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We consider a quantized version of the Sinai-Derrida model for “random walk in random environ-
ment”. The model is defined in terms of a Lindblad master equation. For a ring geometry (a chain
with periodic boundary condition) it features a delocalization-transition as the bias in increased
beyond a critical value, indicating that the relaxation becomes under-damped. Counter intuitively,
the effective disorder is enhanced due to coherent hopping. We analyze in detail this enhancement
and its dependence on the model parameters. The non-monotonic dependence of the Lindbladian
spectrum on the rate of the coherent transitions is highlighted.

I. INTRODUCTION

Sinai has coined the term ”random walk in random
environment” for a model that describes the stochastic
motion of a particle in a 1D lattice [1]. The forward and
backward rates w±

x of the transitions between sites (in-
dexed by x) are independent random variables. For a
biased chain the average ratio w+

x /w
−
x favors (say) the

forward direction. It turns out that for an unbiased infi-
nite chain with arbitrarily small randomness the spread-
ing of the particle becomes sub-diffusive. Later Derrida
and followers [2–4] have found that non-zero drift veloc-
ity is induced if the bias exceeds a critical value, aka
sliding transition. Related to that is the delocalization
transition that has been discussed by Hatano, Nelson
and followers [5–10]. The latter term refers, in the Sinai-
Derrida context, to the transition from over-damped to
under-damped relaxation for a finite sample with periodic
boundary conditions [11–14].

We consider a quantum version of Sinai-Derrida model.
This means that in addition to the stochastic transitions
that are described by an appropriate master equation,
the particle can also perform coherent hopping between
the sites. The hopping frequency c is a free model pa-
rameter. Our interest is focused in the regime c ≪ ν,
where ν is the average rate of the stochastic transitions.
Note that in the other extreme (ν=0) the model features
ballistic motion that can be suppressed by an Anderson
localization effect (due to quenched disorder), or by Bloch
oscillations (if bias is applied).

In [15] we have introduced a full Ohmic Lindbladian
that generates the quantized version of the Sinai-Derrida
model. A counter-intuitive enhancement of the effective
disorder due to coherent hopping has been pointed out,
but has not been explored. In particular, the most inter-
esting aspect, namely, the delocalization transition, has
not been discussed. In the present paper we consider a
minimal version of the full quantized version, omitting
some terms that are not essential for the demonstration
of the main effects, and performing some further simpli-
fications that will be discussed in subsequent sections.
Thus, in the absence of coherent hopping (c=0) our min-
imal model reduces to the Pauli master equation, and
hence becomes identical to the standard Sinai-Derrida
model.

The minimal model that we introduce below is defined
by a Lindbladian. It includes a random potential that
has dispersion σE , and a random stochastic field that has
dispersion σf . The parameters that define the model are
(ν, c, σE , σf ) and the bias f . We argue that such Lind-
bladian reflects an environment that has a characteristic
temperature

Tbath = (σf/σE)
−1 (1)

An associated dimensionless parameter is

η =
ν

2Tbath
=

1

2

(
σf

σE

)
ν (2)

Accordingly, there are two “classical” dimensionless pa-
rameters and two “quantum” dimensionless parameters
that define the model:

Dimensionless Parameters = (f, σf , η, c/ν) (3)

Outline.– We introduce the stochastic and the quan-
tized models in Sections II and III, with extra technical
details in Appendix A. We further discuss the signifi-
cance of the model parameters in section IV, and pro-
vide a regime diagram in Fig.1. Then we look on the
spectrum of the Lindbladian for non-disordered and for
disordered ring in Sections V and VI respectively. We
discuss how the localization of its eigen-modes is affected
by c in Section VII, and highlight some counter-intuitive
effects. The delocalization threshold is further explained
in Section VIII. The summary in Section VII provides ex-
tra background, to place the present work in the context
of past studies.

II. THE STOCHASTIC MODEL

The standard Sinai-Derrida model is defined in terms
of a rate equation for the probabilities px to find the par-
ticle in site x = 1, 2, ...N , and we assume periodic bound-
ary conditions. The rate equation is written as follows,

d

dt
p = Wp (4)

where p = {px} is a vector, and W is an N ×N matrix.
The explicit expression for this matrix is

W = −
∑
x

(w+
x + w−

x−1)Qx +
∑
x

[
w+

x Dx + w−
x D

†
x

]
(5)
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FIG. 1. Regime diagram. The (σf , η) regime diagram
for the unbiased model. The classical high temperature con-
dition (σf < 1) implies weak stochastic field. The quantum
high temperature condition (η < 1) allows to ignore memory
effects. In the Sinai regime, above the dashed line (η > σf ),
it is allowed to regard the coherent effects as a perturbation
with respect to the dominant stochastic dynamics.

where Qx = |x⟩⟨x| and Dx = |x+1⟩⟨x|. The translation
operator is D =

∑
x Dx = e−iq, where q is the genera-

tor of translations. In the absence of disorder the above
expression takes the form

W = −(w+ + w−)[1− cos(q)]− i(w+ − w−) sin(q) (6)

The rates w±
x in the disordered Sinai model are deter-

mined by a random stochastic field fx such that

w−
x

w+
x

≡ e−fx (7)

We assume, following Sinai, weak stochastic disordered
(fx ≪ 1). Consequently, one writes in leading order

w±
x ≡ νxe

±fx/2 ≈
(
1± fx

2

)
νx (8)

Accordingly, νx characterizes the strength of the stochas-
tic transitions at a given bond, while fx reflects their
asymmetry.

For the later analysis we write an explicit expression
for theW matrix, that holds in leading order with respect
to the disorder strength:

W = −diagonal
{
(νx+νx−1) +

ν

2
(fx−fx−1) +

ν

4
f2

}
+offdiagonal

{
νxe

±fx/2
}

(9)

In the above formula the off diagonal terms are written
without any approximation, because it is more conve-
nient for later discussion. But a clarification is required
for the approximations that are involved in the diagonal
terms. The term ν(fx − fx−1) is implied by the replace-
ment of νx by its average value ν. The error that is
associated with this replacement is of higher order in the
disorder strength. The same reasoning applies for the

FIG. 2. Delocalization of the eigen-modes. The chain
consist of N = 32 sites with periodic boundary conditions.
The dynamics is described by a rate equation with matrix
W. The average transition rate between neighboring sites is
ν = 1, and σν = 0.05. Upper panel: The spectra of W for
f = 0.005. The color code indicates the value of σ. It goes
from blue (σf=0) to red (σf=0.02). Lower panel: Characteri-
zation of the spectrum in a wider range. The axes are (σf , f).
The color-code indicates the normalized number Ncmplx/N of
complex eigenvalues. The solid line indicates the numerically
determined critical value fc above which the eigenvalues at
the vicinity of λ=0 become complex. For different realiza-
tions of the disorder this line is shifted within some range.

νf2 term, where the replacement of fx by its average
value f has been performed.

The random independent variables fx are character-
ized by an average fbias ≡ f , and by a dispersion σf . The
spectrum of W is illustrated in Fig.2. As f is increased
more eigenvalues become complex (see lower panel). The
critical value fc is the value above which complex eigen-
values emerge at the vicinity of λ∼0. This is identified
as a delocalization transition in the sense of Hatano and
Nelson, and has a subtle relation [11] to the sliding tran-
sition that has been discussed by Derrida and followers.
An estimate for fc can be obtained by the formula

fc =
1

4
Var(fx) = prefactor σ2

f (10)

where the numerical prefactor depends on the numerical
definition of σf that may vary depending on the shape
(Gaussian / Box) of the distribution. This expression
works well for a long chain, while fluctuations in its value
are pronounced for short samples.
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III. THE QUANTIZED MODEL

The full Ohmic version of the Lindblad equation for
an N site chain with periodic boundary conditions can
be found in Appendix A. Here we summarize the details
of a simplified minimal version that still contains all the
essential physics of the problem under study. The master
equation for the evolution of the probability matrix is

dρ

dt
=

(
L(H) + L(bias) + L(B) + L(S)

)
ρ (11)

The Lindblad generators in this equation refer to the co-
herent Hamiltonian dynamics, to the coherent bias term,
to the stochastic environmentally-induced transitions be-
tween sites (along “Bonds”), and to optional decoherence
due to local baths (at “Sites”). The explicit expressions
are:

L(H)ρ = −i[H, ρ] (12)

L(B)ρ = −1

2

∑
x

(w+
x + w−

x−1) [Qxρ+ ρQx]

+
∑
x

[
w+

x D
†
xρDx + w−

x DxρD
†
x

]
(13)

L(S)ρ = −γρ+
∑
x

γQxρQx (14)

The stochastic transition rates are w±
x as in Eq.(18), and

the extra on-site decoherence rate is γ. The Hamiltonian
incorporates a hopping term and a disordered potential:

H =
c

2
(D +D†) + U(x) (15)

where c is the hopping frequency for coherent transitions.
The disordered field is

Ex = −(U(x+1)− U(x)) (16)

If we did not impose periodic boundary conditions,
the bias could have been added using the prescrip-
tion U(x) 7→ U(x)− Ex, with diagonal matrix elements
i(xn − xm)Ebias. In order to respect the periodic bound-
ary condition we modify the bias term as follows:

L(bias)(n′,m′|n,m) =

iδn′,nδm′,m Ebias
N

2π
sin

(2π
N

(xn − xm)
)

(17)

This modified version is locally the same as the proper
version for an open chain, while for large (xn−xm) it can
be justified self-consistently for a long closed chain. This
modification has no significant numerical implication, be-
cause the far off-diagonal terms of the probability matrix
for low modes are vanishingly small.

The definition of the local temperature Tx is implied
by the Boltzmann ratio Eq.(7), using the substitution

fx ≡ Ex
Tx

(18)

Recall that we assume, following Sinai, weak stochas-
tic disordered (fx ≪ 1), which is equivalent to Ex ≪ Tx.

This goes well with the observation that the Ohmic ap-
proximation is consistent with Boltzmann to leading or-
der in 1/T (higher order terms in the Ohmic master equa-
tion vanish only in the classical limit). In Appendix A
we explain how Eq.(18) is obtained rigorously from the
Ohmic master equation. The free parameters of the the
Ohmic master equation are νx and ηx that correspond
to the ”noise” intensity and the ”friction” coefficient in
the common Langevin description. They obey the Ein-
stein relation, namely, Tx = νx/(2ηx). However, in the
present model the coupling of the bonds to the baths im-
plies that η should be regraded as a ”mobility” and not
as ”friction” coefficient [15].

IV. MODEL PARAMETERS

Physically disorder may arise from the potential, or
from the environmental parameters. So we may have
randomness in νx and/or in ηx and/or in Ex and/or in
γx. The Sinai-Derrida physics that we discuss is rather
robust and allows flexibility in the choice of the “free” pa-
rameters. In the numerical study, the following approach
has been adopted with no loss of generality. Given σE we
generate a realizations of the disordered potential such
that

U(x) ∈ [0, σE ] (19)

Then we can generate a random ηx ∈ [0, ση], and from it
to calculate the random stochastic field fx. In practice
we have realized that the numerical results are robust,
and not affected if we generate the stochastic field inde-
pendently, namely,

fx ∈
[
f − σf

2
, f +

σf

2

]
(20)

with

Var(fx) =
C

ν2
σ2
η Var(Ex) (21)

The latter relation follows from Eq(24) of [13], where
C = 8 for Gaussian disorder. From this relation it follows
that the ratio σf/σE is determined by the temperature
of the bath. This inspires the practical definition of the
characteristic temperature Eq.(1).
Resistor network disorder.– The essential type

of disorder for the discussion of Sinai-Derrida Physics is
related to the randomness of the stochastic field fx. As
opposed to that, randomness in νx is similar to “resistor
network disorder”. It has significant implications only
in extreme circumstances, such that percolation becomes
an issue [11]. We assume weak disorder, and therefore
the probability for disconnected bonds is zero. For the
numerical exploration we take

νx ∈
[
ν − σν

2
, ν +

σν

2

]
(22)

where ν is the average value of νx, and σν ≪ ν is as-
sumed.
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Numerical procedure.– Given σν we generate ran-
dom set of νx values for the bonds in accordance with
Eq.(22). We set the units of time such that the aver-
age value is ν = 1. Given σf and f , we generate random
realizations of the stochastic field fx in accordance with
Eq.(20), such that

∑
fx ≡ Nf for each realization. Note

that the average value f , per realization, is regarded as
a control parameter, namely fbias ≡ f . The transition
rates w±

x are calculated using Eq.(18). Given Tbath we
determine σE from Eq.(1), and generate a realization of
the disordered potential in accordance with Eq.(19). Re-
spectively in Eq.(17) we substitute Ebias = Tbathfbias.

Regime diagram.– The (σf , η) regime diagram of
the unbiased model is displayed in Fig.1. The assumed
hierarchy of energy scales is

c, σE ≪ ν ≪ Tbath (23)

The horizontal axis of the diagram is the strength σf of
the Sinai disorder, that is determined by the ratio be-
tween σE and Tbath via Eq.(1). As already pointed out
we assume weak stochastic field (σf ≪ 1) reflecting that
we deal with an Ohmic master equation that corresponds
to the traditional Sinai-Derrida model. With similar rea-
soning we assume c ≪ T for the coherent hopping. The
vertical axis of the diagram is the quantum parameter
η that reflects the ratio between ν and Tbath. It is the
same dimensionless “friction” parameter that appears is
the analysis of the Spin-Boson Hamiltonian. The va-
lidity of the Ohmic master equation requires η ≪ 1. In
the regime η > 1 the model is not valid because non-
Markovian memory effects cannot be neglected.

The first inequality in Eq.(23) means that we regard
the coherent effects as a perturbation with respect to the
dominant stochastic dynamics. This stands in opposition
to the common quantum-dissipation studies, where the
bath is regraded as a disturbance that slightly spoils or
modifies coherent evolution. In the regime diagram the
border between the two regimes is represented by the
diagonal line η = σf .

In our mathematical analysis Tbath merely determines
the ratio σE/σf , and should be kept larger than ν ≡ 1
in accordance with Eq.(23). To avoid misunderstanding,
we emphasize that from an experimental perspective the
physical temperature affects the parameters ν and σf .
Therefore, setting η = ∞ in the sense of Eq.(2), while
fixing the transition rates, does not really corresponds
to zero temperature, and furthermore contradicts our as-
sumption Eq.(23).

V. THE NON-DISORDERED RING

For non-disordered ring with c = 0 the Lindblad equa-
tion becomes identical with the Pauli master equation,
namely, the diagonal elements px of the probability ma-
trix ρx′,x′′ satisfy the rate equation Eq.(4), while each

diagonal term satisfies the equation

d

dt
ρr = [−γ − (w+ + w−) + iEr]ρr (24)

with r = (x′−x′′) = ±1,±2, · · ·. We conclude that the
eigenvalues {−λq,r} of L are

λq,r=0 = (w++w−)[1− cos(q)]− i(w+−w−) sin(q) (25)

λq,r ̸=0 = γ + (w++w−)− iEr (26)

where the wavenumber is q = (2π/N)× integer. Accord-
ingly, we distinguish between relaxation-modes that have
eigenvalues λq,0, and decoherence-modes that have eigen-
values λq,r ̸=0. This distinction is blurred for c ̸= 0 due
to mixing of the r branches, but nevertheless it can be
maintained for small c (see below), even in the presence
of disorder (see next Section).
We can extract the drift velocity v, and the diffusion

coefficient D from the expansion

λq,0 ≈ ivq +Dq2 +O(q3) (27)

For non-disordered c = 0 ring, Eq. (26) implies,
as expected, the trivial results v = (w+ − w−) and
D = (w+ + w−)/2.
Next we would like to explore how the spectrum is

modified for c ̸= 0. An example for the outcome of nu-
merical diagonalization is provided in Fig.3. The depen-
dence on c is illustrated. Below we explain the observed
dependence analytically.
The hopping couples the diagonal and the off diag-

onal terms of ρx′,x′′ . It is convenient to define a po-
sition coordinate x = (x′+x′′)/2 and a transverse coor-
dinate r = (x′−x′′). Then we can define an operator
r =

∑
r |r⟩ r ⟨r|, and a displacement operator D⊥ is

the transverse r coordinate, and a displacement opera-
tor e−iq in the x coordinate. The total Lindbladian can
be regarded as a non-Hermitian Hamiltonian that gener-
ates dynamics on an (x, r) lattice, see Fig.4. It can be
expressed as follows:

L = −γ0 + (γ0 −W)⊗ |0⟩⟨0|

−iEr − c sin(q/2)
[
D⊥ −D†

⊥

]
(28)

where γ0 ≡ γ + w+ + w−. More generally we define
γq ≡ γ + w+e−iq + w−eiq. In the absence of disorder the
lattice has Bloch translation symmetry in x, and there-
fore q is a good quantum number. The q block of the
Lindbladian is

L(q) = −γ0 + γq|0⟩⟨0| − iEr − c sin(q/2)
[
D⊥ −D†

⊥

]
(29)

For clarity, and for further analysis, we write a truncated
matrix version of L(q), where we keep only r = −1, 0, 1.
Namely,

L(q) =

 −γ0 + iE c sin(q/2) 0
−c sin(q/2) −γ0 + γq c sin(q/2)

0 −c sin(q/2) −γ0 − iE

 (30)
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FIG. 3. The Lindblad spectrum. Spectra of the Lind-
bladian for the same ring as in Fig.2, with σν = 0, while the
dispersion of the stochastic field is σf = 0 (upper panel), and
σf = 0.005 (middle panel), and σf = 0.02 (lower panel). The
color code indicates the value of c. It goes from blue (c=0)
to red (c=2). The bias is f = 0.003 . The temperature is
Tbath = 200 , and the on-site decoherence rate is γ = 5. The
black circles indicate the spectrum of W. In the upper panel
the black dots are from Eq.(31), while the gray dots are from
the perturbative approximation based on Eq.(30). The eigen-
values that correspond to the decoherence-modes Eq.(26) are
outside of axis borders.

r

x

FIG. 4. Diagrammatic representation of the lattice.
The axes are (x, r). Only the r = −1, 0, 1 elements are dis-
played. Bath-induced w± transitions are colored in blue: they
connect only r = 0 elements. Coherent ±i(c/2) transverse
transitions are indicated by solid and dashed red lines.

In section 4 of the supplementary of [15] (see also [18]),
the following result has been derived:

λq,0 = γ0 −
√
γ2
q − 4c2 sin2 (q/2) (31)

This result allows finite fbias but neglects Ebias.
The eigenvalues of L(q) are labeled λq,s, with band

index s = 0,±1,±2, · · · that distinguishes the s = 0 re-
laxation modes, from the s ̸= 0 decoherence modes. The
former correspond to the eigenvalues of W. The distinc-
tion between relaxation modes and decoherence modes
remains meaningful for small c, as long as the bands
remain separated. In Fig.3 only the eigenvalues of the
relaxation modes are displayed. As c becomes larger, the
Im(λ) of the relaxation modes increases monotonically.
The numerical diagonalization agree with Eq.(31), and
approximately with diagonalization of the truncated ver-
sion Eq.(30).

VI. THE EFFECT OF DISORDER

The matrix W is real. Therefore its characteristic
polynomial is real, and accordingly its eigenvalues λq

are either real or complex-conjugate pairs. Note that
in the absence of disorder q can be interpreted as quasi-
momentum, while in the presence of disorder q becomes a
dummy index. The delocalization of eigen-modes, as fbias
in increased, is indicated by the formation of complex-
conjugate pairs. The eigenvalues at the vicinity of λ ∼ 0
are the first to get delocalized, indicating a crossover from
over-damped to under-damped relaxation [11, 12]. For
very large fbias most of the eigenvalues, also those with
large Re(λ), become complex. Fig.2 illustrates this delo-
calization scenario, showing how the number of complex
eigenvalues depends on f for a range of σf values.
Similar scenario is expected for the Lindbladian L.

The hermiticiy of ρ implies that the super-matrix
Ln′,m′|n′′,m′′ is complex conjugated if we perform the
reflection R : (n,m) 7→ (m,n). So we have the relation
RLR = L∗. This implies that the characteristic polyno-
mial of L is real, as in the case of W.
The relaxation spectrum.– The relaxation spec-

trum of a disordered ring for c ̸=0 is illustrated in Fig.3.
Note that we use the same ring as in Fig.2, with the same
disorder realization. Different values of σf are achieved
by uniform “stretching” of the field values, without af-
fecting the relative magnitudes. The major counter-
intuitive observation is as follows: the introduction of
coherent hopping is qualitatively similar to stronger dis-
order. This is reflected by the migration of eigenvalues
towards the real axis. The effect is pronounced for eigen-
values with larger Re(λ), namely, eigenvalues with larger
Re(λ) are more sensitive to c.
Identification of the relaxation spectrum.– It

is very easy to identify the perturbed λq,0 branch of the
spectrum if γ is large, because large γ shifts all the λq,s̸=0

eigenvalues to Re(λ) ∼ 2ν + γ. But if, say, γ=0, we can
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FIG. 5. The diagonal norm versus c. We consider the
same ring as in Fig.2 with γ=0 (upper panels) and γ=5 (lower
panels) . For a given value of c we calculate the diagonal
norm Q and the IPR (color coded) for each eigen-mode. The
measure Q allows to distinguish the s = 0 branch from the
other branches. As c is increased the branches get-mixed.
The left panels are for zero disorder, while the right panels
are for σf = 0.02.

still try to identify this branch by calculating the diag-
onal norm Q of each eigen-mode. A given eigen-mode ρ
of the super-matrix L can be regarded as a super-vector,
with the ad-hoc normalization

∑
x,x′ |ρx,x′ |2 = 1. What

we call diagonal norm is the partial sum Q = trace(ρ).
In Fig. 5 we demonstrate that in the range of interest
this procedure allows to isolate the λq,0 branch, even if
γ=0. The points are color coded by the inverse partic-
ipation ratio, namely, IPR =

∑
x,x′ |ρx,x′ |4. Large IPR

for a relaxation-mode indicates localization (only small
number of sites participate).

VII. EFFECTIVE DISORDER

In order to understand analytically the observed de-
pendence of the spectrum on c, we write the equation
Lρ=− λρ for the elements (x, r = −1, 0, 1) of ρ, based
on the diagram of Fig.4. Then we eliminate the r= ± 1
elements, expressing them in terms of the r=0 elements.
Substitution into the equation for the r=0 elements, we
conclude that the effective transition rates are modified
as follows:

νeffectivex = νx +
c2

2

(λ− γx)

(λ− γx)2 + E2
x

(32)

This formula allows to estimate how different eigenvalues
along the λq,0 branch are affected by the disorder. Let us
start our reasoning with the assumption that the bias is
small or even zero. Accordingly, the relaxation spectrum
is real. Eq.(32) implies that that the introduction of c is
equivalent to an effective resistor-network disorder with
dispersion σν that is proportional to σE . For the purpose

FIG. 6. Enhanced effective disorder. We consider the
sample of Fig.2 with σf = 0.01. Left panel: The relaxation
spectrum is obtained from the diagonalization of the Lindbla-
dian L, with σν = 0. The bath temperature is Tbath = 800,
and the on-site decoherence rate is γ = 10. The color-code
indicates the results for Ncmplx/N , and the axes are (c, f).
Right panel: The results are based on diagonalization of the
associated W, and the axes are (σν , f). Comparing with the
left panel one observes qualitative correspondence. Note that
different samples exhibit different dependence on the strength
of the effective disorder. Monotonic dependence is found only
after statistical averaging.

of rough estimate one can substituted (λ−γx) 7→ ν. Then
it follows that

σν ∼ c2

ν3
T 2
bath σ2

f (33)

where we used Ebias ≪ σE ≪ ν, and the relation Eq.(1).
Localization.– Due to σf and σν the eigen-modes

of the chain are localized. As the bias is increased grad-
ually from zero, one expects a delocalization transition.
We shall discuss this transition analytically in the next
section. We can also go in the other direction. Namely,
we fix a relatively large bias, such that the relaxation
eigen-modes are delocalized, with complex eignevalues
λq. Then we increase the disorder and/or c gradually, to
see how the spectrum is affected. We discuss this scenario
further below.
In the absence of disorder the introduction of c leads

to monotonic increase of Im(λq), as implied by Eq.(31).
This effect is not uniform: the eigenvalues in the vicinity
of λ ∼ 0 are hardly affected.
In the presence of weak disorder the dependence of

Im(λq) on c becomes non-monotonic, see Fig.3, reflecting
a crossover from a non-disordered-like dependence that
is implied by Eq.(31) to the disordered-case dependence
that is implied by Eq.(32). Namely, the implication of
the effective disorder is to “push” towards localization,
hence Im(λq) is decreased.
If the effective-disorder is strong enough, the eigenval-

ues become real, indicating localization. Also here the
effect is not uniform: the eigenvalues in the vicinity of
λ ∼ 0 are hardly affected. We explain this observation in
the next section.
Global localization.– The global localization of the

relaxation modes as a function of σf for different values
of f has been illustrated in lower panel of Fig.2. In the
left panel of Fig.6 we demonstration how this localization
is affected by c. We also demonstrate there (in the right
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FIG. 7. Delocalization threshold versus model param-
eters. The left panel, fc versus σf , is obtained by averaging
over 150 realizations of disorder for c=0 (thick blue line) and
c=1 (thick red line). Thin lines illustrate the non-averaged
results for 6 randomly selected realizations. The right panel,
fc versus c, is for realizations with σf = 0.01. The symbols
illustrate the values before averaging. The bath temperature
is Tbath = 200, and the on-site decoherence is γ = 0.

FIG. 8. Delocalization threshold statistics. Cumula-
tive histograms for fc given σf = 0.01, and for σcritical given
fbias = 0.003. The thick lines are for N = 64, while the thin
lines are for N = 32. The blue and the red lines are for c = 0
and for c = 1 respectively. The histograms are based on 150
realizations of the disorder.

panel) that the effect of c can be mimicked by introduc-
ing into W an effective resistor-network-disorder. How-
ever, this should not be over-stated. It should be clear
that the details of the crossover from non-disordered ring
cannot be captured by a purely stochastic model, because
the former features a non-monotonic dependence of the
eigenvalues on c.

The delocalization threshold fc is related to the eigen-
values that reside at the vicinity of λ=0, while the global
count Ncmplx of complex eigenvalues probes the delocal-
ization globally. For the particular disorder-realization
of Fig.6 the dependence on the strength of the disorder
is rather monotonic for Ncmplx, but not monotonic for
fc. For other disorder-realizations the dependence of fc
on the strength of disorder is different. It is only after
averaging, over many realizations, that we get a mono-
tonic dependence. Furthermore, we clarify below that
the dependence of fc on c is diminished for large rings.

The average dependence of fc on σf and c is illustrated
in Fig.7. We also provide the results for a few randomly
selected realizations (thin lines) to illustrate the fluctu-
ations. Fig. 8 displays the full histograms for the 150
disorder-realizations. We see that for larger rings the ef-
fect of c on fc is diminished. This observation will be
explained in the next section.

On the other hand the global effect of c is not dimin-

ished for large N . For that we have to look globally
on the spectrum, and not just at the vicinity of λ ∼ 0.
To quantify this statement we find for a given fbias the
critical value σcritical of σf above which real eigenvalues
appear, indicating localization of some ‘remote’ eigen-
modes. One observes in the right histogram of Fig.8 that
the effect of c does not diminish for longer samples.

VIII. THE DELOCALIZATION THRESHOLD

The localization of the relaxation modes is due to the
σf disorder, and also influenced by the σν disorder. The
latter is enhanced once coherent hopping is introduced,
as implied by Eq.(32).
For the purpose of analysis one introduces an Hermi-

tian matrix HW that is associated with W. Using the
same notations as in Eq.(9) the associated matrix is

HW = diagonal
{
(νx+νx−1) +

ν

2
(fx−fx−1) +

ν

4
f2

}
−offdiagonal {νx} (34)

The following relation exists [5–7, 11]

det(λ+W) = det(λ−HW )

−2

[
cosh

(
Nf

2

)
− 1

]∏
x

(−νx) (35)

Consequently, one can write the characteristic equation
for the eigenvalues as F (λ) = F (0), where

F (λ) =
1

N

N∑
k=0

ln

∣∣∣∣λ− ϵk
νavg

∣∣∣∣ (36)

Here ϵk are the eigenvalues of HW , and νavg is the geo-
metric average over the νx. The right hand side of the
equation F (λ) = F (0) is implied by the simple observa-
tion that λ=0 should be a trivial root of the characteristic
equation.
The envelope κ(λ) of the function F (λ) is identified as

the Thouless formula for the inverse localization length
of eigenstates that are associated with ϵk. Consequently,
the condition for getting complex eigenvalues from the
equation F (λ) = F (0) is κ(λ) < F (0). Below we explain
the derivation of the following expression

κ(λ) ≈ α0fc − αc
(f − fc)

fc

√
λ

ν
+

σ2
ν

8ν3
λ (37)

where fc, that is given by Eq. (10), is independent of
σν , while α0 and αc are numerical constants. From this
expression it follows that for f > fc complex roots appear
at the vicinity of λ ∼ 0. This threshold is not affected by
σν , and therefore also not affected by c. However, the
resistor network disorder enhances the localization for
larger λ, and therefore affects the global delocalization of
the eigen-modes.
The derivation of Eq.(37) requires the integration of

several ingredients that have been worked out in past
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studies. We provide here an outline how to obtain this
formula. The basic observation of Derrida and follow-
ers is that W generates anaomalous spreading |x| ∼ tµ

that is characterized by an exponent µ. This exponent
is determined through the equation

〈
e−µfx

〉
= 1. It is

important to realize that µ is rigorously independent of
the resistor-network disorder. For Gaussian distribution
one obtains the relation µ = (2/σ2

f )f .
It is implied by the anomalous spreading, that the den-

sity of the eigenvalues ϵk at the bottom of the ‘energy’
band is ϵµ−1. This can be used in the Thouless relation
to derive the result F ′(λ) ≈ (λµ−1/νµ)πµ cot(πµ). See
[11] for details. It follows that complex eigenvalues ap-
pear near the origin for µ > µc where µc = (1/2). The
second term in Eq.(37) is obtained after linearization of
F ′(λ) around this critical value.
The first and the third terms in Eq.(37) correspond

to the correlated Anderson diagonal-disorder, and to
the Debye-resistor-network off-diagonal disorder that we
have in Eq. (34). Section VII of [14], including Ap-
pendix C there, provide a fair presentation for these two
types of disorder. The estimation of the inverse local-
ization length is performed using the Born approxima-
tion (Fermi-Golden-Rule). The Debye disorder provides
a term that is proportional to [Var(νx)]λ. This contri-
bution vanishes at the bottom of the energy band as ex-
pected. The Anderson disorder provides a term that is
proportional to [Var(diagaonl)]/λ, where Var(diagaonl)
is the effective variance of the diagonal terms. Here one
should notice that fx−fx−1 in Eq.(34) features telescopic
correlations, hence Var(diagaonl) ∝ [Var(f)]λ is propor-
tional to λ. Consequently the Anderson term in Eq.(37)
is independent of λ.

IX. SUMMARY

Quantum Brownian motion is a well studied theme (see
[19–22] and references within). In the condensed-matter
literature it is common to refer to the Caldeira-Leggett
model [23, 24], where the particle is linearly coupled to
the modes of an Ohmic environment. The strongly re-
lated problem of motion in a tight binding lattice [25–28]
can be regarded as a natural extension of the celebrated
spin-boson model. The cited works assume that the fluc-
tuations are uniform in space. Some other works consider
the dynamics of a particle that interacts with local baths.
In such models the fluctuations acquire finite correlations
in space [16–18, 29–37]. More recently, the basic ques-
tion of transport in a tight-binding lattice has resurfaced

in the context of excitation transport in photosynthetic
light-harvesting complexes [38–47].
Considering the possibility that each site and each

bond experiences a different local bath, it is puzzling that
all of the above cited works have somehow avoided the
confrontation of themes that are familiar from the study
of stochastic motion in random environment. Specifically
we refer here to the extensive work by Sinai, Derrida, and
followers [1–4], and the studies of stochastic relaxation
[11, 12] which is related to the works of Hatano, Nelson
and followers [5–10].
In order to bridge this gap, we have introduced in an

earlier paper [15] a quantized version of the Sinai-Derrida
model. In the present work we have considered a simpli-
fied version that captures the essential physics. Without
coherent hopping (c = 0) it reduces to the Pauli master
equation, and hence becomes identical to the standard
Sinai-Derrida model. The model features two dimension-
less parameters that control its regime diagram Fig.1.
The smallness of the quantum parameter η ≪ 1 implies
that memory effects can be neglected, hence we can use
a Lindblad version of the Ohmic Master equation. The
smallness of the classical parameter σf ≪ 1 reflects the
standard assumption of weak stochastic disorder, as in
the original model of Sinai.
The Hatano-Nelson delocalization transition is related

to the Sinai-Derrida sliding transition. We find that
adding coherent transitions “in parallel” to the stochas-
tic transitions leads to some counter intuitive effects. In
order to illustrate these effects we have inspected mainly
two measures: (a) the overall number of complex (under-
damped) relaxation modes. (b) the threshold fc for
under-damped relaxation. The latter measure focuses
on the eigenvalues at the vicinity of λ ∼ 0. The main ob-
servations are: (1) The relaxation modes are strongly af-
fected by coherent hopping; (2) The dependence of Imλ
on c becomes non-monotonic. (3) On-site decoherence
affects the sensitivity to the c dependence. (4) Some
features of the localization transition can be mimicked
by introducing an effective random-resistor network dis-
order in the stochastic description. (5) The dependence
of the delocalization threshold on c is very weak for large
rings. (6) The delocalization threshold for small quan-
tum rings exhibits strong fluctuations.

Our observations regarding delocalization concern the
regime c < ν, within the region where the coherent hop-
ping can be regarded as a perturbation. This means
that the relaxation modes are distinct, and well separated
form the decoherence modes. This allows a meaningful
comparison with the stochastic model.
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Appendix A: The Lindblad master equation

A master equation for the time evolution of the system probability matrix ρ is of Lindblad form if it can be written
as

dρ

dt
= −i[H, ρ] +

∑
x

νx

[
LxρL

†
x − 1

2
{L†

xLx, ρ}
]

= −i[H, ρ] − 1

2
(Γρ+ ρΓ) +

∑
x

νxLxρL
†
x (A1)

Here we consider interaction with local baths that are coupled to the sites or to the bonds, hence the index x indicates
position. We have defined

Γ =
∑
x

νxL
†
xLx (A2)

A Lindblad generator due to coupling to an an Ohmic bath can be written as

L = W + i
η

2ν
V (A3)

where it has been assumed that the coupling to bath coordinate is −WFbath. The fluctations of F are charaterized
by intensity ν (”noise”) and asymmetry η (”friction”), while V ≡ i[H,W ]. Note that in the Fokker Planck equation
W is the position coordinate, and V is the velocity operator.
Bond dissipators.– The interaction with a bath-source that induces non-coherent transitions at a given bond is

obtained by the replacement (c/2) 7→ (c/2) + f(t) in the respective term of the Hamiltonian. Accordingly,

W (B)
x =

(
Dx +D†

x

)
(A4)

V (B)
x = i[H,Wx] = iEx

(
D†

x −Dx

)
− i

c

2
[(Dx+1Dx −DxDx−1)− h.c] . (A5)

Neglecting the double hopping term the Lindblad generators Eq.(A3) are

L(B)
x =

(
1 +

fx
4

)
Dx +

(
1− fx

4

)
D†

x (A6)

where

fx =
2ηxEx
νx

≡ Ex
Tx

(A7)

We identify the rates of transitions

w±
x =

(
1± fx

2

)
νx = νx ± ηxEx (A8)

Plugging Eq.(A6) into Eq.(A2), using Eq.(A8) and the identity D†
xDx = Qx, we get,

Γ(B) =
∑
x

(w+
x + w−

x−1)Qx = (w+ + w−) (A9)

where the last expression applies if the rates do not depend on x (no disorder). Then from Eq.(A1) we get

L(B)ρ = −(w+ + w−)ρ+
∑
x

[
w+D†

xρDx + w−DxρD
†
x + νDxρDx + νD†

xρD
†
x

]
(A10)

More generally, with disorder, we get L(B) of Eq.(11), that has been simplified by dropping the last two terms. The
omitted terms merely modify the lowest decoherence modes as discussed in [15].

Site dissipators.– Optionally we can add terms that reflect fluctuations of the field. At a given site it is obtained
by the replacement U(x) 7→ U(x) + f̃(t), where f̃(t) represents fluctuations of intensity γ. The implied coupling
operators are

W (S)
x = Qx (A11)

V (S)
x = i[H,W (S)

x ] = i(c/2)
[
(D†

x−1 −Dx−1)−
(
D†

x −Dx

)]
. (A12)
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Neglecting the hopping effect the Lindblad generator is L
(S)
x = Qx. To avoid confusion we use γx instead of νx for

the intensity of the bath induced noise. Plugging into Eq.(A2) we get

Γ(S) =
∑
x

γxQx = γ (A13)

where the last expression applies if the γx do not depend on x.
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