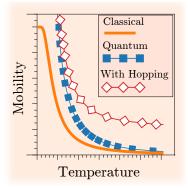
Breakdown of quantum-to-classical correspondence for diffusion in high temperature thermal environment



**Dekel Shapira, BGU** 



DS and D. Cohen, Phys. Rev. Research 3, 013141 (2021)
 DS and D. Cohen, Sci. Rep. 10, 10353 (2020)

## **Classical Particle in a High Temperature Environment**

Thermal noise:  $f = -\partial_x \mathcal{U}(x, t)$  $\nu$  is the noise intensity

 $\ell = \infty \text{ (Caldeira-Leggett)}$   $\downarrow \downarrow (x,t) = -f(t) \times \qquad t_{1}$   $\downarrow \downarrow \downarrow t_{2}$   $\downarrow \downarrow t_{3}$   $\times$ 

 $\begin{bmatrix} \mathcal{U}(x,t) & \text{Fluctuating potential} \end{bmatrix}$  $\begin{bmatrix} \ell & \text{Spatial Correlation} \end{bmatrix}$ 

$$\ell = a = \text{lattice constant}$$

$$(\mathcal{L}(\mathbf{x}, \mathbf{t}))$$

$$(\mathcal{L}, \mathbf{t})$$

Same Langevin equation:  $\dot{p} = -\eta \dot{x} + f$ Friction:  $\eta = \nu/2T$  [T = Temperature ] Diffusion and mobility ( $\dot{x} = p/m$ ):  $D = \frac{T}{n}$   $\mu = \frac{1}{m}$ 

### **Quantum**?

# Quantum Signature in High Temperature

We look for quantum mechanical signature in a high temperature system. (Ohmic master equation:  $\dot{\rho} = \mathcal{L}\rho$ )

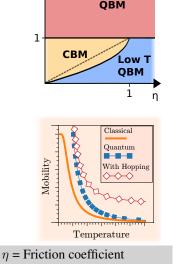
- Caldeira-Leggett (ℓ = ∞): Dynamics is the same as classical. Same D, μ.
- Finite  $\ell$ :

Common wisdom – same transport coefficients.

# Our statement:

 $D, \mu$  depend on  $\ell$  even at high temperature.

 $\ell$  = Spatial correlation of the environment



 $\theta$  = Scaled Temperature

**High T** 

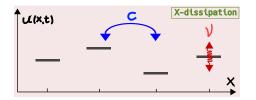
# Model: Tight-binding + coupling to the environment

$$\boldsymbol{H}_0 = -\boldsymbol{c}\cos(a\,\boldsymbol{\hat{p}}) \qquad [a=1]$$

#### **Coupling Terms:**

*X*-dissipation:  $H^{(int)} = -f(t) \mathbf{x}$  [ $\ell = \infty$ , Caldeira-Leggett ] *S*-dissipation:  $H^{(int)} = -\sum_{x} f_{x}(t) |\mathbf{x}\rangle \langle \mathbf{x}|$  [ $\ell = a = 1$ ]

4/9

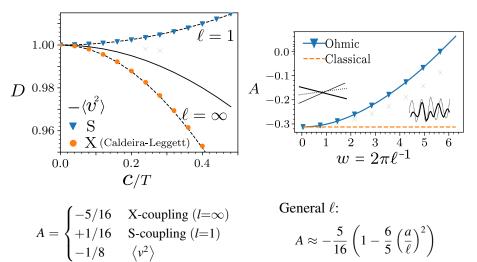


**Ohmic master equation:**  $\frac{d\rho}{dt} = \mathcal{L}\rho = -i[\mathbf{H}_0, \rho] + \mathcal{L}^{(\text{bath})}\rho$ **Parameters:** c,  $\nu$ ,  $\eta$ .

$$\boldsymbol{H}^{(\text{int})} = -f_{\alpha}\boldsymbol{W}_{\alpha} \Rightarrow \mathcal{L}_{\alpha} = \frac{\nu}{2} [\boldsymbol{W}_{\alpha}, [\boldsymbol{W}_{\alpha}, \rho]] + \frac{\eta}{2} i [\boldsymbol{W}_{\alpha}, \{\boldsymbol{V}_{\alpha}, \rho\}]$$
$$\boldsymbol{V}_{\alpha} \equiv i [\boldsymbol{H}_{0}, \boldsymbol{W}_{\alpha}]$$

Main results (high temperature)

**Diffusion:** 
$$D \propto \left[1 + A\left(\frac{c}{T}\right)^2\right] \frac{c^2}{\nu}$$



Parameters: Noise intensity 
$$\nu$$
 is fixed. Varying temperature T. Hopping frequency c

# X-coupling

Same diffusion coefficient for classical and quantum system.

Classical equations with an added field  $f_0$ :

$$\dot{\mathbf{x}} = \frac{\partial H}{\partial p} = c \sin(p)$$
$$\dot{p} = -\frac{\partial H}{\partial x} = f_0 - \eta \dot{\mathbf{x}} + f(t)$$

Fokker-Planck equation for momentum:  $\dot{\rho}(p) = -\frac{d}{dp}J$  [*J* = *p* current]

**Obtain Steady state:**  $\rho_{ss}(p)$ 

Extract mobility:

$$\left\langle \dot{x} \right\rangle_{ss} = \left[ 1 - \mathrm{I}_{0}^{-2} \left( \frac{c}{T} \right) \right] \frac{f_{0}}{\eta} \equiv \mu f_{0}$$

Use Einstein relation:  $D = \mu T$ .

The solution is "good" for all T (provided the Ohmic master equation holds).

## **Obtain the diffusion**

Master equation: 
$$\frac{d\rho}{dt} = \mathcal{L}\rho = -i[\mathbf{H}_0, \rho] + \mathcal{L}^{(\text{bath})}\rho$$
  
Eigenvalues:  $\mathcal{L}\rho = -\lambda\rho$   
Standard representation:  $\rho(R, r) \equiv \langle R + r/2|\rho|R - r/2\rangle$   
Bloch representation:  $\rho(q; r)$  [q is a constant of motion]  
Eigenvalues:  $\lambda_{q,0} = Dq^2 + \mathcal{O}(q^4)$  [Lowest band]  
Obtain D: Perturbation theory in q and  $\eta$   
Example.  $\mathcal{L}_{r'',r'}^{(q)}$  (X-coupling):

$$\mathcal{L}^{(q)} \mapsto \frac{1}{2} \begin{pmatrix} -4\nu & 2c\eta - cq & 0 & 0 & 0 \\ -c\eta + cq & -\nu & c\eta - cq & 0 & 0 \\ 0 & cq & 0 & -cq & 0 \\ 0 & 0 & c\eta + cq & -\nu & -c\eta - cq \\ 0 & 0 & 0 & 2c\eta + cq & -4\nu \end{pmatrix}$$

We obtain an "exact" stochastic equation: With the same D (to order  $T^{-2}$ ).

**Wigner representation:**  $\rho(R, r) \rightarrow \rho(R, P)$ .

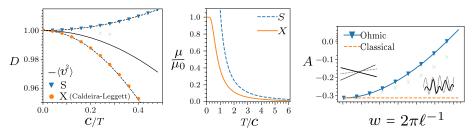
Stochastic-like kernel ( $\eta = 0$ ):

$$\begin{split} \mathcal{L}^{(\text{bath})}(R,P|R_0,P_0) &= \mathcal{W}(P|P_0)\delta(R-R_0)\\ \mathcal{W}(P|P_0) &= \begin{cases} \left(\frac{L}{2\pi}\right)^2 \frac{\nu}{2} \delta_{P,P_0 \pm (2\pi/L)} &, \text{ X-coupling}\\ \left(\frac{\nu}{L}\right) &, \text{ S-coupling} \end{cases} \end{split}$$

At finite temperature:

$$\mathcal{W} \mapsto \mathcal{W} \exp\left[-\frac{E(P) - E(P_0)}{2T}\right]$$
 [ $E(P) = -c \cos(P)$ ]

- Diffusion in high temperature environment has quantum fingerprints.
- The coefficient A is non-universal, and depends on  $\ell$ .
- Underlying mechanism for dissipation is reflected.
- More results in [2] regarding the effects of disorder.



- [1] DS and D. Cohen, Phys. Rev. Research 3, 013141 (2021)
- [2] DS and D. Cohen, Sci. Rep. 10, 10353 (2020)