related to the eigen-
values that reside at the vicinity of A = 0, while the global
count Neypix of complex eigenvalues probes the delocalization
globally. For the particular disorder-realization of Fig. 6 the
dependence on the strength of the disorder is rather monotonic
for Nempix but not monotonic for f.. For other disorder-
realizations the dependence of f, on the strength of disorder
is different. It is only after averaging, over many realizations,
that we get a monotonic dependence. Furthermore, we clarify
below that the dependence of f. on c¢ is diminished for large
rings.
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FIG. 7. Delocalization threshold versus model parameters. The
upper panel, f. versus oy, is obtained by averaging over 150 real-
izations of disorder for ¢ = 0 (thick blue line) and ¢ = 1 (thick red
line). Thin lines illustrate the nonaveraged results for six randomly
selected realizations. The lower panel, f. versus c, is for realizations
with oy = 0.01. The symbols illustrate the values before averaging.
The bath temperature is Ty, = 200, and the on-site decoherence is
y =0.

The average dependence of f. on oy and c is illustrated in
Fig. 7. We also provide the results for a few randomly selected
realizations (thin lines) to illustrate the fluctuations. Figure 8
displays the full histograms for the 150 disorder realizations.
We see that for larger rings the effect of ¢ on f, is diminished.
This observation will be explained in the next section.

On the other hand, the global effect of ¢ is not diminished
for large N. For that we have to look globally on the spectrum
and not just at the vicinity of A ~ 0. To quantify this statement
we find for a given fy,s the critical value ocrgical Of 0 above
which real eigenvalues appear, indicating localization of some
“remote” eigenmodes. One observes in the right histogram of
Fig. 8 that the effect of ¢ does not diminish for longer samples.

VIII. THE DELOCALIZATION THRESHOLD

The localization of the relaxation modes is due to the o
disorder and also influenced by the o, disorder. The latter is
enhanced once coherent hopping is introduced, as implied by
Eq. (32).

For the purpose of analysis one introduces an Hermitian
matrix Hwy that is associated with Y. Using the same
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Probability
o
(6]

f %1073

Probability
o
3]

0 0.02 0.04 0.06 0.08
Ucritical

FIG. 8. Delocalization threshold statistics. Cumulative his-
tograms for f, given oy = 0.01 and for orical given fiias = 0.003.
The thick lines are for N = 64, while the thin lines are for
N = 32. The blue and the red lines are for ¢ =0 and for ¢ =1,
respectively. The histograms are based on 150 realizations of the
disorder.

notations as in Eq. (9) the associated matrix is

Hw = diagonal{(vx—i—vx_]) + g(fx_fx—l) + ;sz}

— off-diagonal{v,}. (34)
The following relation exists [5—7,11]:
det(A+W) = det(A—Hw)

— 2|:cosh <N7f> - 1} l:[(—vx). (35)

Consequently, one can write the characteristic equation for the
eigenvalues as F'(A) = F(0), where

A& ) (36)

1N
F(A) = — 1
) NkZ:(;n

Here ¢; are the eigenvalues of Hy, and v, is the ge-
ometric average over the v,. The right-hand side of the
equation F(A) = F(0) is implied by the simple observa-
tion that A = O should be a trivial root of the characteristic
equation.

The envelope « (A) of the function F(A) is identified as the
Thouless formula for the inverse localization length of eigen-
states that are associated with ¢;. Consequently, the condition
for getting complex eigenvalues from the equation F (1) =
F(0)is k(1) < F(0). Below we explain the derivation of the
following expression:

Vavg

(f = fo) [A o?
k(d) ~ aOfc_acT\/; + ﬁ)\» 37

where f,, which is given by Eq. (10), is independent of o,,
while ¢y and ¢, are numerical constants. From this expression
it follows that for f > f. complex roots appear at the vicinity
of A ~ 0. This threshold is not affected by o, and therefore
also not affected by c¢. However, the resistor network disorder
enhances the localization for larger A and therefore affects the
global delocalization of the eigenmodes.

The derivation of Eq. (37) requires the integration of sev-
eral ingredients that have been worked out in past studies.
We provide here an outline how to obtain this formula. The
basic observation of Derrida and followers is that WV gener-
ates anomalous spreading |x| ~ t* that is characterized by an
exponent w. This exponent is determined through the equation
(e7"fsy = 1. It is important to realize that w is rigorously
independent of the resistor-network disorder. For Gaussian
distribution one obtains the relation u = (2/ O’fz- )f.

It is implied by the anomalous spreading that the density of
the eigenvalues ¢; at the bottom of the “energy” band is e*~.
This can be used in the Thouless relation to derive the result
F'(A) ~ (A /vy cot(r ). See Ref. [11] for details. It
follows that complex eigenvalues appear near the origin for
u > . where . = (1/2). The second term in Eq. (37) is
obtained after linearization of F’(A) around this critical value.

The first and the third terms in Eq. (37) correspond
to the correlated Anderson diagonal-disorder and to the
Debye-resistor-network off-diagonal disorder that we have in
Eq. (34). Section VII of Ref. [14], including Appendix C
there, provide a fair presentation for these two types of dis-
order. The estimation of the inverse localization length is
performed using the Born approximation (Fermi golden rule).
The Debye disorder provides a term that is proportional to
[Var(v,)]A. This contribution vanishes at the bottom of the en-
ergy band as expected. The Anderson disorder provides a term
that is proportional to [Var(diagaonl)]/A, where Var(diagaonl)
is the effective variance of the diagonal terms. Here one
should notice that f,—f,—; in Eq. (34) features telescopic
correlations, and hence Var(diagaonl) o [Var(f)]A is propor-
tional to A. Consequently the Anderson term in Eq. (37) is
independent of X.

IX. SUMMARY

Quantum Brownian motion is a well-studied theme (see
Refs. [17-20] and references within). In the condensed-matter
literature it is common to refer to the Caldeira-Leggett model
[21,22], where the particle is linearly coupled to the modes
of an Ohmic environment. The strongly related problem of
motion in a tight binding lattice [23-26] can be regarded as
a natural extension of the celebrated spin-boson model. The
cited works assume that the fluctuations are uniform in space.
Some other works consider the dynamics of a particle that
interacts with local baths. In such models the fluctuations
acquire finite correlations in space [16,27-37]. More recently,
the basic question of transport in a tight-binding lattice has
resurfaced in the context of excitation transport in photosyn-
thetic light-harvesting complexes [38—47].

Considering the possibility that each site and each bond
experiences a different local bath, it is puzzling that all of
the above cited works have somehow avoided the confronta-
tion of themes that are familiar from the study of stochastic
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motion in random environment. Specifically we refer here to
the extensive work by Sinai, Derrida, and followers [1-4], and
the studies of stochastic relaxation [11,12] which is related to
the works of Hatano, Nelson, and followers [5—10].

In order to bridge this gap, we have introduced in an earlier
paper [15] a quantized version of the Sinai-Derrida model.
In the present work we have considered a simplified version
that captures the essential physics. Without coherent hopping
(c =0) it reduces to the Pauli master equation and hence
becomes identical to the standard Sinai-Derrida model. The
model features two dimensionless parameters that control its
regime diagram Fig. 1. The smallness of the quantum param-
eter n < 1 implies that memory effects can be neglected, and
hence we can use a Lindblad version of the Ohmic master
equation. The smallness of the classical parameter oy < 1
reflects the standard assumption of weak stochastic disorder,
as in the original model of Sinai.

The Hatano-Nelson delocalization transition is related to
the Sinai-Derrida sliding transition. We find that adding coher-
ent transitions “in parallel” to the stochastic transitions leads
to some counterintuitive effects. In order to illustrate these
effects we have inspected mainly two measures: (a) the overall
number of complex (underdamped) relaxation modes and (b)
the threshold f, for underdamped relaxation. The latter mea-
sure focuses on the eigenvalues at the vicinity of A ~ 0. The
main observations are as follows: (1) The relaxation modes
are strongly affected by coherent hopping, (2) the dependence
of Im\ on ¢ becomes nonmonotonic, (3) on-site decoherence
affects the sensitivity to the ¢ dependence, (4) some features
of the localization transition can be mimicked by introducing
an effective random-resistor network disorder in the stochastic
description, (5) the dependence of the delocalization threshold
on c is very weak for large rings, and (6) the delocalization
threshold for small quantum rings exhibits strong fluctuations.

Our observations regarding delocalization concern the
regime ¢ < v, within the region where the coherent hop-
ping can be regarded as a perturbation. This means that the
relaxation modes are distinct and well separated form the
decoherence modes. This allows a meaningful comparison
with the stochastic model.
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APPENDIX: THE LINDBLAD MASTER EQUATION

A master equation for the time evolution of the system
probability matrix p is of Lindblad form if it can be written
as

dp
dt

. 1
—i[H, p] + va[prLi - 5L L, p}]
X

1
= —ilH, p] = S(Tp+pD)+ Y vlopL].  (AD)

X

Here we consider interaction with local baths that are coupled
to the sites or to the bonds, hence the index x indicates posi-

tion. We have defined
I=> uLlL,.

A Lindblad generator due to coupling to an an Ohmic bath can
be written as

(A2)

n
2v
where it has been assumed that the coupling to bath coordinate
is —W Fyum. The fluctations of F' are charaterized by intensity
v (“noise”) and asymmetry n (“friction”), while V = i[H, W].
Note that in the Fokker Planck equation W is the position
coordinate, and V is the velocity operator.

L=W+i—V, (A3)

1. Bond dissipators

The interaction with a bath-source that induces noncoher-
ent transitions at a given bond is obtained by the replacement
(c/2) — (c/2) + f(¢) in the respective term of the Hamilto-
nian. Accordingly,

w® = (D, + D)), (A4)
V® = iH,W,]
= i&DI—D,)— ig[(DHle —D,D,_)—Hcl]. (AS)

Neglecting the double hopping term the Lindblad generators
Eq. (A3) are

L® = 1+§ D, + 1—é D, (A6)
4 4
where
2 &
= = —. A7
i o T. (A7)
We identify the rates of transitions
wE = <1:|:]§>vx = v+ & (A8)

Plugging Eq. (A6) into Eq. (A2), using Eq. (A8) and the
identity DIDX =0,, we get

I = > wH+w D@ = " +w), (A9
where the last expression applies if the rates do not depend on
x (no disorder). Then from Eq. (A1) we get

LPp=—wr+w)p+ Z[erDLoDx +w™D,pD}

+vD,pD, + vD’pD!]. (A10)

More generally, with disorder, we get £L® of Eq. (11), that
has been simplified by dropping the last two terms. The
omitted terms merely modify the lowest decoherence modes
as discussed in Ref. [15].

2. Site dissipators

Optionally we can add terms that reflect fluctuations of
the field. At a given site it is obtained by the replacement
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Ux)— Ux)+ f (t), where f (t) represents fluctuations of
intensity y. The implied coupling operators are

wS =9, (A1)

Ve = i[H,Wf)] = i(c/2)[(D}

x—1

D, ;) — (D! — D).
(A12)

Neglecting the hopping effect the Lindblad generator is L'®) =
Q.. To avoid confusion we use y; instead of v, for the intensity
of the bath-induced noise. Plugging into Eq. (A2) we get

r=%"y0 =v, (A13)

where the last expression applies if the y, do not depend on x.
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